
Secure Comparison and Interval Test Protocols based on Three-party
MPC

Wataru Fujii1, Keiichi Iwamura1 and Masaki Inamura1,2

1Graduate School of Engineering, Tokyo University of Science, Tokyo, Japan
2Center for Research and Collaboration, Tokyo Denki University, Tokyo, Japan

Keywords: Secret Sharing, Multiparty Computation, Secure Comparison, Secure Interval Test.

Abstract: Multiparty Computation (MPC) is a technology that enables computations to be performed without exposing
private data. Three main approaches are employed to construct an MPC: secret-sharing schemes, homomor-
phic encryption, and garbled circuit. Although secret-sharing based MPC involves lower communication cost
generally, it requires more round communications for concrete protocols such as comparisons or interval tests.
Herein, we propose a five-round secure comparison protocol and a five-round interval test protocol using a
shuffling protocol based on a three-party secret-sharing scheme. Additionally, we compare our protocols with
existing protocols based on rounds and multiplications.

1 INTRODUCTION

Recently, multiparty computation (MPC) has at-
tracted significant attention as a technique to obtain
statistics without exposing private data. In general, an
MPC is a computation between N parties P1, . . . ,PN
having private inputs x1, . . . ,xN . These parties com-
pute outputs (y1, . . . ,yN) = f (x1, . . . ,xN) such that Pi
derives only output yi.

Three main techniques have been developed for
MPC: secret-sharing schemes, homomorphic encryp-
tion, and garbled circuit. In general, secret-sharing-
based MPC involves relatively lower computational
and communication costs but requires more round
communications for concrete protocols such as com-
parisons or interval tests. Therefore, it is important for
secret-sharing-based MPC to reduce the round com-
munications of these protocols. Herein, we focus on
Shamir’s (2,3) secret-sharing (Shamir, 1979)-based
MPC, which is an algorithm that divides a secret s
into three shares. The original secret s can be restored
by collecting two of three shares.

Damgård et al. demonstrated the first constant-
round comparison protocol based on secret-sharing
schemes (Damgård et al., 2006); Nishide and Ohta
proposed more efficient constant-round protocols
such as comparisons or interval tests (Nishide and
Ohta, 2007) by improving the idea thereof. Further-
more, Reistad and Toft proposed an eight-round com-
parison protocol based on the limited compared val-

ues (Reistad and Toft, 2007).
Herein, we propose a five-round secure compari-

son protocol based on Shamir’s (2,3) secret-sharing
scheme using a shuffling protocol (Laur et al.,
2011; Chida et al., 2019). Moreover, we construct a
five-round interval test protocol using our proposed
comparison protocol and the interval test protocol of
(Nishide and Ohta, 2007).

Related Works. Many studies regarding se-
cure constant-round comparison protocols based on
secret-sharing schemes have been conducted, e.g.,
(Damgård et al., 2006; Nishide and Ohta, 2007; Reis-
tad and Toft, 2007; Reistad, 2009). Moreover, studies
regarding logarithmic-round secure comparison pro-
tocols have been introduced (Garay et al., 2007; Cat-
rina and De Hoogh, 2010). Recently, Morita et al.
proposed an efficient-round secure comparison proto-
col based on the client-server model, which enables
communication rounds to be reduced by the precom-
putation of clients (Morita et al., 2018).

2 PRELIMINARIES

In this section, we introduce some notations and
known techniques. Herein, we denote p to represent
an odd prime number, l the bit length of p, and Zp a
prime field. In addition, we assume that all protocols
are computed over Zp.

698
Fujii, W., Iwamura, K. and Inamura, M.
Secure Comparison and Interval Test Protocols based on Three-party MPC.
DOI: 10.5220/0009161406980704
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 698-704
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2.1 Shamir’s (2,3) Secret-sharing
Scheme

Let s ∈ Zp be the secret shared by three parties P1, P2,
P3. Every parity Pi has a unique identification value
xi ∈ Zp\{0}.

Share. A dealer builds a random polynomial f (x)
with a randomly chosen a ∈ Zp, as follows:

f (x) = s+ax mod p

and sends a share [s]i = f (xi) to Pi.

Reveal. A restorer collects two or more shares of s
and recovers s by reconstructing the random polyno-
mial f (x).

