
Weighted k-Nearest Neighbor Adaptations to Spare Part Prediction 
Business Scenario at SAP System 

Eren Esgin 
AI Research, MBIS R&D Center, Istanbul, Turkey 

Informatics Institute, Middle East Technical University, Ankara, Turkey 

Keywords: Classification, CRISP-DM, Intelligent Maintenance, SAP, Spare Part Prediction, Weighted k-Nearest 
Neighbor. 

Abstract: In the context of intelligent maintenance, spare part prediction business scenario seeks promising return-on-
investment (ROI) by radically diminishing the hidden costs at after-sales customer services. However, the 
classification of class-imbalanced data with mixed type features at this business scenario is not straightforward. 
This paper proposes a hybrid classification model that combines C4.5, Apriori algorithms and weighted k-
Nearest Neighbor (kNN) adaptations to overcome potential shortcomings observed at the corresponding 
business scenario. While proposed approach is implemented within CRISP-DM reference model, the 
experimental results demonstrate that proposed approach doubles the human-level performance at spare part 
prediction. This highlights a 50% decrease at the average number of customer visits per fault incident and a 
significant cutting at the relevant sales and distribution costs. According to best runtime configuration analysis, 
a real-time spare part prediction model has been deployed at the client’s SAP system.   

1 INTRODUCTION 

Average number of customer visits per fault incident 
is a critical key performance indicator (KPI) at after-
sales customer services such that, undesirable 
repetitive customer visits result in a significant 
increase at hidden sales and distribution costs. 
Additionally, it may affect the quality level of after-
sales services and deteriorates the organizational 
goodwill at long run. Respectively, spare part 
prediction business scenario aims to generalize the 
spare part consumption patterns according to failure 
characteristics, product’s own features and consumer 
detailed information and then proactively proposes 
the most probable spare part for new failure incident. 

Although classification algorithms have been 
widely used in retail, finance, banking, security, 
astronomy and behavioral ecology domains 
(Kantardzic, 2011) and the classifiers for class-
balanced data are relatively well developed, the 
classification of class-imbalanced data with mixed 
type features is not straightforward (Liu et al., 2014). 
This paper proposes a hybrid classification algorithm 
such that, while Apriori is adapted to handle data 
anomalies and redundancies observed at data 
preparation, significance weights obtained at C4.5 are 

used for doing normalization on categorical features 
to adapt the inter-dimension similarity at computing 
the similarity between fault instances. As the 
following, two adaptations of weighted kNN are 
applied: while instance based kNN with count 
(IkNNwC) gives more importance to major instances 
that are more likely to represent a dominant class in 
neighborhood region of feature space, instance based 
kNN with average similarity score (IkNNwAS) aims 
to balance the discriminative power of minor (or 
outlier) instances. Proposed approach is evaluated 
according to the fault records of television (TV) 
product group within 5 years’ time period and full-
cycle data mining framework, which covers all 
phases from business understanding to deployment, is 
implemented according to CRISP-DM (Cross 
Industry Standard Procedure for Data Mining) 
reference model. 

The paper is organized as follows. Section 2 
reviews the related work about kNN adaptations. 
Section 3 explains the proposed classification 
approach within the context of CRISP-DM reference 
model such that, business understanding, data 
understanding, data preprocessing and modeling 
phases are briefly explained. Section 4 discusses the 
experimental results according to the performance 
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observed at evaluation and deployment phases. The 
conclusion and future work are summarized in 
Section 5. 

