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Abstract: Dimension reduction methods have gained popularity in modern era due to exponential growth in data collec-
tion. Extracting key information and learning from all available data is a crucial step. Principal component
analysis (PCA) is a popular dimension reduction technique due to its simplicity and flexibility. We stress that
PCA is solely based on maximizing the proportion of total variance of the explanatory variables and do not
directly impact the outcome of interest. Variable selection under such unsupervised setting may thus be inef-
ficient. In this note, we propose a novel two-stage projection pursuit based algorithm which simultaneously
consider the loss in the outcome variable when doing variable selection. We believe that when one is keen in
variable selection in relation to the outcome of interest, the proposed method may be more efficient compared
to existing methods.

1 INTRODUCTION

Tremendous amounts of data are being collected in
the hopes of finding significant factors that may be
associated with, for example, disease progression in
clinical studies. With the exponential growth in data
collection, a natural question is how to select a smaller
subset of meaningful variables from the larger pool.
A naturally adopted method in overcoming such bur-
den is by dimensional reduction techniques. Principal
component analysis (PCA) has been arguably most
commonly adopted technique for such purpose. The
mathematical properties as well as highly optimized
algorithms for eigen-decomposition make PCA a very
appealing and prevalent technique for dimension re-
duction. More precise descriptions on relevant uses
of PCA can be found in Krzanowski (1987), King
and Jackson (1999), Cadima and Jolliffe (2001), and
Cadima et al. (2004).

We should note that, however, the fundamental
purpose of PCA decomposition is to maximize the
proportion of total variance of the explanatory vari-
ables explained by the principal components, and
therefore minimize the variance of residuals. Such
unsupervised approach focusing only on the vari-
ance decomposition of explanatory variables may
well mimic the structure of the variables, but does
not impact the relationship between the explanatory
variables and the outcome/response under a regres-

sion setting. Therefore, such unsupervised method
may not be the optimal approach if one’s goal lies in
dimensional reduction in relation to the outcome of
interest.

To overcome such burden, various efforts have
been made in developing projection pursuit based
methods for selecting the best set of variables. Monta-
nari and Lizzani (2001) discussed a projection pursuit
algorithm to identify multivariate variables for classi-
fication. Enshaei and Faith (2015) developed an al-
gorithm based on perceptron learning and attraction-
repulsion algorithms to find the variable that best sep-
arates the data. More relevantly, Hwang et al. (1994)
discussed projection pursuit learning algorithm for
regression-based problems.

One of the drawbacks of traditional projection
pursuit algorithm is that it requires considerable
amount of computing power. Such limitation pre-
vented previous efforts in implementing projection
pursuit in higher dimensional space. The computa-
tional burden has gotten worse in recent years due to
exponential increase in the number of variables being
collected in the dataset. Therefore we are motivated
to introduce a novel dimensional reduction technique,
the two-stage projection pursuit method, for variable
selection in high dimensional variable space. We
believe that the proposed two-stage procedure could
lead to the most efficient selection of the set of vari-
ables that exert relatively large effects on the outcome
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of interest without much computational burden.
This paper is organized as follows. We first re-

view the principal component analysis (PCA) and its
feature selection techniques in Section 2.1. We then
introduce a new dimension reduction framework for
high dimensional data based on a two-stage projec-
tion pursuit algorithm in Section 2.2. A detailed out-
line of our purposed algorithm is included in Sec-
tion 2.2.2. In Section 3 we conduct a small scale
simulation study to compare the performance of our
proposed algorithm with existing methods including
PCA. We present a data example in Section 4 and end
with a discussion in Section 5.