2.2 Addition, Multiplication and XOR

We assume that three parties possess two secret
shared values a, b as [a] = ([a]1, [a]2, [a]3), [b] =
([b]1, [b]2, [b]3), and c∈ Zp, which is a value known to
all parties. [a+ b], [a]+ c, and c[a] can be computed
locally by computing [a]i +[b]i, c+[a]i, and c[a]i, re-
spectively. Therefore, these operations do not require
communication.

Meanwhile, the multiplication of shared values
[a], [b] requires the parties to communicate with each
other. We assume that the parties perform the mul-
tiplication proposed by (Gennaro et al., 1998). Ac-
cording to (Gennaro et al., 1998), when the number
of parties is n, the multiplication requires n(n− 1)
shared values to be sent in parallel. In our settings,
six shared values must be sent in parallel.

The XOR operation of two secret shared bits [b1],
[b2]∈{0,1} ⊂ Zp is constructed as [b1]⊕ [b2] = [b1]+
[b2]− 2[b1][b2]. [b1] + [b2] can be performed locally
and the communication costs of this operation equal
those of the multiplication. When b2 is a public value,
this operation do not require communication.

2.3 Complexity

Similar to other studies, we used two metrics: round
complexity and number of multiplication invocations,
to evaluate the communication costs of the protocols.
The round complexity means the numbers of sequen-
tial rounds of the multiplications. If we compute [a][b]
and [c][d], two operations can be performed in paral-
lel. Therefore, the complexity is one round and two
multiplications.

We assume that the complexity of sharing and re-
vealing is negligible compared with that of multipli-
cation, as in other studies. However, we determine

the complexity of the shuffling protocols. For more
details, see Section 5.4.

3 SUBPROTOCOLS

In this section, we introduce a number of subproto-
cols. These protocols are related to the generation of
random values.

Random Number Sharing (RNS). This protocol, de-
scribed in Algorithm 1, outputs a sharing [r] of a
uniformly random, unknown value r ∈ Zp (Damgård
et al., 2006). The complexity is one round and one
multiplication.

Algorithm 1: RNS Protocol.

Output: [r] (r ∈ Zp).
1: Pi shares a uniformly random shared value [r.i].
2: [r]← [r.1]+ [r.2]+ [r.3].
3: Output [r].

Random Non-zero Number Sharing (RNNS). This
protocol, described in Algorithm 2, outputs a sharing
[r] of a uniformly random, unknown non-zero value
r ∈ Zp\{0} (Damgård et al., 2006). The complexity
is two rounds and three multiplications.

Algorithm 2: RNNS Protocol.

Output: [r] (r ∈ Zp\{0}).
1: [r], [s]← 2×RNS.
2: [v]← [r]× [s]
3: v← Reveal([v]).
4: If v = 0, abort. Otherwise, output [r].

Random Bit Sharing (RBS). This protocol, de-
scribed in Algorithm 3, outputs a sharing [b] of a
uniformly random unknown bit b ∈ {0,1} (Damgård
et al., 2006). The complexity is two rounds and two
multiplications.

Algorithm 3: RBS Protocol.

Output: [b] (b ∈ {0,1}).
1: [r]← RNS.
2: [a]← [r]× [r]
3: a← Reveal([a]).
4: a.1,a.2←

√
a

5: c←min(a.1,a.2).
6: If c = 0, abort. Otherwise, proceed as follows
7: [d]← [r]/c. . d ∈ {−1,1}
8: [b]← ([d]+1)/2.
9: Output [b].

Secure Comparison and Interval Test Protocols based on Three-party MPC

699

Random Bitwise Values Sharing (RBVS). This pro-
tocol, described in Algorithm 4, outputs bitwise shar-
ings [r0], . . . , [rl−1] of a uniformly random, unknown
value r such that 0≤ r = ∑

l−1
i=0 2iri < p. In Algorithm

4, (p− 1)i denotes the i’th bit of p− 1, and r < p
occurs only when a vector ~d does not contain any 0
elements. We assume that two attempts are required
to compute r < p for an arbitrary odd p, as in (Reistad
and Toft, 2007; Reistad, 2009). Therefore, the com-
plexity is three rounds and 8l multiplications. When
p = 2l − c, where c is a small integer, only one at-
tempt is required, and the multiplications can be re-
duced to 2l. For more details, see (Reistad and Toft,
2007; Reistad, 2009).

