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3IEMN DOAE UMR CNRS 8520, Université Polytechnique Hauts-de-France, France

abdelmalik.taleb-ahmed@uphf.fr

Keywords: Anomaly Detection, Future Prediction, Deep Learning, Appearance and Motion Features.

Abstract: Anomaly detection in surveillance videos is the identification of rare events which produce different features
from normal events. In this paper, we present a survey about the progress of anomaly detection techniques
and introduce our proposed framework to tackle this very challenging objective. Our approach is based on the
more recent state-of-the-art techniques and casts anomalous events as unexpected events in future frames. Our
framework is so flexible that you can replace almost important modules by existing state-of-the-art methods.
The most popular solutions only use future predicted informations as constraints for training a convolutional
encode-decode network to reconstruct frames and take the score of the difference between both original and
reconstructed information. We propose a fully future prediction based framework that directly defines the
feature as the difference between both future predictions and ground truth informations. This feature can
be fed into various types of learning model to assign anomaly label. We present our experimental plan and
argue that our framework’s performance will be competitive with state-of-the art scores by presenting early
promising results in feature extraction.

1 INTRODUCTION

Automatic anomaly detection in video sequence is a
very important task for smart security systems, espe-
cially in transportation or security application fields.
This work recently has became active research topic
because of the necessity of automatic anomaly detec-
tion in real-world context. Actually, the frequency
of abnormal events is really rare compared with nor-
mal events and its features usually do not follow
any spatial or temporal relation. Thus, we need a
huge resources, not only the workers but also time-
consuming to manually process the anomaly detec-
tion task. Therefore, our work is significant in term of
reducing processing cost for real-world systems.

Naturally, in human behavior analysis, we might
consider anomaly detection as an action recognition
problem. But this classical point of view lead us to
an unbalanced situation where the number of sam-
ples for each class is significantly different. Beside,
it is difficult to pre-define the structure of abnor-
mal events because there is usually not any spatial
and temporal relations between those events. Hence,

we should tackle this challenge in a specific way.
Generally, from the first successful works until now,
they proposed three solutions: one-class classification
based (Wang and Snoussi, 2012; Wang and Cherian,
2019), changing detection based (Giorno et al., 2016;
Hasan et al., 2016; Ionescu et al., 2017) and future
prediction based (Nguyen and Meunier, 2019; Liu
et al., 2017).

One-class learning first constructs the representa-
tion for events then fit a model to data for which anno-
tations are available only for a single class, normally
those are labels for abnormal samples. This solution
is only appropriated for binary classification and it has
limitation when we need further information as type
and localization. Changing detection is a classical
way where each event is compared with its neighbors
to find the most different ones. By this way, we could
get trouble when abnormal event always or never hap-
pens in a sequence. The future prediction based tech-
niques casts abnormal events as unpredicted events. A
generative model to produce future information from
previous frames is computed and a model is trained
from normal frames and noisy ones; usually more
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noisy frames are more blurred than the ground truth
(Figure 1).

Recently, thanks to the powerful performance of
deep learning models as auto encode-decode joint
to generative adversarial learning, future prediction
based methods achieved state-of-the-art for many
anomaly challenge: CUHK avenue (Lu et al., 2013),
UCSD pedestrian (Mahadevan et al., 2010), Shang-
haiTech (Liu et al., 2017), etc. In these methods
future predicted information are only used as con-
straints for training a convolutional encode-decode
network. Moreover, the abnormal classification deci-
sion is computed by thresholding the score of the dif-
ference between original and the reconstructed infor-
mation at the current frame. Inspired by this promis-
ing solution, we proposed a fully future prediction
based framework that directly consider the difference
between future predictions and ground truth informa-
tions as features. After histogram encoding, these rep-
resentations feed into various types of learning model
to assign the anomaly labels. The rest of the paper is
presenting the following contributions:

• A short survey about anomaly detection and fu-
ture prediction methods

• A presentation of our fully future prediction based
and flexible framework for anomaly detection

• A definition of our feature vector used for
anomaly detection: histogram of future
appearance-motion difference (HOFAMD)

• An introduction to some learning techniques
based on HOFAMD

This paper will be ended by a presentation of the
evaluation plan and some conclusions and perspec-
tives.

Figure 1: Some predicted frames and their ground truth in
normal and abnormal events (Liu et al., 2017).

2 RELATED WORK

In this section, we present a survey about anomaly
detection methods and future information prediction
techniques on which the most promising solutions and
our framework solutions are based.

2.1 Anomaly Detection

Anomaly detection methods can be splitted into two
categories depending on the type of the features used
to characterize abnormal and normal events:

• Hand-crafted features (Kim and Grauman, 2009;
Mahadevan et al., 2010; Giorno et al., 2016; Wang
and Snoussi, 2012; Medioni et al., 2001; Zhang
et al., 2009)

• Deep learning features (Hasan et al., 2016; Hi-
nami et al., 2017; Luo et al., 2017; Ionescu et al.,
2017; Liu et al., 2017; Nguyen and Meunier,
2019).