2 LITERATURE REVIEW 

kNN algorithm considers a firm representative of the 
classification by analogy (Domingos, 2015). Naturally, 
finding an optimal value of k, which represents how 
many closest neighbors are to be considered, has been 
one of the questions that some works have attempted 
to solve (Zhang et al., 2017; Zhu et al., 2016). Besides 
finding the k-value, the underlying distance 
calculation is another issue in this kind of 
classification. Using a weighted scheme was first 
introduced by (Dudani, 1976), this variant of kNN is 
called Distance-Weighted k-Nearest Neighbor 
(DWkNN). (Tan, 2015) proposed the algorithm 
Neighbor-Weighted k-Nearest Neighbor (NWkNN), 
which applies a weighing strategy based on the 
distribution of classes. (Mateos-Garcia et al., 2016) 
developed a technique that optimizes the weights that 
would indicate the importance of neighborhood in a 
similar way of Artifical Neural Network. (Parvinnia et 
al., 2014) also computed a weight for each training 
object based on a matching strategy. Respectively, 
(Aguilera et al., 2019) proposed a weighting based on 
Newton’s gravitational  force, so that a mass (or 
relevance) is to be assigned to each instance. Two 
methods of mass assignment is presented: circled by 
its own class (CC) and circled by different class (CD). 

The standard kNN algorithm is not suitable for the 
presence of imbalanced class distribution. Hence, 
kENN in (Yuxuan & Zhang, 2011) and CCW-kNN in (Liu 
& Chawla, 2011) have been proposed to improve the 
performance of kNN for imbalance classification. 
While kENN proposed a training stage where positive 
training instances are identified and generalized into 
Gaussain balls, CCW-kNN uses the probability of 
feature values given class labels to weight prototypes 
in kNN. (Song et al., 2007) also proposed new kNN 
algorithms based on informativeness which is 
introduced as a query-based distance metric. This 
informativeness is handled in two concerns: locally 
informative (LI-kNN) and globally informative (GI-
kNN). Alternatively, (Wang et al., 2011) presented a 
coupled nominal similarity to examine both intra- and 
inter-coupling of categorical features. These 
approaches majorly focused on the clustering on 
class-balanced data. 

3 PROPOSED APPROACH 

CRISP-DM reference model is applied as the major 
road map for spare part prediction scenario. 
Respectively, the underlying sequence of the phases 
is not rigid, moving back and forward between 
difference phases is always required (Chapman et al., 
1999). CRISP-DM reference model consists of six 
phases: business understanding, data understanding, 
data preparation, modelling, evaluation and 
deployment. Except evaluation and deployment 
phases, we briefly outline corresponding phases at the 
following sections. 

3.1 Business Understanding 

In current (as-is) situation, each customer call to 
customer call center triggers a new fault record at 
SAP CRM system. During this call, fault occurrence 
details (e.g. product group, complaint or symptom 
information in a hierarchical manner) are gathered 
from the customer. Then, customer details (e.g. 
customer profile and location) are enhanced and 
product details (e.g. product SKU (stock keeping 
unit), material type, material group and product 
hierarchy) are extracted from prior product assembly 
history at SAP CRM system. Afterwards, the 
corresponding fault record is assigned to a near-by 
technical service according to customer’s location. 
Finally, the technical service makes a feasibility visit 
to check out the fault reason and defective 
component. Each customer visit for the 
corresponding fault incident is managed by a unique 
maintenance line item and spare part consumption or 
maintenance activity at this customer visit is charged 
to this line item.  

As the to-be situation, it is aimed to position a 
spare part prediction model that suggests the most 
probable spare part for the corresponding fault 
incident and passes this suggestion to the technical 
service in a real-time manner. Hence technical service 
can proactively reorganize the in-car spare part stock 
and daily customer routes. Moreover, it is aimed to 
radically diminish average number of customer visits 
per fault incident. Indeed, hidden sales and 
distribution cost items and spare part consumptions 
are strongly correlated to the number of customer 
visits and reductions at the corresponding KPI will 
minimize relevant expenses at income statement (e.g. 
freight costs, maintenance and depreciation costs of 
technical service vehicles, etc.). As an intangible 
outcome, we also aim to improve the quality level of 
after-sales services and increase the organizational 
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goodwill in long run. Current as-is and proposed to-
be situations are represented in Figure 1. 

 
 

 

Figure 1: Current (as-is) and to-be scenarios. By the effect 
of spare part prediction model, undesirable repetitive 
customer visits will be lessened. 