Algorithm 4: RBVS Protocol.

Output: [r0], . . . , [rl−1], (ri ∈ {0,1}).
1: For i = 0, . . . , l−1 in parallel do

[ri]← RBS
[si]← RNS.

2: For i = 0, . . . , l−1 in parallel do
[di] = [si](1+(p−1)i− [ri]+∑

l−1
j=i+1((p−1) j⊕

[r j])).
3: [~d] = ([d0], . . . , [dl−1]).
4: ~d← Reveal([~d]).
5: If a vector ~d contains a 0 element then abort. Oth-

erwise, proceed as follows.
6: Output [r0], . . . , [rl−1].

4 EXISTING COMPARISON
PROTOCOL

The secure comparison protocol is a protocol that
computes a shared bit [a < b] from shared values
[a],[b]∈ Zp. Reistad and Toft proposed an eight-round
comparison protocol based on compared values that
were limited to less than p−1

2 (Reistad and Toft, 2007;
Reistad, 2009).

Their protocols comprise two subprotocols. The
first subprotocol converts the comparison [a < b] into
a comparison [r] > c, where [r] is a random bitwise-
shared value, and c is a value known to all parties.

The second subprotocol computes the comparison
[r] > c. This subprotocol is based on the homomor-
phic encryption comparison protocol (Damgård et al.,
2007).

4.1 Conversion of the Comparison

This protocol, described in Algorithm 5, has inputs
[a], [b] < p−1

2 and outputs ([a] < [b]) = co ⊕ [r0]⊕

([r]> c), where co is the least-significant bit of c and
[r0] is the least-significant bit of [r]. For more details
on this protocol, see (Reistad and Toft, 2007; Reistad,
2009).

Algorithm 5: Conversion Protocol.

Input: [a], [b] < (p−1)/2.
Output: ([a]< [b]) = co⊕ [r0]⊕ ([r]> c).

1: ([r0], . . . , [rl−1])← RBV S.
2: [r]← ∑

l−1
i=0 2i[ri].

3: [c]← 2([a]− [b])+ [r].
4: c← Reveal([c]).
5: Output ([a]< [b]) = co⊕ [r0]⊕ ([r]> c).

The cost of the conversion protocol equals to one
RBVS protocol and one XOR operation. Therefore,
the complexity is four rounds and 8l + 1 multiplica-
tions. When p = 2l−c, where c is a small integer, the
multiplications can be reduced to 2l +1.

4.2 Computing ([r]> c)

Given random bitwise-shared values ([r0], . . . , [rl−1])
and a value c, vector [~e] = ([e0], . . . , [el−1]) is com-
puted as follows:

[ei] = [si]

(
1+(ci− [ri]) [s]+

l−1

∑
j=i+1

(c j⊕ [r j])

)
(1)

In equation (1), [si] are uniformly random non-zero
values and [s] is a uniformly random shared value of
s ∈ {−1,1}. By revealing vector [~e], we can obtain
the comparison ([r] > c) as follows. It is noteworthy
that e = 1 if vector ~e has a 0 element, and e = 0 oth-
erwise.

([r]> c) = e⊕
(
− [s]−1

2

)
(2)

When vector~e does not have any 0 elements, each ei
is masked by si, and ei does not leak any information
regarding shares. However, the equation ri = ci holds
for i > m when em = 0 exists in vector ~e. Therefore,
information regarding r is leaked.

To solve this problem, the parties compute a vec-
tor [ẽi] shifted by a random unknown value v ∈
{0, . . . , l−1}, as follows:

[ẽi] = [e(i+v) (mod l)] (3)

In equation (3), the location of the 0 is hidden by v.
Therefore, revealing [ẽi] does not leak any informa-
tion regarding r.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

700

The round complexity of computing ([r] > c) is
five rounds. In total, the comparison protocol con-
tains nine rounds. However, one round can be reduced
by computing equation (1) before [r] < p is verified.
Thus, the round complexity can be reduced to eight
rounds.