2 DIMENSION REDUCTION

2.1 Principal Component Analysis

Let X = [X1, · · · ,Xd ]
′ be a d-dimensional random vec-

tor with zero mean. We let vm = [vm1, · · · ,vmd ]
′ be a

vector of length d where the norm is defined as the

L2 norm, i.e. ||vm|| = v′mvm =
√

∑
d
j=1 v2

m j = 1. We
further let Wm denote the inner product of vm and X ,
which is often referred to as the projection score of X
onto vm in the literature. Specifically,

Wm = 〈vm,X〉=
d

∑
j=1

vm jX j. (1)

The first principal component W1 can thus be defined
as

W1 = 〈v1,X〉,
where

v1 = argmax
vm∈Rd ,||vm||=1

Var(Wm)

is the unit length vector in an Rd space that maximizes
the variance of the projection scores. We can see from
above that the first principal component tries to find
a unit length vector in the d-dimensional Euclidean
space such that the projection score of a higher di-
mensional random vector onto this unit length vec-
tor has the maximum variance among all projection
scores. Such procedure will decompose the random
vector X into two parts: the projection that is in the
same direction as v1, and residuals that are orthogonal
to v1. Each subsequent vk is defined as the direction
that will maximize the variance of the residuals after
the (k−1)th projection, i.e.

vk = argmax
vm∈Rd ,||vm||=1,
〈vm,vq〉=0 for q<k

Var(Wm).

The kth principal component Wk can then be writ-
ten as

Wk = 〈vk,X〉.

The estimation of the components v1, . . . ,vk involves
the covariance matrix Σ of X which is assumed to be
full rank. Specifically for v1, we would need to max-
imize v′1Σv1 subject to v′1v1 = 1 and one possible ap-
proach is to use Lagrange multipliers

v′1Σv1 +λ(v′1v1−1), (2)

where λ is a constant. By differentiating (2) with re-
spect to v1 we would get

(Σ−λI)v1 = 0, (3)

where I is a d× d identity matrix. We can see from
(3) that λ is an eigenvalue of Σ and v1 is the corre-
sponding eigenvector where

v′1Σv1 = v′1λv1 = λv′1v1 = λ.

Hence, the maximum of v′1Σv1 is achieved when λ =
λ1, the largest eigenvalue of Σ with v1 the eigenvec-
tor corresponding to λ1. Similarly, one can show that
vk is the eigenvector corresponding to the kth largest
eigenvalue λk. More details can be found in Jolliffe
(2011).

2.2 Projection Pursuit Algorithm

2.2.1 Methods and Notations

It is clear that PCA is targeted at maximizing the vari-
ance of the projection scores for some high dimen-
sional vector X . However, we stress that such unsu-
pervised approach may not always the optimal choice
when the goal for variable selection is associated with
the outcome of interest. We are thus motivated to in-
troduce an alternative dimension reduction technique,
the projection pursuit algorithm in this subsection
(Kruskal, 1972; Friedman and Tukey, 1974).

Similarly to the principal component analysis in
the multivariate setting, we want to find the set of d-
dimensional vectors vk = [vk1, · · · ,vkd ]

′,k = 1, · · · ,d,
such that

v1 = argmax
‖v‖=1

Q(v) and (4)

vk = argmax
‖v‖=1,

v′kvm=0 for m<k

Q(v) for k = 2,3, · · · ,d, (5)

where Q(v) is defined as the projection index. It can
be easily seen that if we specify our projection index
Q(v) to be the measure of variance of X , the projec-
tion pursuit is equivalent to PCA. Under such setting,
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the optimal directions coincide with the eigenvectors
of the sample covariance matrix.

Since the goal is to relate the set the basis func-
tions to the outcome of interest, the Q(v) function
should not be solely based on the covariate X . As
an example, under a linear regression setting, we let
yi = f (xi)+εi where yi ∼ N( f (xi),σ

2) for some arbi-
trary linear function f (·), i = 1, ...,n. If we denote the
estimate of yi as ŷ(v)i = f̂ (〈xi,v〉) for some ‖v‖ = 1.
Then the projection index may be defined as

Q(v|x,y) =−1
n

n

∑
i=1

(
yi− ŷ(v)i

)2
,

where x = (x1, ...,xn)
′, y = (y1, ...,yn)

′ and the associ-
ated set of basis functions v1, . . . ,vk can be estimated
from equations (4) and (5).

2.2.2 Two-stage Algorithm

Previous studies try to find the best projection di-
rection by directly searching on a high dimensional
unit sphere. The previous approaches, although per-
forms well when the dimension of the unit sphere is
low, could fail when working with high dimensional
data. The “curse of dimensionality” would prevent
one from extracting meaningful information from a
sparsely distributed samples.

