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Abstract: Cellular signalling systems are comprised of enzymatic reaction cascades and organized as regulatory reaction 
networks.  The primary building block of the network is an enzymatic activation-inactivation cyclic reaction 
such as phosphoryl modifications.  We have investigated the effects of the network architectures and kinetic 
parameter values on the stability such as the emergence of bi-stability or oscillations employing the canonical 
Michaelis-Menten equation as the approximation for Michaelis-Menten-type reaction mechanisms in each of 
enzymatic cyclic reaction.  Although the Michaelis-Menten approximation has known to work well under an 
assumption of a large excess of substrate over enzyme which is usually satisfied for metabolic pathways, the 
approximation might not suit to regulatory reaction networks in which the required assumption might be 
violated.  In this study, comparing the predicted stabilities from the model with the Michalis-Menten 
approximation and with the full set of reaction equations derived only from the law of mass action, the validity 
of the Michaelis-Menten approximation was examined for the regulatory reaction networks over the possible 
network architectures and kinetic parameter values elucidating that employing the Michalis-Menten 
approximation might not be valid even in the analysis for the steady states such as the stability analysis. 

1 INTRODUCTION 

The Michaelis-Menten-type reaction mechanism has 
been widely employed to construct the mathematical 
models for analysing the dynamics and the stability 
of the enzymatic reaction systems.  Actually, the 
mechanism has been devised as its approximation 
form known as the Michaelis-Menten approximation 
or the more simplified form such as the first order 
equation or the higher order equation which is so-
called Hill equation to formulate the co-operativity 
(Adler, Szekely, Mayo, & Alon, 2017; Kuwahara & 
Gao, 2013; Ma, Trusina, El-Samad, Lim, & Tang, 
2009; Shah & Sarkar, 2011; Sueyoshi & Naka, 2017; 
Yao, Tan, West, Nevins, & You, 2011). 

Although the Michaelis-Menten approximation 
has known to work well under an assumption of a 
large excess of substrate over enzyme which is 
usually satisfied for metabolic pathways, the 
approximation might not suit to regulatory reaction 
networks in which the required assumption might be 
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violated since the same protein could have both roles 
of the substrate and the enzyme simultaneously. 

In this study, the cellular signalling systems are 
formulated as the regulatory reaction networks where 
the each node represents the enzymatic activation-
inactivation cyclic reaction such as phosphoryl 
modifications and the each arc depicts their 
regulations.  Then, the effects of the Michaelis-
Menten approximation on the stability of the 
regulatory reaction networks comprised of two 
enzymes are analyzed to elucidate the validity of the 
approximation in construction of the mathematical 
models for the cellular signalling systems. 

2 METHOD 

All possible regulatory structures for the cellular 
signalling systems comprised of two cyclic reaction 
systems are formulated as the regulatory reaction 
networks, and the stabilities are analysed. In 
particular, the effects of the regulatory structures and 
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Figure 1: Regulatory reaction networks representing the MAPK cascade: the reaction scheme on the left; the simplified 
reaction scheme on the middle; the regulatory reaction network representations on the right where red arrows depict positive 
regulations, while blue arrows indicate negative regulations.  The regulatory structure of the MAPK cascade is represented 
by the four-node regulatory reaction network at the first column and the third row in the directed graphs shown on the right. 

the parameter values of the systems on the number of 
the stable equilibrium points are predicted. 

Then, the aspects of the stability are compared 
between the mathematical models employing the 
Michaelis-Menten approximation and the models 
derived only from the law of mass action for each 
enzymatic reaction in the cyclic reaction systems. 