5 OUR PROTOCOLS

5.1 Reducing the Round Complexity

In existing comparison protocols, the computation of
([r] > c) requires five of eight rounds. This is be-
cause the computation of a shifted vector requires
many rounds. Hence, we present two proposals as
follows:

• We compute [~e] with fewer rounds.

• For permuting [~e], we apply a shuffling protocol
instead of computing a shifted vector.

By using these two proposals, we can construct a
five-round secure comparison protocol.

5.2 Computing [~e] with Fewer Rounds

More round-efficient vector [~e] = ([e0], . . . , [el−1]) are
shown below. This equation is based on the ho-
momorphic encryption comparison protocol (Veugen,
2012), which is the improved protocol of (Damgård
et al., 2007).

[ei] = [si]

(
[s]+ (ci− [ri])+3

l−1

∑
j=i+1

(c j⊕ [r j])

)
(4)

Equation (4) requires only one round and l
multiplications in contrast to equation (1), which
requires two rounds and 2l multiplications.

Security. As in equation (1), When vector ~e does
not have any 0 elements, each ei is masked by si,
and ei does not leak any information regarding shares.
However, the equation ri = ci holds for i > m when
em = 0 exists in vector~e, and information regarding r
is leaked. Thus, [ei] must be permuted.

5.3 Subprotocols for Shuffling Protocol

In this section, we describe (2,2)-additive secret shar-
ing and share conversion, which are subprotocols of
a shuffling protocol. The shuffling protocol cannot

be constructed efficiently on Shamir’s (2,3) secret-
sharing scheme. Thus, we execute the shuffling proto-
col after converting shares from Shamir’s (2,3) secret
sharing to (2,2)-additive secret sharing.

5.3.1 (2,2)-Additive Secret-sharing Scheme

For the sake of simplicity, we assume that the secret
s ∈ Zp is shared by two parities P1, P2. We denote
[[s]]i as Pi’s share of s and [[s]] = ([[s]]1, [[s]]2) as the
shorthand.

Share. randomly choose r ∈ Zp; let [[s]]1 = r and
[[s]]2 = s− r.

Reveal. Output s = [[s]]1 +[[s]]2.

5.3.2 Share Conversion

Share conversion from Shamir’s (2,3) secret shar-
ing to (2,2)-additive secret sharing can be performed
without communication (Cramer et al., 2005). Let λi
(for i = 1,2) be coefficients of the Lagrange interpo-
lation and compute as follows:

[[s]]i = λi[s]i (5)

λ1 =−
x2

x1− x2

λ2 =−
x1

x2− x1

5.4 Shuffling Protocol

Notations and Definitions. We define the notations
used in the shuffling protocol as follows:

• π: a random permutation.

• π12: a random permutation shared by P1,P2.

• π3: a random permutation known to only P3.

• π◦~s: l vectors permuted by π.

• π ◦ [[~s]]i: Pi’s (2,2) - additive secret shared l vec-
tors permuted by π.

• ~β12: l vectors of random values less than p shared
by P1,P2.

Random Permutation. Herein, random permutation
π is written as follows:

π =

(
0 1 . . . l−1

π(0) π(1) . . . π(l−1)

)
When~x represents l vectors, π◦~x denotes that~x is ran-
domly permuted by π, that is,~x=(x0, . . . ,xl−1) are re-
arranged into (x́0, . . . , x́l−1) such that x́ j = xπ(j). Simi-
larly, π◦ [[~x]]i denotes that [[~x]]i =([[x0]]i, . . . , [[xl−1]]i)

Secure Comparison and Interval Test Protocols based on Three-party MPC

701

are reordered into ([[x́0]]i, . . . , [[x́l−1]]i) such that
x́ j = xπ(j).

Algorithm. We describe the shuffling protocol in Al-
gorithm 6, which is the protocol based on (Laur et al.,
2011; Chida et al., 2019). This protocol has inputs of
shared vector [~e] = ([e0], . . . , [el−1]) and outputs ran-
domly permuted vector π◦~e = π3 ◦π12 ◦~e.

Algorithm 6: Shuffling Protocol.

Input: [~e] = ([e0], . . . , [el−1]).
Output: π◦~e = π3 ◦π12 ◦~e.