To address this problem, we propose a two-stage
optimization algorithm for variable selection based on
projection pursuit. We denote the target unit sphere
in a k-dimensional Euclidean space as Uk, and each
point v on Uk is a unit length vector with length k.
In the first step, we generate N uniformly distributed
point on this k-dimensional unit sphere, and denote
them as v1, . . . ,vN . We denote the desired projection
index of our data corresponding to v j as

Q j = Q(v j),

where Q(v j) = Q(v j|x,y) and we omit the conditions
for simplicity in the algorithm. These Q j’s are then
ranked and we pick the largest M of them as Q(1) ≥
·· · ≥ Q(M) with their corresponding unit length vec-
tor denoted as v(1), . . . ,v(M). The tuning parameters,
N and M are user specified and will be accompanied
with larger computational burden as they get larger.
However, if the surface of projection index Q(v) is
quite smooth on Uk, then N = 1000 and M = 5 shall
be enough. The tuning parameters could also be de-
termined using a elbow-plot.

In our second step, we apply an optimization algo-
rithm in a small neighbor near selected v(1), . . . ,v(M)

using some general-purpose optimization method that
allows user-specified searching boundary, such as L-
BFGS-B proposed by Byrd et al. (1995). Let ṽ denote

the the unit length vector that maximize our projection
index, then we can obtain the weight of each variable
regarding desired projection index from ṽ. Note that
Algorithm 2.1 gives a general guideline for approxi-
mating the first v. For v2, . . . ,vd following the first di-
rection, one can repeat Algorithm 2.1 on unit spheres
orthogonal to all previously approximated directions.

This algorithm is close to the coarse-to-fine opti-
mization schemes which is often discussed in the ma-
chine learning literature. For more detailed reference,
one can find Pedersoli et al. (2015) and Charniak and
Johnson (2005) for applications in computer vision
and natural language processing.

Algorithm 2.1: Two-Stage Projection Pursuit-based
Algorithm for Variable Selection.

1 Input: x1, . . . ,xn,y1, . . . ,yn
2 Result: ṽ
3 generate v1, . . . ,vN ;
4 for j = 1 to N do
5 denote Q j = Q(v j);
6 end
7 rank Q1, · · · ,QJ in decreasing order as

Q(1), · · · ,Q(J);
8 for m = 1 to M do
9 find v(m) corresponding to Q(m);

10 find optimized ṽ(m) in the near neighbor
that maximize the objective function;

11 end
12 let ṽ = {ṽ(m) : Q(ṽ(m)) = max

m=1,··· ,M
Q(ṽ(m))};

13 return ṽ.

For the rest of this paper, we adopt the pro-
posed algorithm and demonstrate that projection pur-
suit method can lead to an efficient and robust dimen-
sion reduction for high dimensional data.

3 SIMULATION STUDY

We will investigate the performance of the proposed
method with PCA under this section. We generate 51
centered and normally distributed random variables
X1, . . . ,X51, where X1 ∼ N(0,1) and X j ∼ N(0,2), j =
2, . . . ,51. We simulate i = 1, . . . ,1000 individuals in
this study. We set the linear model to be

yi = xi1β1 +
51

∑
j=2

xi jβ j + εi

for i = 1, . . . ,1000, where β1 = 1 and β2, . . . ,β51 = 0,
and ε ∼ N(0,0.1). We would like to do variable se-
lection using PCA and our proposed two-stage pro-
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jection pursuit method, and assess the mis-selection
rate. The proposed simulation procedure has been re-
peated 1000 times, and the comparison between PCA
and two-stage projection pursuit is presented in Fig-
ure 1. From the histogram we can tell that projection
pursuit method select the correct variable every time
in the simulation, while PCA is tricked by the high
variance of noise terms and can never select the cor-
rect variable. While this is an overly simplified exam-
ple, we can learn from the results that PCA may not
be a reliable way of choosing parameters.

Figure 1: Distribution of selected variables. The red bars
denote weights found using two-stage projection pursuit al-
gorithm. The orange bars denote weights found using prin-
cipal component analysis.