On the one hand, before the rise of Convolutional
Neural Networks (CNNs), most of the methods was
extracting hand-crafted features to finally estimate the
clusters of normal and abnormal events distributions.
In some early works, the principal features is motion
trajectories (Medioni et al., 2001; Zhang et al., 2009)
and it executes quite fast and simple for implementa-
tion. But its performance always depend on the qual-
ity of the detectors and the trackers which are easily
confused in crowed and complex scenes. Moreover,
the only coordinates is not sufficient to describe all
the spectrum of abnormal events. To deal with this
problem, information about appearance and motion
are extracted along the trajectories. Histogram of op-
tical flow was used by (Kim and Grauman, 2009) to
build space-time Markov Random Fields graph. (Ma-
hadevan et al., 2010) learned the Mixture of Dynamic
Textures (MDT) during training then computed neg-
ative log-likelihood of the spatio-temporal patch at
each region at test phase. (Wang and Snoussi, 2012)
built Histograms of optical flow orientation (HOFO)
then classified events by one-class SVM or kernel
PCA. A combination of HOG, HOF, MBH was used
by (Giorno et al., 2016) to train their classifiers then
take the average classification scores to draw the out-
put signal.

On the other hand, the progress of deep learn-
ing method lead to many successful researches in
anomaly detection. (Hasan et al., 2016) utilized ei-
ther motion trajectories features (HOG, HOF, MBH)
or learned features combined with autoencoder to re-
construct the scene. The reconstruction error is used
to measure the regularity score that can be further
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analyzed for different applications. (Hinami et al.,
2017) integrated a generic Fast R-CNN model and
environment-dependent anomaly detectors. The au-
thors first learn CNN with multiple visual tasks to ex-
ploit semantic information that is useful for detecting
and recounting abnormal events then appropriately
plugged the model into anomaly detectors. (Ionescu
et al., 2017) combines the motion features computed
from 3D gradients at each spatio-temporal cube with
conv5 layer of VGG-net with fine-tuning as appear-
ance features. Then a binary classifier is trained to
distinguish between two consecutive video sequences
while removing at each step the most discriminant
features. Higher training accuracy rates of the inter-
mediately obtained classifiers represented abnormal
events. (Luo et al., 2017) proposes a Temporally-
coherent Sparse Coding (TSC) where they enforce
similar neighboring frames be encoded with similar
reconstruction coefficients. Then the authors mapped
the TSC with a special type of stacked Recurrent Neu-
ral Network (sRNN). (Liu et al., 2017) introduces
a first work of future prediction based anomaly de-
tection. They adopted U-Net as generator to predict
next frame. To generate high quality image, they
made the constraints in terms of appearance (inten-
sity loss and gradient loss) and motion (optical flow
loss). Then the difference between a predicted fu-
ture frame and its ground truth is used to detect an
abnormal event. In (Nguyen and Meunier, 2019), the
authors continue this approach by designing a model
as a combination of a reconstruction network and an
image translation model that share the same encoder.
The former sub-network determines the most signif-
icant structures that appear in video frames and the
latter one attempted to associate motion templates to
such structures. They achieve state-of-the-art for 6
popular benchmarks of anomaly detection.

2.2 Future Prediction

Future video informations prediction recently has be-
came an active topic due to significant progress in
deep learning, especially in generative adversarial
networks (GANs) and Convolutional Auto-Encode
(Conv-AE) models. They predicted various type of
future informations for specific applications. (Math-
ieu et al., 2015) trained a classical 7-layers CNN to
generate future frames given an input sequence. To
deal with the inherently blurred predictions obtained
from the standard Mean Squared Error (MSE) loss
function, they proposed three different and comple-
mentary feature learning strategies: a multi-scale ar-
chitecture, an adversarial training method, and an im-
age gradient difference loss function. (Walker et al.,