1: P1 shares π12 and~β12 with P2.
2: Convert [~e] into [[~e]]1, [[~e]]2.
3: P1 sends [[~́e]]1 = π12 ◦ [[~e]]1−~β12 to P3.
4: P2 sends [[~́e]]2 = π12 ◦ [[~e]]2 +~β12 to P3.
5: P3 computes π3 ◦ ([[~́e]]1 +[[~́e]]2) = π3 ◦π12 ◦~e.
6: P3 outputs π◦~e = π3 ◦π12 ◦~e.

Security. π3 is known to only P3, and π12 is shared
by only P1,P2. Therefore, π = π3 ◦ π12 is the un-
known random permutation, and π ◦~e does not leak
any information regarding r because ~e is randomly
permuted by π.

Complexity. Similar to other studies, we ignore the
complexity of sharing and revealing. However, we
determine the communication costs of sending some
vectors and random permutations. One multiplication
cost is equivalent to sending six values. Therefore,
the complexity of sending one value is one round and
1/6 multiplications. [[~́e]]1, [[~́e]]2 and~β12 are l vectors
and π12 is a 2× l matrix. Thus, this protocol requires
5l× 1/6 = 5l/6 multiplications. π12 and ~β12 can be
shared in parallel, whereas [[~́e]]1 and [[~́e]]2 can be sent
in parallel. Thus, the round complexity is two rounds.

However, the sharing of π12 and ~β12 can be exe-
cuted simultaneously with other protocols in advance
because π12 and ~β12 are random values unrelated to
the inputs. Therefore, the actual round complexity is
one.

5.5 Secure Comparison Protocol

We describe our secure comparison protocol in
Algorithm 7. This protocol has inputs [a], [b] < p−1

2
and outputs [a < b], where (a < b) = 1 if a < b and
(a < b) = 0 otherwise.

Complexity. The complexities of our comparison
protocol are as follows: three rounds and 8l multi-
plications for the RBVS protocol, two rounds and 3l

Algorithm 7: Secure Comparison Protocol.

Input: [a], [b]< p−1
2 .

Output: [a < b]
1: ([r0], . . . , [rl−1])← RBV S.
2: [r]← ∑

l−1
i=0 2i[ri].

3: [c]← 2([a]− [b])+ [r].
4: c← Reveal([c]).
5: For i = 0, . . . , l−1 in parallel do

[si]← RNNS.
6: Compute [s]. . s ∈ {−1,1}
7: For i = 0, . . . , l−1 in parallel do

[ei] = [si]
(
[s]+ (ci− [ri])+3∑

l−1
j=i+1 (c j⊕ [r j])

)
.

8: [~e] = ([e0], . . . , [el−1]).
9: π◦~e← Shuffling([~e]).

10: If vector π ◦~e contains a 0 element then e = 1;
otherwise, e = 0.

11: ([r]> c) = e⊕
(
− [s]−1

2

)
.

12: Output ([a]< [b]) = co⊕ [r0]⊕ ([r]> c).

multiplications for [s]i, two rounds and two multipli-
cations for [s], one round and l multiplications for
[e]i, one round and 5l/6 multiplications for the shuf-
fling protocol, and one round and one multiplication
for co⊕ [r0]⊕ ([r] > c). The total complexity is 10
rounds and (12+5/6)l+3 multiplications. However,
the computations of [s]i and [s] can be executed simul-
taneously with RBVS protocols in advance because
[s]i and [s] are random values unrelated to the inputs.
Therefore, we can ignore these round complexities.
In addition, one round can be reduced by computing
[e]i before [r]< p is verified. We assume that two at-
tempts are required to compute r < p for an arbitrary
odd p. Therefore, we require an additional of 4l + 2
multiplications for two sets of [e]i, [s]i, and [s]. In to-
tal, the complexity is five rounds and (16+5/6)l +5
multiplications.

When p = 2l − c, where c is a small integer, only
one attempt is required and the multiplications of the
RBVS protocol is 2l. Thus, the multiplications can be
reduced to (6+5/6)l +3.

