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Abstract: In this paper authors proposed the concepts and principals of operating of basic nonlinear elements for hybrid 
opto–superconducting convolutional neural network. Optical elements in computing systems are usually 
designed to produce only linear mathematical operations. This is insufficient for complete neural network 
realization on chip, where non-linear operations like activation function calculations in neuron or transfer 
function of rectifier linear unit are needed. We have shown the opportunity of realization of elemental base 
for the hybrid neural network consists of optical and superconducting parts. 

1 INTRODUCTION 

The creation of the hybrid architecture of neural 
networks for physical and mathematical calculations 
is an intriguing area of research for today. In this area, 
further strengthening of the positions of alternative 
element bases for computing systems is observed. In 
particular, an attempt to combine optical and 
superconducting physical processes in a hybrid neural 
network was provided in 1990 by Harold H. Szu (Szu, 
1990). He has developed a neural architecture in the 
form of lattice of superconducting wires, in which 
local currents (and magnetic fields) in 
superconductive matrix was governed by 
electromagnetic (optical) radiation. This invention 
was proposed as “switching” mechanism in digital or 
analog applications in a superconducting 
computation. In this paper, we propose updating the 
concept of hybrid opto-superconducting neural 
networks with a magnetic representation of 
information. Particular attention will be given below 
to nonlinear network elements optimized for the 
currently used version of neural networks. 
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2 CONVOLUTIONAL NEURAL 
NETWORK 

The widely used architecture of artificial neural 
networks is convolutional neural networks, was 
proposed by Yann LeCun in 1988. The main purpose 
of these networks are the recognition and analysis of 
images, by identifying important key features and 
screening of insignificant ones. The idea of 
convolutional networks as well as conventional 
ANNs appeared thanks to the analysis of the structure 
of the visual cortex of the animals’ brain. Individual 
cortical neurons respond to stimuli only in a limited 
area of the visual field known as receptive field 
(Matsugu, 2003). The receptive fields of different 
neurons partially overlap thus it leads to the covering 
of the entire field of view. This feature tried to 
implement in artificial convolutional neural networks 
(CNN). 

The advantages of CNN over the conventional 
ANN architectures is that they use relatively little pre-
processing compared to other image classification 
algorithms. It means that the network learns to use 
some filters, for which usual networks are manually 
configured. The ability of CNN to create filters itself 
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that separate the key features of the image is its key 
advantage. 

The general architecture of CNN is not a secret 
and mainly consists of convolutional layers, an 
activating layer, a downsampling layer or pooling 
layer and a fully connected neural network layer 
(usually a perceptron type is used). We will mainly be 
interested in the activating layer the distinctive 
feature of which is a presence of some function, 
filtering coming to the input scalar coefficients of the 
convolutional layer. Rectifier linear unit (ReLU) is 
exactly that element of CNN performing the role of 
this feature (Hahnloser, 2000), which can be 
mathematically expressed as f(x)=max{0, x}. ReLU is 
a filter of negative values, which allows one to 
increase the nonlinear properties of the decision 
function and the network as a whole. It doesn’t affect 
the receptive fields of the convolutional layer itself 
(Glorot, Bordes, Bengio, 2011). In addition, ReLU 
allows to train CNN in several times faster than the 
other functions (hyperbolic tangent function, sigmoid 
function) without compromising of the generalizing 
features of the network (Nair, Hinton, 2010). 
Moreover, this function and its modifications (Noisy 
ReLU, Leaky ReLU) are the most often used 
activation functions in deep learning networks, in 
particular, convolutional neural networks. 

ReLU is an inherent element of the CNN and its 
implementation on a superconducting base will allow 
the creation of a hybrid opto-superconducting CNN. 
As a rule, the so-called softmax function or leaky 
ReLU (which allows for a small, non-zero gradient 
when the unit is saturated and not active) are used, 
which show the best network performance (Maas et 
al, 2013). 

For superconducting ReLU realization we present 
in the paper superconducting neuron scheme, that was 
developed in (Schegolev et al, 2016; Soloviev et al, 
2018; Klenov et al, 2018). The main idea of the 
proposed scheme is shown in the Figure 1a. Here l, 
lout and la are inductances normalized as l=2πLIC/Φ0, 
where IC – critical Josephson junction, Φ0 – magnetic 
flux quantum, and all φ like phases normalized ( 
φ=Φ/Φ0 et cetera). The neuron activation function is 
a nonlinear sigmoid function (Figure 1b), and its part 
can be used as transfer function of leaky ReLU (red 
line in Figure 1b), which consists of two linear parts 
and one nonlinear section. Study of this non-linear 
part will be devoted to this paper.  

 

Figure 1: a) Principal scheme of superconducting neuron. 
b) Transfer function of neuron (blue line) and softmax 
function or leaky ReLU (red line) for l=0.1, lout=0.5 and 
la=1.1. 

3 ReLU TRANSFER FUNCTION 

Before we begin to analyze the functioning of 
superconducting ReLU, it is necessary to determine 
the operating point of the transfer characteristic 
function with which we are going to work. To begin 
with, we should shift the transfer function so that the 
first linear section falls on the negative values of the 
external input flux, while the rest – on the positive 
part thus expected ReLU’s characteristic should 
filtering almost all negative input meanings. For this, 
it is necessary to apply some additional constant 
magnetic signal into the input flux, the absolute value 
of which will shift transfer function of neuron to the 
left or right depending of the sign.  

