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Abstract: In this paper, we propose the use of Bayesian inference and learning to solve DCOP in dynamic and uncertain
environments. We categorize the agents Bayesian learning process into local learning or centralized learning.
That is, the agents learn individually or collectively to make optimal predictions and share learning data. The
agents’ mission data is subjected to gradient descent or expectation-maximization algorithms for training pur-
poses. The outcome of the training process is the learned network used by the agents for making predictions,
estimations, and conclusions to reduce communication load. Surprisingly, results indicate that the algorithms
are capable of producing accurate predictions using uncertain data. Simulation experiment result of a multi-
agent mission for wildfire monitoring suggest robust performance by the learning algorithms using uncertain
data. We argue that Bayesian learning could reduce the communication load and improve DCOP algorithms
scalability.

1 INTRODUCTION

Distributed Constraint Optimization (DCOP) involves
the appropriate assignment of variables to agents in
order to optimize costs (Fioretto et al., 2018; Fioretto
et al., 2015; Fransman et al., 2019; Maheswaran
et al., 2004; Yeoh et al., 2011). DCOP exists in
different forms based on the agents’ environmen-
tal evolution and behaviours (Fioretto et al., 2018).
Classical DCOPs involves the appropriate assignment
of variables by agents under constraints. Multi-
objective DCOP is a form of classical DCOP with
conflicting cost functions. Probabilistic DCOP fol-
lows probabilistic distribution of the agents’ environ-
mental behaviours (Fioretto et al., 2018; Stranders
et al., 2011). Dynamic DCOP changes overtime, in
which the DCOP problem at time t is different from
the DCOP problem at time t+1 (Fioretto et al., 2018;
Hoang et al., 2017; Yeoh et al., 2011). A current chal-
lenge is solving DCOP in a dynamic and uncertain en-
vironment (Fioretto et al., 2018; Fioretto et al., 2015;
Fioretto et al., 2017; Pujol-Gonzalez, 2011; Fransman
et al., 2019; Yeoh et al., 2011), i.e.,a highly chang-
ing environment with lots of uncertainties about fu-
ture events, agents variables, cost functions, and envi-
ronmental exogenous variables.
∗https://www.birmingham.ac.uk/staff/profiles/computer-

science/baber-chris.aspx

The DCOP algorithms computation time is impor-
tant for a highly changing environment; otherwise,
the solution will be outdated. This situation can occur
as a result of the complexity of the algorithms (com-
munication and computation cost, etc.). To reduce
this effect, we propose the use of Situation Aware-
ness (Endsley, 1995; Stanton et al., 2006). That is,
allowing the agents to reason about aspect of the cur-
rent and future situation; therefore, allowing agents
to only consider few variables. Another challenging
issue to DCOP algorithms is the tolerance of uncer-
tainties and dynamism in environmental variables and
cost functions. That is when the agent is not sure of
the local cost function or variable to be optimized,
having doubt on the given information, missing vari-
ables, or the instability of the operating environment
(Le et al., 2016; Léauté et al., 2011; Stranders et al.,
2011). In this paper, we tackle the problem of un-
certainties in DCOP using Bayesian inferential rea-
soning. The agents made predictions and estimations
using the outcome of the learning process. Therefore,
agents learn from previous cases and cases from other
agents. The potential advantage of this approach is
the ability to reduce communication in solving DCOP,
reducing the whole complexity of the algorithms by
providing an effective way of making estimations,
predictions, and decisions in the absence of commu-
nication or when trying to utilize sensor use. That is,
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the learned BBN could be used in making predictions,
estimations, and decisions instead of direct commu-
nication. It could also reduces the use of stochastic
variables in most of the DCOP algorithms such as
Maximum Gain Message, Distributed Stochastic Al-
gorithm, etc (Fioretto et al., 2018). Instead of random
sample, closely correct values will be predicted. Is-
sues arise when there is an absence of data to train the
network, in that case, we propose knowledge sharing
and rule-based inference to generate training data for
the network (Bayesian Belief Network) training us-
ing expectation-maximization or gradient descent al-
gorithm (Bottou, 2010; Dempster et al., 1977; Mandt
and Hoffman, 2017). The agents learn from other
agents during the mission and conduct learned net-
work update on a time-to-time basis.