As the human-level performance in the current as-is 
situation, the average number of customer visits per 
fault incident KPI is approximately 2.5, which means 
a 40% accuracy at predicting the appropriate spare 
part. The data mining objective in this business 
scenario is 80% accuracy and this implies halving of 
relevant sales and distribution costs. 

3.2 Data Understanding 

Data understanding phase starts with describing 
major data sources, the relations among these data 
sources and major attributes that build up the initial 
raw data. At first, the data dictionary enlisting all 
gross and surface properties of the initial raw data is 
described. Then, the corresponding data description 
is explored to assess potential anomalies and data 
redundancies among the attributes and verify data 
quality problems in order to refine the initial raw data.  

3.2.1 Data Description 

The corresponding business scenario is composed of 
five data sources: 
 Fault Incident. Fault incident holds the header 

information of corresponding incident record, 
e.g. fault incident ID, incident date and time, 
symptom codes, document status, relevant 
customer ID and product SKU. 

 Maintenance Line Item. Maintenance line item 
holds spare part consumption and maintenance 
activity charged at each customer visit. There 
exists a one-to-many (1:N) relation between fault 
incident and maintenance line item. 

 Product. Product holds the major features about 
the defective product, e.g. product SKU, material 

type, material group, product hierarchy, brand 
and product costing group. 

 Product Details. Product details holds major 
production details, e.g. production date and 
warranty beginning date. There exists a one-to-
one (1:1) relation between product and product 
details data sources. 

 Customer. Customer holds the customer profile 
and location in a city-to-district hierarchy. 

 

Context diagram given in Figure 2 depicts the 
relations among the data sources. 

 

Figure 2: Context diagram for the corresponding data 
sources. 

3.2.2 Data Exploration 

Data exploration assesses the correlation among the 
attributes and checks whether any data anomalies and 
redundancies occur. According to these assessment 
actions, while each instance at initial raw dataset 
represents a unique maintenance line item, a 
significant data replication problem has emerged such 
that; except the spare part target class, all attributes 
are acquired from the same data sources, i.e. fault 
incident, product, product detail and customer. As a 
result, there occurs distinct instances featured with 
replicated (the same) attribute values and distinct 
spare part target value at initial raw data collection. 
As a solution, each instance should be characterized 
at a higher abstraction level by relating to a unique 
fault incident. Hence, an alternative data exploration 
procedure is applied to collect the spare part target 
class as shown in Figure 3. 

Accordingly, alternative data exploration 
procedure is composed of three steps as follows: 

 Raw Data Aggregation. This initial step 
aggregates the spare part consumptions at each 
maintenance line item that are relevant to the 
same fault incident. Respectively, it resembles 
transposing the spare part values at relevant  
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Figure 3: Alternative data exploration procedure. A fault incident with four maintenance lines is transformed into a single 
instance at final dataset. 

maintenance line items and concatenating these 
values into a single derived target class, i.e. 
SP_AGGR. While concatenating spare part values 
at a fault incident, duplicated values are unified 
and unique values are sorted in ascending order, 
e.g. <SP1, SP1, SP3, SP2> is aggregated as <SP1, 
SP2, SP3>. 

 Association Rule Generation. Respectively, 
aggregated dataset is like frequent itemsets and 
these itemsets can be represented by a Boolean 
vector of spare part values to underlying 
variables. Indeed, these Boolean vectors can be 
analyzed for spare part consumption patterns that 
highlight frequently associated spare part 
combinations. These patterns can be represented 
in the form of association rules. 
Apriori is a seminal algorithm proposed for 
frequent itemsets for Boolean association rules. 
The name of the algorithm is based on the fact 
that it uses prior knowledge of frequent itemset 
properties (Kantardzic, 2011). In this context, 
Apriori is applied by using R (R packages: 
arules and arulesViz). Then generated 
association rules are filtered by min_lift, i.e. 
min_lift > 1.0 threshold is used to extract only 
positively correlated spare part combinations.  