2.1 Regulatory Reaction Networks 

Figure 1 shows how the regulatory reaction networks 
represent the cellular signalling systems with respect 
to the MAPK cascade as an example, which is one of 
the typical and the well-studied cellular signalling 
systems (Ferrell, 1998; Jeschke, Baumgartner, & 
Legewie, 2013; Kholodenko, 2006; Mai & Liu, 2013; 
Qiao, Nachbar, Kevrekidis, & Shvartsman, 2007; 
Volinsky & Kholodenko, 2013).  The dual catalytic 
reaction processes appeared in the third and the forth 
cascades in MAPK cascade are simplified to the one 
reaction step processes as shown in the middle. Red 
arrows depict positive regulations where an activated 
enzyme acts on another enzyme as the activating 
 

 

Figure 2: Reaction schemes of the above regulatory reaction 
network: employing the Michaelis-Menten approximation 
on the bottom left; employing only the low of mass action 
on the bottom right.  Red and blue arrows on the top figure 
depict the positive and negative regulations, respectively.  
The solid lines on the bottom figures depict the associate 
and dissociate chemical reactions, while the dotted lines 
represent the enzymatic reactions foumulated by Michaelis-
Menten approximations. 

enzyme, while blue arrows indicate negative 
regulations where an activated enzyme acts on 
another enzyme as the inactivating enzyme.  Then, 
the regulatory structure of the MAPK cascade is 
represented by the four-node regulatory reaction 
network at the first column and the third row in the 
directed graphs shown on the right. 

In this study, ten variations of the two-node 
regulatory reaction networks shown as the legends of 
the graphs in Fig. 4 are analysed.  These networks are 
all possible mutually regulatory reaction networks 
with at most one positive regulation and one negative 
regulation at each node.  It should be noted that if one 
of the positive or negative regulation at each node is 
missing, a virtual regulation is added for the missing 
regulation which catalyse with the maximum and 
constant rate. 

The Michaelis-Menten-type mechanisms are 
employed as the reaction mechanisms in the 
enzymatic cyclic reactions in each node.  Figure 2 
shows the mutual negative regulatory reaction 
network with auto positive regulations as an example.  
The representation of the network as the regulatory 
reaction network is shown on the top.  The left graph 
and the right graph on the bottom depict the reaction 
schemes employing the Michaelis-Menten 
approximation and employing only the low of mass 
action, respectively. 

The activation reaction rate ଵ  and the 
inactivation reaction rate ଵ of node 1 in the model 
employing the Michaelis-Menten approximation are 
formulated as follows: 

 

 ଵܲ  and ଵܷ  indicate the concentrations of the 
active and inactive forms of the enzyme, respectively.  	ܯଵ and ଵܰ represent the Michaelis constants for the 
activation and inactivation reaction, respectively.  
Those concentrations of two enzymes and those 
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Michaelis constants are relative, that is, normalized 
by the total concentrations of the respective enzymes 
which are assumed to be the same values for two 
enzymes to simplify the formulations in this study. 

Supposing the steady states, that is, ଵ = ଵ, with 
the constant ܭଵ = ݈ଵ/݇ଵ  leads to the following 
equations:  

 

The same equations of the variables with the 
subscripts which numbers are exchanged are derived 
for the node 2.  The enzyme concentrations at the 
steady state are obtained by solving these four 
equations. 

In the case that the Michaelis-Menten 
approximation is not employed corresponding to the 
reaction scheme on the bottom right in Fig. 2, the 
respective reaction rates ଵ , ଵ , ଵ , and, ଵ  are 
formulated only from the law of mass action as 
follows: 

 ଵܲ and ଵܷ represent the relative concentrations of the 
active and inactive forms of the enzyme, respectively.  ܳଵ  and ܴଵ  depict the relative concentrations of the 
substrate-enzyme complexes.  ܯଵ  and ଵܰ  are the 
normalized Michaelis constants for the activation and 
inactivation reaction, respectively, as same as the case 
with the model employing the Michaelis-Menten 
approximation.  Supposing the steady state drives the 
following equations: 

 

The same equations of the variables with the 
exchanged subscripts are derived for the node 2.  The 
enzyme concentrations at the steady state are obtained 
by solving these equations. 