2015) built a 7-layers CNN for predicting the future
motion of each and every pixel in the image in terms
of optical flow given a static image. (Finn et al., 2016)
developed a Long-Short Term Memory (LTSM) based
action-conditioned video prediction model that ex-
plicitly models pixel motion to learn about physical
object motion without labels, by predicting a distribu-
tion over pixel motion from previous frames. Inspired
by the same idea, (Lotter et al., 2016) constructed
LTSM based PredNet which learned to predict future
frames in a video sequence, with each layer in the net-
work making local predictions and only forwarding
deviations from those predictions to subsequent net-
work layers. (Villegas et al., 2017) built a deep neural
network for the prediction of future frames in natu-
ral video sequences upon the Conv-AE and Convolu-
tional LSTM for pixel-level prediction, which inde-
pendently capture the spatial layout of an image and
the corresponding temporal dynamics. In (Oliu et al.,
2017), authors introduced an architecture based on
recurrent Conv-AEs to deal with the network capac-
ity and error propagation problems for future video
prediction. It consisted on a series of bijective Gate
Recurrent Unit (GRU) layers, which allowed for a
bidirectional flow of information between input and
output: they considered the input as a recurrent state
and update it using an extra set of gates. (Gao et al.,
2017) proposed an approach using Conv-AE that hal-
lucinated the unobserved future motion implied by a
single snapshot to help static-image action recogni-
tion. The key idea was to learn a prior over short-term
dynamics from thousands of unlabeled videos, infer
the anticipated optical flow on novel static images,
and then train discriminative models that exploit both
streams of information. Obviously, most of recent re-
searches build their model upon a Conv-AE model to
reconstruct the future informations.

3 PROPOSED METHODS

In this section, we describe our framework for
anomaly detection in detail. The general pipeline is
shown on Figure 2. This pipeline is so flexible that we
can replace any components (appearance reconstruc-
tor, optical flow estimator-generator, learning model)
by the state-of-the-art methods, the one that will be
considered as the more adapted to the application con-
text.

3.1 Future Appearance Reconstruction

We build a Conv-AE using U-Net structure and follow
the successful model of (Liu et al., 2017). Instead of
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Figure 2: General pipeline of our anomaly detection framework. A sequence of frames feed into 3 streams: Appearance
reconstruction stream is an Conv-AE model to predict future RGB frame from previous frames; Optical flow estimation
stream is a strong flow estimator such as HD3 (Yin et al., 2019) to produce ground truth flow; Optical flow prediction stream
is a strong flow predictor such as Im2Flow (Gao et al., 2017). The output of first stream is compared with original frame to
calculate appearance difference. The outputs of the two other streams are compared together to calculate motion difference.
All those differences parameters are encoded to histogram then fused into Histogram of Future Appearance-Motion Difference
(HOFAMD) descriptor. This representation thus will be used for some learning techniques for anomaly detection. Some small
images are taken from (Nguyen and Meunier, 2019).

using the difference between the output and the origi-
nal versions of video frame as well as the optical flow
together for adversarial training, we simple the net by
directly taking into account the appearance difference
of the reconstructed Ir and original frame I as con-
straint. We also keep the same idea of taking the sum
of intensity loss and gradient loss along both x,y di-
mension as appearance loss.

Lint(Ir, I) =‖ Ir− I ‖2
2 (1)

Lgrad = ∑
x,y
‖ |gradx,y(Ir)|− |gradx,y(I)| ‖ (2)

Lappr = Lint +Lgrad (3)

The network configuration of this component is the
same as appearance encoder-decoder of (Nguyen and
Meunier, 2019). The appearance reconstructor is
trained with video frames of normal events so it will
produce the output appropriated to normal events.
The idea is that the abnormal frames would not be
well-reconstructed so the higher difference between
the reconstruction and ground truth is produced.

3.2 Future Motion Prediction

The motion predictor is taken as Im2Flow (Gao et al.,
2017). This framework achieved state-of-the-art for
flow prediction. In detail, the network structure of
Im2Flow is similar to the optical flow encode-decode
branch of (Nguyen and Meunier, 2019). But in-
stead of only using l1 loss between predicted flow

and ground truth flow, Im2Flow considered the com-
bination of two losses: a pixel error loss and a mo-
tion content loss. The pixel loss measured the agree-
ment with the true flow while the motion content loss
enforced that the predicted motion image preserved
high level motion features. This improvement might
help Im2Flow worked better. The ground truth flow is
computed by HD3 (Yin et al., 2019), top 10 methods
for optical flow estimation on KITTI flow benchmark.

3.3 Descriptor Encoding

We consider both appearance and motion difference
for feature encoding. Given a sliding window M with
size W ×H, we first compute the square distance at
pixel level between both reconstructed appearance Ir

and predicted flow F p with ground truth appearance I
and flow F .

Da =
1

W ×H ∑
i, j∈M

(Ir
i, j− Ii, j)

2 (4)

D f =
1

W ×H ∑
i, j∈M

(F p
i, j−Fi, j)

2 (5)

Then we normalize Da and D f with the maximum
value for each type over a frame.

|Da|=
Da

argmaxI Da
(6)

|D f |=
D f

argmaxF D f
(7)
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We divide the range [0,1] by N bins then we use a
voting strategy to histogram encode for both |Da| and
|D f |. We have 3 channels RGB for Da and 3 channels
x,y, magnitude for D f , so the size of Da and D f is
3×N. Then we combine them with the weights ha
and hd . Each weight is the inverse of the average of
Dmax over a n-frame sequence.

h= (
∑Dmax

n
)−1 (8)

We propose two ways to combine them. The first
way just concatenates them as [haDa,h f D f ] to ob-
tain a 2×3×N dimension vector. In the second way,
we take the weighted sum as [haDa +h f D f ] and the
dimension of the vector is 3×N. We call this last fea-
ture combination as Histogram of Future Appearance-
Motion Difference (HOFAMD).