5.6 Secure Interval Test Protocol

The secure interval test protocol has inputs of public
constants c1, c2 and shared value [a] ∈ Zp; it outputs
[c1 < a < c2] without revealing (c1 < a < c2). We
construct a five-round secure interval test protocol us-
ing our proposed comparison protocol and the interval
test protocol of (Nishide and Ohta, 2007).
Subprotocol. We describe the subprotocol of our se-
cure interval test protocol in Alogrothm 8. This proto-
col has inputs of bitwise shared value ([r0], . . . , [rl−1])

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

702

and a public constant c; it outputs [c < r], where
(c < r) = 1 if c < r and (c < r) = 0 otherwise. The
complexity is two rounds and (4+5/6)l+2 multipli-
cations, excluding rounds complexities of [s] and [s]i.

Algorithm 8: Subcomparison Protocol.

Input: ([r0], . . . , [rl−1]), a public constant c.
Output: [c < r]

1: For i = 0, . . . , l−1 in parallel do
[si]← RNNS.

2: Compute [s]. . s ∈ {−1,1}
3: For i = 0, . . . , l−1 in parallel do

[ei] = [si]
(
[s]+ (ci− [ri])+3∑

l−1
j=i+1 (c j⊕ [r j])

)
.

4: [~e] = ([e0], . . . , [el−1]).
5: π◦~e← Shuffling([~e]).
6: If vector π ◦~e contains a 0 element then e = 1;

otherwise, e = 0.
7: [c < r] = e⊕

(
− [s]−1

2

)
.

8: Output [c < r].

Secure Interval Test Protocol. We describe our se-
cure interval test protocol in Algorithm 9. This pro-
tocol has inputs of public constants c1, c2, and shared
value [a] ∈ Zp; it outputs [c1 < a < c2], where (c1 <
a < c2) = 1 if c1 < a < c2 and (c1 < a < c2) = 0 oth-
erwise.

Algorithm 9: Secure Interval Test Protocol.

Input: public constants c1, c2, shared value[a].
Output: [c1 < a < c2]

1: ([r0], . . . , [rl−1])← RBV S.
2: [r]← ∑

l−1
i=0 2i[ri].

3: [c]← [a]+ [r].
4: c← Reveal([c]).
5: if c2 5 c then

r1← c− c2 and r2← c− c1.
6: else if c 5 c1 then

r1← c+ p− c2 and r2← c+ p− c1.
7: [c1 < a < c2]← [r1 < r]× [r < r2].
8: else if c1 < c < c2 then

r1← c− c1−1 and r2← c+ p− c2 +1.
9: [c1 < a < c2]← 1− ([r1 < r]× [r < r2]).

10: Output [c1 < a < c2].

When c2 5 c, as shown in Figure 1, the shared bit
[c1 < a < c2] equals to 1 if r1 = (c− c2) < r < r2 =
(c− c1). Similarly, when c 5 c1, as shown in Figure
2, the shared bit [c1 < a < c2] equals to 1 if r1 = (c+
p−c2)< r < r2 = (c+ p−c1). Therefore, the shared
bit [c1 < a < c2] can be obtained by computing [r1 <
r]× [r < r2] in these two cases.

Figure 1: The case of c2 5 c.

Figure 2: The case of c 5 c1.

When c1 < c < c2, as shown in Figure 3, the shared
bit [c1 < a < c2] equals to 0 if r1 = (c− c1 − 1) <
r < r2 = (c+ p− c2 + 1). Therefore, the shared bit
[c1 < a < c2] can be obtained by computing 1− [r1 <
r]× [r < r2] in this case.

Figure 3: The case of c1 < c < c2.

Complexity. [r1 < r] and [r < r2] can be computed
in parallel by Algorithm 8. Thus, the complexities
of our interval test are as follows: three rounds and
8l multiplications for the RBVS protocol, two rounds
and 2× ((4+ 5/6)l + 2) multiplications for [r1 < r]
and [r < r2], and one round and one multiplication for
[r1 < r]× [r < r2]. The total complexity is six rounds
and (16 + 5/3)l + 5 multiplications. However, one
round can be reduced by computing [e]i before [r]< p
is verified, as in the comparison protocol. We assume
that two attempts are required to compute r < p for an
arbitrary odd p. Therefore, we require an additional
of 8l +4 multiplications for four sets of [e]i, [s]i, and
[s]. In total, the complexity is five rounds and (24+
5/3)l +9 multiplications.

When p = 2l − c, where c is a small integer, only
one attempt is required and the multiplications of the
RBVS protocol is 2l. Thus, the multiplications can be
reduced to (10+5/3)l +5.