 Rule Induction. Rule induction step converts 
aggregated spare part target class values 
(SP_AGGR) into refined forms according to 
previously generated association rules.  
In this aspect, significant association rules are 
determined by min_confidence threshold, the 
default value of this parameter is 0.8. Filtered 
association rules are sorted by lift and confidence 
values in descending order. Afterwards, each 
spare part target class value at aggregated data set 
is searched at association rules whether 
antecedent and consequent of the association rule 
both exist at the corresponding aggregated spare 
part target class value. In the case of presence, 
consequent is removed from the aggregated spare 
part target class value and this new value is 
assigned to a new target class, i.e. rule induced 
spare part SP_RIND. Otherwise, original value of 
aggregated spare part is copied to rule induced 
spare part target class. 

Figure 4 shows the effect of rule induction step at 
the frequencies of target classes, i.e. SP_AGGR and 
SP_RIND. Due to <320001053>→<303113320> 
association rule, there happens a significant increase 
at the frequency of 320001053. 

 

Figure 4: Frequency of spare parts according to aggregation 
and rule induction operations. 

3.3 Data Preparation 

Data preparation covers data integration, 
transformation and cleaning activities that are required 
to construct the final dataset from the initial raw data.  

In data integration step, an appropriate SQL script 
according to the context diagram given in Figure 2 is 
implemented to extract the fault incidents of 
television (TV) product group, which occurred within 
5 years’ time span (between year 2014 and 2018) 
from SAP CRM and SAP BW source systems,. Then 
alternative data exploration procedure stated in 
Section 3.2.2 is applied to avoid data replications and 
anomalies observed at maintenance line item level. 
Due to raw data aggregation step at the underlying 
procedure, a vertical data reduction occurs such that; 
750K instances at maintenance line item dataset are 
suppressed to 350K instances at aggregated final 
dataset. Additionally, in order to avoid attribute 
redundancy due to hierarchical (ordinal) attributes 
(e.g. customer location, product hierarchy and 
symptom codes), attributes with relatively higher 
detail level and wider value range are selected. For 
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instance, product hierarchy 8 attribute (PRDHYR8) is 
selected as the most detailed product hierarchy 
feature and lower level attributes (PRDHYR2–7) are 
omitted. At data transformation step, month and year 
attributes are parsed from the underlying date typed 
attributes, e.g. incident date and production date. 
Moreover, new attributes such as product age, 
product stock age and warranty status are derived. 

Indeed, the value range of rule induced spare part 
target class (SP_RIND) is composed of 1267 distinct 
values. Hence, the instances with relatively less 
frequent spare part values (i.e. freq(RIND_SP)<1000 
condition refers to a 0.22% frequency) are eliminated 
at data cleaning step and a 95.27% total coverage at 
final dataset is achieved after this operation as shown 
at frequency histogram given in Figure 5. 
Additionally, various spare part groups are defined 
according to the frequency order such as ALL, TOP3 
and TOP6 such that, TOPX implies topmost X spare 
parts according to the frequency at the final dataset. 
The underlying histogram highlights class-
imbalanced dataset rationale. 

 

Figure 5: Frequency of spare part target values after data 
cleaning. 

3.4 Modelling 

Spare part prediction business scenario is a kind of 
supervised learning due to the existence of a target 
class, SP_RIND, and the major objective of this 
scenario is to seek significant drivers and patterns 
highlighting the underlying phenomenon. According 
to data dictionary, almost all attributes at final dataset 
are categorical with a wide value range except the 
derived attributes, e.g. product age and product stock 
age. Therefore, we proposed a hybrid approach that 
combines C4.5 and Apriori algorithms with weighted 
kNN adaptations for the underlying class-imbalanced 
mixed type final dataset. 

3.4.1 C4.5 

C4.5 adapts a greedy and nonbacktracking approach 
in which decision trees are constructed as the 
classifier in a top-down recursive divide-and-conquer 
fashion (Kantardzic, 2011). The corresponding 
attribute selection method specifies a heuristic 
procedure for selecting the attribute that best 
discriminates the given tuples according to class. 