2 BACKGROUND

2.1 Distributed Constraint
Optimization Problems (DCOPs)

The applications of a team of agents to perform to-
gether is growing such as in search and rescue mis-
sions (Bevacqua et al., 2015), sensor scheduling (Ma-
heswaran et al., 2004), smart homes (Fioretto et al.,
2017), traffic lights control (Brys et al., 2014) etc. The
agents have limited resources (energy, time, commu-
nication, etc.) to accomplish such a mission. There-
fore, they need to utilize the available resources by
making decisions that will support other co-agents ac-
tions (Fioretto et al., 2018; Khan, 2018; Khan, 2018).
In a multi-agent system, DCOP can be described as
the tuple S:

S = {A,V,D,C,α} (1)

Where A is the set of agents, V is the set of variables
for the agents, C is the cost functions to be optimized,
D is the domain for the variables, and α is a function
for the assignment of the variables. DCOP algorithms
arrange agents in a constraint graph or pseudo-tree
(Fioretto et al., 2018). In the constraint graph, agents
represent the nodes, while the edges are the set of
constraints values for the agents. In pseudo-tree struc-
ture, agents arrange in a tree-like structure with the hi-
erarchical power of optimizing variables assignment
(Fioretto et al., 2018; Ramchurn et al., 2010; Fioretto
et al., 2015). That is, agents have local cost func-
tions to optimize and communicate with neighbouring
agents(agents with direct communication link) and
agree on optimize values (Khan, 2018). In most of the
DCOP algorithms, such as Maximum Gain Message

(Maheswaran et al., 2004), Distributed Stochastic Al-
gorithms (Ramchurn et al., 2010), Distributed Pseu-
dotree Optimization (Fioretto et al., 2018; Fransman
et al., 2019) etc, agents compute their optimal cost
and inform other agents for optimizations. In the case
of changing environments, agents change their cost
functions with time. Uncertainty issues arise when
the agent is not sure about its or other co-agents’ vari-
ables, cost functions, and the outcome of the next
steps on the optimization process (Le et al., 2016;
Stranders et al., 2011). Uncertainty in DCOP can be
defined as the tuple U.

U = {A,V,D,C,α,λ} (2)

Where A, V, D, C, and α were defined in equation
(1) and λ is the degree of uncertainties agents have on
their variables or cost functions. The degree of un-
certainty of the agent varies, for instance, whether the
agents knows the range of the variables (Romanycia,
2019) or not. Table 1 describes the degree of uncer-
tainty in DCOP algorithms and their example.

Agents develop their knowledge of uncertainty
based on their environment adaptability. For example,
agents operating in a similar environment can have
boundaries for their variables. Complete uncertainty
is when the similarities between the agents’ environ-
ments differ. For example, agents optimizing vari-
ables in a very windy and hot environment may have
no prior likelihood of operating in a colder environ-
ment. No matter how high the rate of the uncertainty
is, Bayesian learning algorithms (conjugate gradient
descent or expectation-maximization) handle that ef-
fectively.

2.2 Bayesian Learning

Bayesian inferential learning allows the agents to
familiarize themselves with the environment and
make predictions, estimations, and conclusions on
the variables using conditional probability of equa-
tion 3 (Fransman et al., 2019; Wang and Xu, 2014;
Williamson, 2001).

P(Xi(t)|Yi(t)) =
(P(Xi(t))∗P(Yi(t)|Xi(t)))

(Σn
i P(Xi(t))∗P(Yi(t)|Xi(t)))

(3)

X1(t),X2(t),X3(t), ...,Xn(t) is the set of mutually ex-
clusive events at a given time. That is, agents can
compute other variables given the conditional proba-
bilities of other mission variables. The agents’ sensor
information could be modelled using Bayesian Belief
Network (BBN). BBN provides a graphical represen-
tation of events with their causal relationships (Wang
and Xu, 2014; Williamson, 2001; Xiang, 2002). We
regard this as a form of Situation Awareness, in which
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Table 1: Degree of Agents Uncertainty and their Types.

Uncertainty
Type

Meaning Example

Bounded When
agent
has
knowl-
edge
about
the
range of
the vari-
able,
but is
not sure
about it

Agents receiving
services from other
agents may use that
to utilize their vari-
ables, but due to a
communication link
problem, agents have
no options on that.
For example, wind
speed could range
between the usual
1meter per second to
7 meters per second.
Agents can perceive
that its greater than
4 meters per second
or has some likeli-
hood higher than the
others

Complete
Uncer-
tainty

When
agents
have
no clue
or hint
about
the
value
of a
variable
or cost
function

For example, a team
of rescue UAVs
in Sahara deserts,
change to the snowy
environment, may
have complete un-
certainty on their
variables

agents use sensor data to interpret their local environ-
ment and then reason about its likely state now and in
the near future.