3.4 Learning Models for Anomaly
Detection

As discuss above, HOFAMD can feed into various
learning techniques. We present 3 highlight methods:
learn a simple threshold, changing detection and clus-
tering based one-vs-rest SVM.

By the first method, we simply our feature de-
scriptor into an anomaly scores then learn an appro-
priated threshold for detection as strategy of (Nguyen
and Meunier, 2019). If we set N = 1 then we take the
sum of all 3-channels for only the maximum value, we
have one final score for each frame. This score can be
easily compared with a threshold and the higher value
determines abnormal events.

By the second method called changing detection,
each sequence is compared with its neighbors by ap-
plying strategy of (Ionescu et al., 2017). We itera-
tively train a binary classifier to discriminate between
two consecutive video sequences while discarding at
each step the most discriminant features. Higher
training accuracy rates of the intermediately obtained
classifiers represent abnormal events.

The last learning technique has been recently pro-
posed by (Ionescu et al., 2018). We follow the key
idea of considering the problem as supervised learn-
ing where they did the clustering on the training sam-
ples into normality clusters. Then, a one-versus-rest
abnormal event classifier was employed to discrim-
inate each normality cluster from the rest. For the
objective of training the classifier, the other clusters
acted as dummy anomalies.

4 EVALUATION

In this section, we present the 3 popular benchmarks
for anomaly detection on which we will evaluate our
work. We finally describe our experiment setup plan.

4.1 Dataset

We are evaluating our framework on 3 popular bench-
marks: CUHK avenue (Lu et al., 2013), UCSD pedes-
trian (Mahadevan et al., 2010) and ShanghaiTech (Liu
et al., 2017).

• CUHK avenue has 16 training and 21 testing
videos containing 47 irregular events, including
throwing objects, loitering and running. The size
of people may change because of the camera po-
sition and angle.

• UCSD pedestrian includes Ped1 and Ped2. Ped1
has 34 training and 36 testing videos with 40 ab-
normal events. All of these anomalous cases are
about vehicles such as bicycles and cars. Ped2 has
16 training and 12 testing videos with 12 abnor-
mal events. The definition of anomaly for Ped2 is
the same with Ped1.

• Shanghai Tech contains 13 scenes integrated com-
plex light conditions and camera angles. It in-
cludes 130 abnormal events and over 270, 000
training frames. Moreover, pixel level ground
truth of abnormal events is also annotated.

4.2 Experiment Plan

Our framework will be largely evaluated on all 3
benchmark. The size of sliding window is set to
16×16 as proposed in (Nguyen and Meunier, 2019).
The N-number of bins for histogram encoding is also
evaluated for N = 1,4,8. Both combining strategies
of HOFAMD are tested and report the performance.
To find the most appropriated learning techniques, we
will apply HOFAMD for all 3 methods above and
analysis the performance. The Area Under Curve
(AUC) is utilized as evaluation metric.

4.3 Early Results of Feature Extraction

We use HD3 (Yin et al., 2019) as optical flow es-
timator to extract flow ground truth from sequences
of CUHK Avenue dataset. Then we implement
Im2Flow (Gao et al., 2017) as optical flow predic-
tor to predict future flow from the same sequences.
Results of a sequence containing abnormal action are
illustrated in Figure 3. The abnormal action is ”a man
is running fast from right side to left side”. We find
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HD3 Im2Flow HD3 Im2Flow
Figure 3: Results of optical flow estimation and prediction performed on a sequence of CUHK avenue dataset containing
abnormal action.

that the normal action (people walking) is estimated
almost well while abnormal action (person running)
is blurred in some images due to the large displace-
ment. In contract, both types of action are neutralized
by optical flow predictor. Hence, when we take the
subtraction of estimation flow and prediction flow, the
difference between abnormal and normal action will
be highlighted. It means that the D− f block can be
a promising representation for anomaly detection.

5 CONCLUSIONS
In conclusion, we first do a survey about progress
of anomaly detection then present a flexible future
prediction based framework whose components bene-
fited from state-of-the-art methods. We also propose a
histogram based feature called HOFAMD which rep-
resents for the difference of predicted information and
ground truth including appearance and motion. To
evaluate the performance of HOFAMD, we introduce
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3 useful learning techniques for anomaly detection.
For future work, the very next steps is evaluate

our framework on 3 benchmarks following experi-
ment plan. Then we investigate to integrate as much
as components for an end-to-end network.
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