In the context of spare part prediction scenario, 
C4.5 is applied by using R (R package: rpart) with 
information gain attribute selection and min_split 
parameter is set as 50. While 42.5% accuracy 
performance of C4.5 suggests a ground truth for the 
candidate algorithms, it majorly proposes the 
significance weight of the attributes at determination 
of spare parts as shown in Figure 6. Although several 
similarity measures, such as the Jaccard coefficient 
overlap (Pang-Ning et al., 2006), cosine similarity (Liu 
et al., 2014) and Goodall similarity (Boriah, 2008) can 
be used with categorical data, they are usually general 
as similarities at continuous data and ignores the 
information hiding in the co-occurrence with the 
target class. Hence, significance weight obtained by 
C4.5 are used as inter-coupling similarity weights 
(interDim_weight) at kNN adaptations as given in 
Section 3.4.3. 

 

Figure 6: Radar graph for significance weight of attributes 
according to C4.5. Respectively, product hierarchy8 and 
symptom code are the main determinants at spare part 
prediction. 

3.4.2 Apriori 

As stated in Section 3.2, Apriori fundamentally 
explores significant association and correlation rules 
among spare part consumptions. The underlying 
algorithm also generates IF/THEN typed causality 
rules for predicting target class without presence of a 
classifier. Respectively, Apriori is applied with 
min_support > 0.01 condition for the final dataset and 
approximately 2710 causality rules are generated. 
Table 1 exemplifies some generated Apriori causality 
rules. 
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Table 1: Sample IF/THEN typed causality rules generated 
by Apriori. 

 
 
Rules with min_lift > 1.0 property are validated 
according to 66 test scenarios, which are configured 
by different incident year, spare part groups (ALL, 
TOP3 and TOP6) and validation methods (i.e. hold-out 
and k-fold cross-validation with k = 3, 5, 10). While 
ALL year group has an average accuracy of 52%, the 
accuracy for year 2017 peaks at 55.7%. The lowest 
average accuracy of 45.3% is obtained at year 2015. 
Moreover, a significant correlation between rule 
precision and confidence is observed as shown in 
Figures 7. However, rules with confidence values 
between 0.4 and 0.6 seriously result in false 
predictions (FP-false positive) with an average 
precision of 25.27%. 

 

Figure 7: Rule analysis (confidence vs average rule 
precision). 

According to Table 2, min_confidence = 0.7 is 
designated as the confidence threshold for filtering 
relatively weak causality rules. Figure 8 emphasizes 
the average precision gap between the rule groups. 

Table 2: Confidence threshold determination. 

 

3.4.3 kNN and Adaptations 

kNN classification is based on online learning scheme 
by analogy; that is by comparing a given test instance 
with training tuples at knowledge repository that are 
similar to it (Kantardzic, 2011). The training tuples are 

 

Figure 8: Average precision values per rule grouping. 

represented in a n-dimensional pattern space. When 
given an unknown tuple, a kNN classifier searches the 
pattern space for the k training tuples that are closest 
to the unknown instance. Closeness is defined in 
terms of a distance function such as Euclidean 
distance. Typically, the values of each attribute 
should be normalized before distance calculation. But 
the distance calculation for categorical attributes and 
relative distance within the value range of these 
attributes are two major issues emerged at spare part 
prediction scenario. As the first adaptation to kNN, 
the underlying closeness measurement is converted 
into a similarity measurement, simScr(insi,insj), as 
shown in Equation 1. 
 

simScr insi,insj =
interDim_weightdim×

intraDim_weight insi.dim,insj.dim

n

dim=1

 (1)

 

In Equation 1, interDim_weight is the 
normalization weight assigned for each significant 
attribute (dim) and the significance weight obtained 
at C4.5 is used for normalizing categorical attributes 
to adapt the inter-dimension similarity. 
intraDim_weight factor holds the similarity degree of 
different level of the corresponding hierarchical 
(ordinal) attributes. While these similarity degrees are 
determined by domain experts, nominal difference at 
the numeric attribute values of instances, insi and insj, 
is used as intraDim_weight. In the context of 
similarity measurement, we propose two kNN 
adaptations: instance based kNN (IkNN) and average 
kNN (AkNN). 