In multi-agent systems, agents familiarise them-
selves with their operating environment based on
the previous mission data. These recorded data can
be used to obtain a well-trained network (BBN) for
making predictions and estimations of the agent’s
current and future variables with their uncertain-
ties. The conjugate gradient descent and expectation-
maximization algorithms could be used in train-
ing the networks (Romanycia, 2019). Expectation-
maximization algorithms compute optimal predic-
tions in two steps (i) computes conditional values by
using (1) and (ii) iterates towards optimal predictions
(Dempster et al., 1977). Gradient descent algorithm
finds optimal predictions by following the steepness
direction of the likelihood of the objective variables
(Bottou, 2010; Mandt and Hoffman, 2017; Romany-

cia, 2019). We categorize the learning processes into
two:

• Intra-agent Learning Process (local learning)

• Inter-agent Learning Process (central learning)

Intra-agent learning: agents learn from their previous
actions and interactions with other agents and be able
to learn, make predictions, estimations, and conclu-
sion. For example, agents learn and monitor how they
interact with other agents and the effect on their cost
functions. In the absence of communication, they can
use that learned network to make predictions. In order
to avoid continuous learning and optimize resources,
agents could learn on check-pointing bases (that is on
a time to time basis).

Inter-agent learning process involves the sharing
of information between the groups of agents and
learned collectively. It may causes the updates of
the local networks in order to reduce communica-
tions and uncertainties handling (figure 7). It occurs
when agents are within a communication range or
connected in a centralized passion.

3 RELATED WORK

Different algorithms were developed in solving
DCOP for dynamic, probabilistic, and classical forms
(Fioretto et al., 2018). For instance, in Maximum
Gain Message Algorithm (Maheswaran et al., 2004),
agents start with random allocation to their variables
and inform neighbouring agents about those vari-
ables in order to have an optimal decision by adjust-
ing the randomly selected variables. In Distributed
Stochastic Algorithms (Zhang et al., 2005), agents
do not communicate the selected random variables
with other agents rather they keep adjusting the ran-
dom variables until these fit the situation. Pectu and
Faltings (Petcu and Faltings, 2005) describe a Dis-
tributed Pseudotree Optimization (DPOP) algorithm
for solving DCOP based on arranging tree-like struc-
tures. The child nodes of the agents forward their
variables to parents for optimization. In Fransman et
al (Fransman et al., 2019) applied Bayesian inferential
reasoning is used in solving the DPOP; that is, when
agents arrange themselves in tree-like structures, they
will optimize their variables using Bayesian infer-
ence before forwarding to their parents. Many algo-
rithms were developed to tackle the environment dy-
namism such as Proactive DCOP algorithm (Billiau
et al., 2012; Hoang et al., 2016; Hoang et al., 2017) in
which agents react to environment changes instantly.
Predictive dynamism handling, uncertainty tolerance,
situation-awareness, and scalability remain the great
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challenge bedevilling the aforementioned algorithms.
In Léauté et al (Léauté et al., 2011) uncertain

DCOP was defined and solved using heuristic-based
algorithms with rewards forecasting using probability
distributions, agents joint decision making, and risk
assessment. They assume that the agents variables are
stochastic and beyond the control of the agents. The
model was tested on Vehicle Routing Problem (VRP)
and shows the possibility of obtaining an optiml so-
lution in an incomplete DCOP algorithms. A simi-
lar approach was used by Stranders et al (Stranders
et al., 2011) to solve uncertain DCOP whereby the
cost functions is independent of the agents’ variables.
The propose algorithms operate on acyclic graph and
uses a concept of first-order stochastic dominance
(Fioretto et al., 2018).

In this paper, we apply Bayesian learning to tackle
the agents’ uncertainty and environmental dynamism
in DCOP. Agents learn individually as well as from
other agents to know how to make an effective pre-
diction using uncertain data. The learning algorithms
used are conjugate gradient descent, and expectation-
maximization (Bottou, 2010; Dempster et al., 1977;
Mandt and Hoffman, 2017; Romanycia, 2019) which
handle uncertainties and provides very good predic-
tions and variables estimations. In the case of a highly
changing environment, we propose a time-base learn-
ing algorithm such as gradient descent algorithm of
(Bottou, 2010) to produce the learned BBN.