3.1 Mathematical ReLU 

To study the opportunities of ReLU on filtering input 
signals, we have applied a harmonic, time-dependent 
signal s(t)=A×sin(ω0×t)+shift, where A – amplitude 
of the external flux and ω0 – its frequency, to the input 
of this element, as shown in Figure 2. Such a choice 
of circuit’s parameters is dictated by the type of 
transfer characteristic, which has significant linear 
sections and minimal non-linear transition between 
them. 
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Figure 2: Illustration of applying a simple harmonic signal 
to the input of ReLU scheme after selection of an operating 
point at the end of the zero section. 

It is in common knowledge that ideal filtering of 
such signal in the form of f(x)=max{0, s(t)} have the 
following Fourier spectrum: 
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where δ(ω) – is a Dirac delta-function. The filtering 
signal and its Fourier spectrum showed in the 
Figure 3a) and b). 

It is seen that ReLU skips half the period of the 
harmonic signal and the spectrum of the output signal 
has the main and the next even harmonics. 

3.2 Real ReLU 

3.2.1 Zero Region 

The transfer characteristic and spectrum of the “real” 
ReLU was analyzed for “zero region”, when the 
average meaning of external signal is equal to zero, 
and showed in the Figure 4, with amplitude A of 
external signal equal to 2 (this choice is explained by 
the requirement to stay within the working range of 
the transfer characteristic of real ReLU) and 
frequency ω0 is equal to 0.01 (for ease of 
consideration). Also we should note that the value of 
the shift flux φshift=0.5π. It is clearly seen that the 
“real” ReLU filters the external signal a little worse 
than the mathematical ReLU, however, since the 
“real” ReLU has a nonlinear transfer characteristic, 
additional harmonics - odd ones - are present in the 
output signal spectrum. In addition, since initially the 
characteristic of the “real” ReLU was taken from the 

periodic activation function of the neuron, a 
limitation is placed on the amplitude of the incoming 
harmonic signal - when a certain value is exceeded, 
the signal “climbs” beyond the operating range and 
additional distortions appear in the output signal. 
 

 

 

Figure 3: The result of passing through a mathematical 
ReLU a simple harmonic signal and its approximation using 
the Fourier series (a) and the Fourier spectrum of the output 
signal (b). 

3.2.2. Linear Region 

For completeness of the analysis of the proposed 
solution for the implementation of ReLU, it is also 
necessary to evaluate the degree of linearity of the 
second linear section, for which the operating point 
will be shifted so that the doubled amplitude of the 
input signal fits completely within. In this case the 
value of the shift flux φshift=1.5π, other parameters of 
the external signal stay the same (see Figure 5). 

The result of transmitting the external harmonic 
signal through ReLU with an operating point lying on 
a linear section is shown below on the Figure 6. At 
the first sight, the signal is passed through without 
distortion and only multiplied by the corresponding 
weight of the rectifier. However, Fourier analysis 
shows that in the spectrum of the output signal, even 
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with small amplitudes of the external signal, higher 
harmonics are still present and it is obvious that with 
an increase in the amplitude of the signal, their total 
contribution to the nonlinearity of the output signal 
also increases. 
 

 

 

Figure 4: An example of transmitting a harmonic signal 
through the real ReLU when selecting an operating point at 
the zero part of the transfer characteristic (a) and the Fourier 
spectrum of the output signal (b). 

 

Figure 5: Illustration of applying a simple harmonic signal 
to the input of ReLU scheme when selecting an operating 
point in the middle of the linear section. 

 

Figure 6: Fourier spectrum of the output signal from real 
ReLU transfer function during of transmitting a harmonic 
signal for the case of an operating point at the linear part of 
the transfer characteristic. 

4 CONCLUSIONS 

In conclusion, this article was devoted to the inherent 
element of convolutional neural networks – rectifier 
linear unit (ReLU) with single-clock “calculation” of 
transfer function as a non-linear part of hybrid opto-
superconducting neural networks. The functionality 
of this cell was based on the superconducting neuron, 
investigated earlier (Schegolev et al, 2016; Soloviev 
et al, 2018), and the parameters of which were 
selected so that the transfer characteristic could be 
approximated as accurately as possible by a 
mathematical form of ReLU over a fairly wide range 
of changes in the external magnetic flux. Due to the 
physical features of the implementation of this 
element, it is not possible to accurately repeat the 
transfer characteristic of mathematical ReLU, 
however, it is not so necessary, while leaky ReLU 
copes with its task. The degree of suitability of the 
developed element was evaluated using the Fourier 
analysis apparatus. The numerical simulation 
methods were used and the spectrum of the output 
signal from “real” ReLU was obtained. A comparison 
was performed for the results obtained for 
mathematical and real ReLU, which showed a good 
correlation of its transfer characteristics. 

How it was mentioned above, the developed cell 
should be considered from the perspective of using it 
as a leaky ReLU, performed a role of basic element 
in a complex of hybrid opto-superconducting neural 
networks, which does not cut off all the negative 
values of the input signal. The linear optical part of 
the computing system should be implemented as a 
network of waveguides on a chip (Shainline, 2017; 
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Shainline, 2019). Bidirectional optoelectronic 
interfaces can be made on the basis of 
superconducting single-photon detectors and 
cryogenic n-Trons (Buckley, 2017; Bogatskaya, 
2018; Zheng, 2019). 

The obtained characteristics of the “real” ReLU 
give reason to believe that the developed scheme can 
be suitable for the physical implementation of 
convolutional opto-superconducting neural networks. 
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