At IkNN adaptation, the similarity between new 
fault incident and neighboring objects in the final 
dataset is measured by Equation 1. Then the nearest 
neighboring data points according to the similarity 
values are determined by neigh_limit. This argument 
is a percentile limit that preserves the closest training 
objects in a spherical-like region and its value is 
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parametrized at [0.2%, 1.0%] interval. Then as shown 
in Figure 9, count, total and average similarity values 
per spare part target class value are summarized 
within the closest neighboring objects. At this point, 
IkNN has two variations: 
 Instance based kNN with Count (IkNNwC). 

Common spare parts at prediction result list are 
determined by count value. By doing this, it is 
aimed to give less importance to objects that are 
more likely to represent a different class. In other 
words, the idea is to penalize rare instances and 
make the classifier more robust to the outliers. 

 Instance based kNN with Average Similarity 
Value (IkNNwAS). Common spare parts at 
prediction result list are determined by average 
similarity value. This variation aims to balance 
the discriminative power of an outlier object, 
since it could be relevant to classify other outlier 
object. It also allows to better modeling class-
imbalanced dataset by giving more chance to 
objects less represented. 

 

Figure 9: A sample Instance based kNN (IkNN) use-case 
for a new fault incident. 

Finally, spare part prediction result list is finalized 
according to k-limit argument as follows: 
 In the case of k-limit = n, i.e. n = 1, 2…, the 

topmost n spare part values according to count or 
average similarity value rank are returned as 
prediction result list. The maximal value for n is 
limited as 2 at this business scenario. 

 In the case of dynamic k, i.e. k-limit = DK and 
DK in [0, 1] interval, the standard deviation 
(stdDev) of the corresponding value (i.e. count or 
average similarity) is calculated. If the difference 
between two consecutive spare part target values 
is greater than DK×stdDev, then prediction result 
list is returned as the combination of all checked 
spare part values. Otherwise, it is continued to 
check the following lines at summarization list. 

Table 3 exemplifies the k-limit application at IkNN 
variation. 

Table 3: k-limit application for IkNN variations. Especially 
larger DK values with lower standard deviation may 
weaken the capability at selective prediction. Hence, longer 
prediction result list results in an accuracy decrease.   

 
 

Respectively, AkNN is similar to IkNN adaptation 
except neighbor preservation such that, neigh_limit 
argument is not applied at AkNN. Otherwise, 
summarization list is formed by traversing all training 
tuples at the final dataset. Therefore, AkNN is 
relatively more time-consuming and rather less 
capable at pinpointing minor (or outlier) objects at n-
dimensional space. 

4 EXPERIMENTAL RESULTS 

Major outcomes of evaluation and deployment phases 
at CRISP-DM life cycle are presented in this section. 

4.1 Evaluation 

As stated in Section 3.4.2, Apriori causality rules with 
confidence between 0.4 and 0.6 tend to make 
erroneous predictions such that, they have an average 
precision of 25.27%. Therefore, min_confidence = 
0.7 is designated as confidence threshold to eliminate 
these weak rules. Respectively, we propose the 
following hybrid classification algorithm: 
 Initially, it is attempted to predict new fault 

incident by relatively confident Apriori causality 
rules. 

 In the case of unpredicting by Apriori, kNN 
adaptations are applied to classify the 
corresponding incident by an online learning 
schema. 

 

Hence, 56 test scenarios are configured by varying 
incident year, spare part groups, kNN variations and 
arguments (neigh_limit and k-limit) and validation 
methods. As shown in Table 4, while pure Apriori 
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casuality rules have an average accuracy of 54.02%, 
the combination of Apriori with IkNN adaptation 
improves average accuracy towards 77.95% level. 
This metric is approximately 85.2% for TOP3 and 
79.24% for TOP6 spare part group. 

Table 4: Average accuracy values per hybrid classification 
algorithms. 