The learned BBN could be used in making opti-
mal predictions, estimation, and conclusions in the
absence of available data or communication link. It
could also reduce the random variables allocations
in the Maximum Gain Message (Maheswaran et al.,
2004), Distributed Stochastic Algorithms (Hale and
Zhou, 2015; Zhang et al., 2005), etc. Therefore,
agents could make a perfect prediction and estimate
optimal variables. This approach reduce communica-
tion, computation cost, and improve the scalability of
DCOP algorithms.

4 THE MODEL

We subject the agents’ uncertainties in solving DCOP
problem to Bayesian learning algorithms in or-
der to obtain an effective prediction tools. Dur-
ing the agents’ operations (forest fire monitor-
ing simulated on AMASE (https://github.com/afrl-
rq/OpenAMASE, 2019) figure 1), the agents (UAVs)
record their variables and the uncertainties in those
variables due to missing values, delay in delivery,
unreliable source, or error in data delivery to their
Bayesian Belief Network to be updated using the sen-

sor data.

Figure 1: Multi-agent Mission for Forest Fire Monitoring
on AMASE.

Figure 1 describes the multi-UAVs mission for
forest fire searching simulated on Aerospace
Multi-agent Simulation Environment – AMASE
(https://github.com/afrl-rq/OpenAMASE, 2019).
The coloured triangular shapes represent the agents
(UAVs) with their respective coloured dots destina-
tions. The two irregular polygons represent the fire
in the rectangular forest. Agents have an in-built
Bayesian Belief Network updated using simple
heuristics algorithms and information from the sensor
data. For instance, whenever an agent detect a fire
using its sensor, then it increase the probability of
the true states of fire detection node while in the
background the agent record all the mission data and
possible uncertainties.

The agents’ mission data are subjected to training
purposes using the conjugate gradient descent algo-
rithm or expectation maximization algorithms (Bot-
tou, 2010; Dempster et al., 1977) to conduct the learn-
ing process. The learned network (i.e. output of the
training process) could be used for making predic-
tions on future variables. Figure 2 describes an ex-
ample of simple BBN for tomorrow’s rain forecasting
based on today’s temperature and rain.

Figure 2: : Simple Bayesian Belief Network for Rain Fore-
cast.

Figure 2 describe a simple BBN for rain forecast.
The agents have similar BBN for probable heat
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source,wind speed, wind direction, etc. in forest fire
monitoring. Experiment results from our multi-agent
mission for forest fire searching proves that the learn-
ing algorithms work perfectly with uncertain data,
though the uncertainty needs to be spread across BBN
node’s states (Figures 3 and 4). In the case of a highly
dynamic environment, the learning process could use
time-based learning algorithms like a time-base gradi-
ent descent algorithm of (Bottou, 2010). The learning
process could occur concurrently with other agent’s
activities time or schedule after the mission (bad for a
dynamic environment).

Figure 3: Prediction Perfection Comparison with 25% Un-
certain Data.

Figure 4: Prediction Perfection Comparison with full Un-
certain Data.

Furthermore, Base on the experiment results on our
simulation platform, like other learning approaches,
agents need to generate a few training data for the
learned network to be generated (which is a po-
tential drawback). In the absence of training data,
agents could use randomly assigned probabilities and
learned with them before getting the real data or use
equation (3). Agents often share learned cases dur-
ing operations or after missions gathered by a cen-
tral server and update their learned network. Fig-
ure 3 compares the prediction perfection of nor-
mal data (data without uncertainty) and uncertain
data (data with 25% uncertainty) in wind direction
node prediction from multi-agent forest fire mon-
itoring. That is, we monitored the agents’ pre-
diction perfection in guessing future wind direc-
tion in a forest. We developed the model on the
simulation platform Aerospace Multi-agent Simula-
tion Environment- AMASE (https://github.com/afrl-
rq/OpenAMASE, 2019) and gathered agents cases

from 10, 100, 1000, 10000, and 100000 cases. The
prediction perfection grows with the number of train-
ing samples. Surprisingly, the learning algorithms
(both expectation-maximization and conjugate gradi-
ent) make better predictions using uncertainties due to
a wider decision space. Figure 4 describes the com-
plete uncertain in one of the states of two-state node,
which made the prediction poor. Future works will
look into training data utilization and spreading.