6 COMPARISON WITH OTHER
STUDIES

In this section, we compare our comparison and in-
terval test protocols with existing protocols based on

Secure Comparison and Interval Test Protocols based on Three-party MPC

703

rounds and multiplications to evaluate the communi-
cation costs of the protocols.

In comparison protocols, for the sake of simplic-
ity, we assume that the compared values are restricted
to less than p−1

2 and p = 2l − c, where c is a small
integer. Therefore, only one attempt is required to
compute r < p in RBVS protocol. In interval test
protocols, inputs are arbitrary values in Zp, and two
attempts are required.

Table 1: Complexities of comparison protocols.

Rounds Multiplications
(Damgård et al., 2006) 44 148l +188llog2l

(Nishide and Ohta, 2007) 13 36l +1
(Reistad and Toft, 2007) 8 20l +36llog2l +6

(Reistad, 2009) 6 7.5l +11
Proposed 5 (6+5/6)l +3

Table 2: Complexities of interval test protocols.

Rounds Multiplications
(Nishide and Ohta, 2007) 13 72l +1

Proposed 5 (24+5/3)l +9

7 CONCLUSIONS

The main results obtained in this study are as follows.

• By using a shuffling protocol, we proposed a five-
round secure comparison protocol .

• We constructed a five-round secure interval test
protocol by applying our secure comparison pro-
tocol.

• We showed that proposed protocols have less
communication costs than existing protocols.

In future studies, we will consider methods to further
reduce the communication costs of our protocols.

REFERENCES

Catrina, O. and De Hoogh, S. (2010). Improved primitives
for secure multiparty integer computation. In Interna-
tional Conference on Security and Cryptography for
Networks, pages 182–199. Springer.

Chida, K., Hamada, K., Ikarashi, D., Kikuchi, R., Kiribuchi,
N., and Pinkas, B. (2019). An efficient secure three-
party sorting protocol with an honest majority. Cryp-
tology ePrint Archive, Report 2019/695.

Cramer, R., Damgård, I., and Ishai, Y. (2005). Share conver-
sion, pseudorandom secret-sharing and applications to
secure computation. In Theory of Cryptography Con-
ference, pages 342–362. Springer.

Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J. B., and Toft,
T. (2006). Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits
and exponentiation. In Theory of Cryptography Con-
ference, pages 285–304. Springer.

Damgård, I., Geisler, M., and Krøigaard, M. (2007). Effi-
cient and secure comparison for on-line auctions. In
Australasian Conference on Information Security and
Privacy, pages 416–430. Springer.

Garay, J., Schoenmakers, B., and Villegas, J. (2007). Prac-
tical and secure solutions for integer comparison. In
International Workshop on Public Key Cryptography,
pages 330–342. Springer.

Gennaro, R., Rabin, M. O., and Rabin, T. (1998). Simpli-
fied vss and fast-track multiparty computations with
applications to threshold cryptography. In podc, vol-
ume 98, pages 101–111. Citeseer.

Laur, S., Willemson, J., and Zhang, B. (2011). Round-
efficient oblivious database manipulation. In Proceed-
ings of the 14th International Conference on Informa-
tion Security, ISC’11, pages 262–277, Berlin, Heidel-
berg. Springer-Verlag.

Morita, H., Attrapadung, N., Teruya, T., Ohata, S., Nuida,
K., and Hanaoka, G. (2018). Constant-round client-
aided secure comparison protocol. In ESORICS.

Nishide, T. and Ohta, K. (2007). Multiparty computa-
tion for interval, equality, and comparison without
bit-decomposition protocol. In International Work-
shop on Public Key Cryptography, pages 343–360.
Springer.

Reistad, T. I. (2009). Multiparty comparison-an improved
multiparty protocol for comparison of secret-shared
values. In SECRYPT, pages 325–330.

Reistad, T. I. and Toft, T. (2007). Secret sharing compar-
ison by transformation and rotation. In International
Conference on Information Theoretic Security, pages
169–180. Springer.

Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612–613.

Veugen, T. (2012). Improving the dgk comparison protocol.
In 2012 IEEE International Workshop on Information
Forensics and Security (WIFS), pages 49–54. IEEE.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

704