To further emphasize the advantage of our pro-
posed two-stage projection pursuit algorithm, we con-
duct another simulation study with the same setting
as above. In stead of using PCA for dimension re-
duction, we apply the random projection pursuit by
generating 103 uniformly distribution random points
on the 51-dimensional unit sphere. The frequencies
of selected variables are presented in Figure 2. While
the random projection pursuit select the correct vari-
able about 60% of the time, we can tell that about 1/3
of the time it will fail such a simple task due to the
high dimension of our variable space. All above re-
sults are also summarized in Table 1.

Table 1: Counts of Selected Variables by Two-stage Projec-
tion Pursuit, Random Projection Pursuit, and PCA.

Method X1 X2, . . . ,X51

Two-stage Projection Pursuit 1000 0
Random Projection Pursuit 692 308

PCA 0 1000

Figure 2: Distribution of selected variables. The red bars
denote weights found using two-stage projection pursuit al-
gorithm. The blue bars denote weights found using random
projection pursuit method.

4 DATA EXAMPLE

Bostonhousing is a popular dataset that was col-
lected by Harrison Jr and Rubinfeld (1978). In this
datset there are 13 variables that are potentially re-
lated to the housing price in Boston, and they are sum-
marized in Table 2.

Table 2: 13 Explanatory Variables and 1 Response Variable
in Boston Housing dataset.1

Variable Description
CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots

over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river)
NOX nitric oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted distances to five Boston employment centres
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $ 10,000
PTRATIO pupil-teacher ratio by town
B 1000(Bk−0.63)2 where Bk is the proportion of blacks

by town
LSTAT % lower status of the population
MEDV Median value of owner-occupied homes in $ 1000’s

In this data example, we estimate the weight of
each of these 13 variables when fitting a linear regres-
sion model with mean absolute error (MAE). We first
compare our two-stage projection pursuit algorithm
with the first principal component. While practitioner
often use PCA as a technique for feature selection, we

1https://archive.ics.uci.edu/ml/machine-learning-
databases/housing/
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can tell from Figure 3 that the results could be very
different from projection pursuit which is specialized
in finding the optimal direction.

We further compare our results with a random
projection search by generating 105 uniformly dis-
tribution random points on the 13-dimensional unit
sphere. The estimated weights are presented in Fig-
ure 4. From the plot we can easily tell that there is
considerable differences for all variable weights ex-
cept one. Our explanation is that even though we
generate 105 uniformly distribution random points on
the 13-dimensional unit sphere, they are actually still
distributed very sparsely in the space. These random
points may not be able to cover the whole space, and
hence may very likely to miss the try direction that
will maximize our projection index which is defined
as MAE in this particular example.

Figure 3: Weight of each of 13 variables in Boston Hous-
ing dataset. The red bars denote weights found using two-
stage projection pursuit algorithm. The orange bars denote
weights found using principal component analysis.

Figure 4: Weight of each of 13 variables in Boston Housing
dataset. The red bars denote weights found using two-stage
projection pursuit algorithm. The blue bars denote weights
found using random projection pursuit method.

5 CONCLUSIONS

In this note we have introduced a new technique,
namely the two-stage projection pursuit algorithm in
achieving variable selection with high dimensional
data. We stress that PCA is based on maximizing the
proportion of total variances explained by the prin-
cipal components which may not be suitable in vari-
able selection under certain scenarios as shown un-
der our simulation studies. Projection pursuit algo-
rithm, on the other hand, can be applied to a more
flexible objective function which include PCA as a
special case. Previous efforts have been made in op-
timizing such projection indices only in lower dimen-
sional unit sphere due to computation burden. Our
proposed two-stage algorithm overcomes such limi-
tation in the optimization process within a high di-
mensional variable space. We believe this projec-
tion pursuit based method is more flexible and can
be more efficient for feature selection. In this pa-
per we used a common dataset in machine learning
to illustrate the performance of our projection pursuit
based method. Note that the proposed method can
be applied to other application settings without much
modification. Furthermore, a larger and more inten-
sive simulation study is needed to consolidate our pro-
posed method and will be included in future work.
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