The agents segment their learning activity into
two, inter and intra agent learning. In connection
with other agents (i.e., global learning), agents learn
to monitor their variables and learn new training data
from other agents (i.e., inter-agent learning). The po-
tential issues arise in managing the fusion of learning
information from different agents. The learned net-
work could be used to make predictions and reduces
the use of communication and stochastic variables in
solving DCOP. Figure 5 describe the architecture of
the model.

Figure 5: The Model Architectural Description in Multi-
agent System

From figure 5, the agents identify their objective func-
tions and constraint in step labelled (1) as Distributed
Constraint Optimization Problems (DCOPs). Mission
data and their uncertainties are labelled at (2) and
send for learning purposes to layer (3)which contain
all the learning algorithms in the in-built BBN form.
The output of the learning process is a well trained
network that will help agents in making predictions
(11), estimations (10), decision making (9), agents
situation-awareness control (6), uncertainty tolerance
system (7), stochastic variable control (8) as in MGM,
DSA, DPOP algorithms etc. Layer (5) is responsi-
ble for agents learned network update and knowledge
fusion. Modules labelled 6,7,8,9,10, and 11 are the
services for integration with other existing DCOP al-
gorithms such as DPOP (Petcu and Faltings, 2005;
Fransman et al., 2019), MGM(Maheswaran et al.,
2004), (Maheswaran et al., 2004) etc as layer labelled
(12).
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4.1 Fitting the Model with DCOP
Algorithms

In DCOP algorithms such as Maximum Gain Mes-
sage (Maheswaran et al., 2004), Distributed Stochas-
tic Algorithms (Zhang et al., 2005), etc. Agents start
with random allocation of variables and communicate
to neighbouring agents to optimize their variables. In-
stead of such blind random variables allocation, our
model proposes the use of learned network (learned
BBN) and Bayesian inference rule (3) in such vari-
ables allocations. The agents learn individually as
well as learn collectively with other agents. Figure
6 describes the agents self-learning process.

Figure 6: Agent Bayesian Local Learning Process.

From figure 6, the agents maintain its DCOP variables
and cost functions, then assign the uncertainty in their
values as describe in table 1. The mission data will
be subjected to Bayesian learning process as describe
in figure 5. The agents learn their variables and cost
functions optimization transition by supplying the
learning cases to the Bayesian learning algorithms. At
each cycle, the agents determine the level of uncer-
tainty to each variable and costs functions. The sup-
plied data will be sent for optimal network training.
The agents keep updating their knowledge on time
bases to avoid wasting computation power. Due to the
rate of changing the environment, the learning algo-
rithms provide a priority-based training approach to
cope with the changing environment (i.e., agents treat
recent cases with higher priority). Another approach
of learning is the central learning process, whereby
agents learn from other agents and update their own
knowledge and knowledge about those agents. In a
centralized system, the server is responsible for the
learning process and agents’ knowledge updates. In
a decentralized system, when agents come within the
communication range, agents learn by combining all
their training data. The training case file is small in
size to which could be replicated on all agents’ mem-
ory (e.g., UAVs). The number of iterations could be
limited in order to avoid large executions. Figure 7
describes the central learning process, agents B, C, D,
and E are within the communication range and learn

from each other (through communication). As such,
they can learn together and share experiences. Agents
A and F are not within the communication range as
such using their own mission data for learning pur-
poses (local learning).

Figure 7: Centralized and Local Multi-agent Process

Therefore, Local learning allows the agents to learn
from its generated sensor data and give it an opportu-
nity to optimize its sensor data, sensor use scheduling,
perform local data check off, etc. On the other hand,
the agent acquire knowledge of unvisited areas from
other co-agents through the centralized learning (fig-
ure 7).

5 CONCLUSIONS AND FUTURE
WORK

We proposed the use of Bayesian inferential reason-
ing and learning to tackle dynamism and uncertainty
in Distributed Constraint Optimization (DCOP) algo-
rithms. The agents learn in two steps, local learn-
ing (self-learning) and central learning (where agents
learn from other agents). In each learning strategy, the
agents run the conjugate gradient descent algorithm
or expectation maximization algorithms, in dealing
with the uncertainty problem. Experiment results us-
ing multi-agents missions for forest fire prove that the
learning process works best by having uncertainties
spread across agents states, which perfect better than
real cases. To our knowledge, this is the first time
to tackle uncertainties in DCOP using Bayesian in-
ferential reasoning and learning, modelling forest fire
monitoring as DCOP, and introduction of situation-
awareness to DCOP.