 
 
According to the runtime analysis given in Figure 10, 
while Apriori causality rules within [0.78, 0.82] 
precision interval are intensively used, IkNNwC 
variation has a better prediction performance. 
Although increments at dynamic k (DK) argument has 
a positive effect at the recall values of IkNNwC 
variation, the inverse effect is valid for AkNN and 
IkNNwAS variations. This is due to the fact that, while 
count-based adaptation at kNN is seemingly more 
robust to the changes made at the extents of 
neighborhood region, the selective prediction 
capabilities of average score-based adaptations are 
more vulnerable to these changes. Hence, the 
discriminative power of minor class is lost.  

 

Figure 10: Runtime analysis for kNN adaptations. 

Table 5: Average accuracy per spare part group. Average 
accuracy of proposed approach is improved by the 
increments at the confidence threshold. 

 
 

As the next iteration, the confidence threshold 
determined in Section 3.4.2 is incremented linearly 

within [0.7, 1.0] interval. As a result, the combination 
of Apriori rules (with min_confidence = 1.0) with 
IkNNwC variation (with k-limit = 2 and neigh_limit = 
0.2% arguments) reaches to an average accuracy of 
80.68% as shown in Table 5.  

When recall values per spare part are separately 
analyzed, spare part 303113250 (with a frequency of 
13.01% as shown in Figure 5) has a significant 
increase of 7.8% at its recall values as shown in 
Figure 11. Potentially, erroneous causality rules with 
consequent equal to 303113250 are intensively handed 
over by the predictions made by IkNNwC variation 
and this online learning schema is relatively more 
accurate. Similar mechanism is valid for spare part 
303113320 with the highest frequency given in Figure 
5. A 2.8% increase at the recall values of the 
corresponding spare part causes a significant 
increasing-return effect on accuracy as shown in 
Table 5. 

 

Figure 11: Recall values for TOP6 spare part group. 

4.2 Deployment 

Due to the results obtained at evaluation phase, the 
best runtime configuration is designated as Apriori 
causality rules (with min_confidence = 1.0) with 
IkNNwC variation (with k-limit = 2 and neigh_limit = 
0.2% arguments). This hybrid classification model is 
implemented as a custom function at SAP BW system 
as shown in Figure 12. In addition to spare part 
prediction, the underlying function recommends 
potential concomitant spare part consumptions. These 
associated consumptions are based on the association 
rules generated by alternative data exploration 
procedure stated in Section 3.2.2. 
According to performance measurement, average 
prediction duration of a single fault incident is 
approximately 7.79 second (i.e. remote function 
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connection (RFC) time between SAP CRM and BW 
systems is excluded). Since mean arrival time 
between two consecutive fault incidents is 
approximately 36.5 second, it is technically feasible 
to perform a real-time spare part prediction. 

 

Figure 12: View of spare part prediction result list. While 
odd numbered lines at PRED_RESULT prediction result 
list inform spare part predictions, even lines indicate 
concomitant spare part consumptions. HZMBSLK is the 
unique identifier for the corresponding fault incident. 

5 CONCLUSIONS 

This paper proposes a hybrid classification algorithm 
for the underlying spare part prediction scenario such 
that, while Apriori is adapted to handle data anomalies 
and redundancies emerged at data exploration, 
significance weights obtained at C4.5 incorporates the 
inter-dimension similarity at interpreting the 
neighborhood among fault instances. Finally, two 
adaptations of weighted kNN are applied: IkNNwC 
gives more importance to major instances that are more 
likely to represent a dominant class in neighborhood 
region of feature space, IkNNwAS aims to balance the 
discriminative power of minor class. 

According to experimental results, proposed 
hybrid classification algorithm doubles the human-
level performance at spare part prediction, which is 
approximately 40% accuracy. This performance 
implies a 50% decrease at the average number of 
customer visits per fault incident. Hence a significant 
cutting at especially sales and distribution costs is 
expected by the effect of spare part prediction model. 
As future work, we plan to extend the corresponding 
modeling to other product groups.   
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