Agents use the learned network (BBN) to
make estimations or optimization predictions instead
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of random variables selections, as in Maximum
Gain Message (MGM), Distributed Stochastic Algo-
rithms(DSA), etc.(Fioretto et al., 2018; Maheswaran
et al., 2004; Petcu and Faltings, 2005) As such, it
will reduce the complexity of the DCOP algorithms
my removing, communications, and computation cost
of DCOP algorithms. It would also improve scala-
bility and made them usable in dangerous and non-
communication environment. The propose model dif-
fer with Bayesian Distributed Pseudo Tree Optimiza-
tion of Fransman et al (Fransman et al., 2019) by
introducing learning opportunities, Situation Aware-
ness, and uncertainties handling.

Future work focus attention on training data uti-
lization and agents situation awareness. That is, we
are going to look at the minimum amount of data
needed for the production of accurate predictions
tools. We are intended in improving the agents ability
to consider current environmental situation and future
activities as well.

The propose architecture will later on undergo
comparative analysis and evaluation with other DCOP
algorithms operating in higly dynamic or uncertain
environment. We will also look at agents Bayesian
learning in a highly changing environment together
with architectural fusion. with other learning algo-
rithms
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Léauté, T., Faltings, B., and De, c. P. F. (2011). Proceedings
of the Twenty-Fifth AAAI Conference on Artificial In-
telligence Distributed Constraint Optimization under
Stochastic Uncertainty.

Le, T., Fioretto, F., Yeoh, W., Son, T. C., and Pontelli, E.
(2016). Er-dcops: A framework for distributed con-
straint optimization with uncertainty in constraint util-
ities. page 9.

Maheswaran, R. T., Pearce, J. P., and Tambe, M. (2004).
Distributed algorithms for dcop: A graphical-game-
based approach. page 8.

Mandt, S. and Hoffman, M. D. (2017). Stochastic gradient
descent as approximate bayesian inference. page 35.

Petcu, A. and Faltings, B. (2005). A scalable method for
multiagent constraint optimization. IJCAI’05, page
266–271, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc. event-place: Edinburgh, Scot-
land.

Handling Uncertainties in Distributed Constraint Optimization Problems using Bayesian Inferential Reasoning

887



Pujol-Gonzalez, M. (2011). Multi-agent coordination:
Dcops and beyond. IJCAI’11, page 2838–2839.
AAAI Press. event-place: Barcelona, Catalonia,
Spain.

Ramchurn, S. D., Farinelli, A., Macarthur, K. S., and Jen-
nings, N. R. (2010). Decentralized coordination in
robocup rescue. The Computer Journal, 53(9):1447–
1461.

Romanycia, M. (2019). Netica-j reference manual. page
119.

Stanton, N. A., Stewart, R., Harris, D., Houghton, R. J.,
Baber, C., McMaster, R., Salmon, P., Hoyle, G.,
Walker, G., Young, M. S., Linsell, M., Dymott, R.,
and Green, D. (2006). Distributed situation awareness
in dynamic systems: theoretical development and ap-
plication of an ergonomics methodology. Ergonomics,
49(12-13):1288–1311.

Stranders, R., Delle Fave, F. M., Rogers, A., and Jennings,
N. (2011). U-gdl: A decentralised algorithm for dcops
with uncertainty. [Online; accessed 2019-11-25].

Wang, J. and Xu, Z. (2014). Bayesian inferential reasoning
model for crime investigation. page 11.

Williamson, J. (2001). Bayesian networks for logical rea-
soning. page 19.

Xiang, Y. (2002). Probabilistic reasoning in multiagent sys-
tems - a graphical models approach.

Yeoh, W., Varakantham, P., Sun, X., and Koenig, S. (2011).
Incremental dcop search algorithms for solving dy-
namic dcops (extended abstract). page 2.

Zhang, W., Wang, G., Xing, Z., and Wittenburg, L. (2005).
Distributed stochastic search and distributed breakout:
properties, comparison and applications to constraint
optimization problems in sensor networks. Artificial
Intelligence, 161(1-2):55–87.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

888