2.2 Stability Analysis 

Steady states of the two-node regulatory reaction 
networks are determined by the six parameters of ܭଵ, ܯଵ, ଵܰ for the node 1 and ܭଶ, ܯଶ, ଶܰ for the node 2.  
In this study, the four Michaelis constants are set to 
be the same value, that is, ܮ = ଵܯ = ଵܰ = ଶܯ = ଶܰ 
to reduce the dimension of the parameter space.  The 
analysis is performed over 11 discrete values of ܮ 
such as  2ିହ, 2ିସ,⋯ , 2ହ.  The remaining parameters ܭଵ and ܭଶ are set to be the value of 2௣, for which the 
1000 values of  p are taken randomly over the range 
of  −5 ≤ p ≤ 5.  This range is determined to cover 

the values of the parameters utilized in the 
mathematical models for MAPK cascade (Brightman 
& Fell, 2000; Hatakeyama et al., 2003; Huang & 
Ferrell, 1996; Levchenko, Bruck, & Sternberg, 2000; 
Schoeberl, Eichler-Jonsson, Gilles, & Muller, 2002). 

The concentrations of each chemical species in 
the regulatory reaction networks could be obtained by 
solving the corresponding algebraic equations as 
mentioned in section 2.1.  However, the analytical 
derivation is getting harder for higher order equations 
due to the nonlinearity.  Furthermore, the eigen values 
of Jacobian matrix are required to evaluate the 
stability at each equilibrium points (Heinrich & 
Schuster, 1996).  In this study, the number of stable 
equilibrium points are obtained by the rather practical 
way in which the convergent solutions are obtained 
by solving the differential equations formulating the 
dynamics of the regulatory reaction networks with a 
number of initial states instead of solving the 
corresponding algebraic equations analytically to 
avoid the computational complications. 

The parametric robustness is employed to 
evaluate the stability quantitatively (Shah & Sarkar, 
2011).  The parametric robustness of the feature for 
stability is defined as the ratio of applied parameter 
sets exhibiting the feature.  For instance, the 
parametric robustness of the bi-stability is defined as 
the ratio of the number of combinations of  ܭଵ and ܭଶ 
yielding bi-stability to the total number of 
combinations examined which is 1000 in this study.  
High values of the parametric robustness imply the 
robustness for the parametric perturbations which is 
one of the important features in noisy environments 
such as in cells. 

3 RESULTS 

The regulatory structures examined in this study yield 
four types of stability, such as mono-stable, bi-stable, 
tri-stable, and oscillatory.  Most of the examined 
cases exhibit mono-stability or bi-stability. 

Figure 3 shows the result of the analysis for the bi-
stability.  The row and the column of squares 
correspond to the values of the Michaelis constants 
and to the variation of the regulatory reaction 
networks, respectively.  Each square represents the 
parameter space in logarithmic scales with the 
abscissa of ܭଵ and the ordinate of the ܭଶ.  The blue 
dots and the red dots indicate the combination of 
parameter values yielding bi-stability in the model 
with the Michaelis-Menten approximation and in the 
model without the Michaelis-Menten approximation, 
respectively.
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Figure 3: Parameter values yielding the bi-stabilities with respect to regulatory structures and the Michaelis constants. Each 
square represents the parameter space in logarithmic scales with the abscissa of 1ܭܭ	and the ordinate of the 2ܭܭ. The row 
and the column of the squares correspond to the values of the Michaelis constants and to the examined variation of the two-
node regulatory reaction networks, respectively. The red arrows depict positive regulations, while the blue arrows indicate 
negative regulations. 

It is shown that the more combinations yielding 
bi-stability for the model with the Michaelis-Menten 
approximation were predicted than that for the model 
without the Michaelis-Menten approximation in 
some regulatory structures, especially in the area of 
small values of the Michaelis constants.  Furthermore, 
it can be seen that each of the combination of the 
parameters exhibiting bi-stability for the model 
without the Michaelis-Menten approximation 
remains at the same points regardless of the value of 
the Michaelis constants. 

Figure 4 shows the effects of Michaelis-Menten 
approximation on the parametric robustness for the 
emergence of bi-stability.  The top and the bottom 
graphs correspond to the aspect of the emergence of 

bi-stability in the model with the Michaelis-Menten 
approximation and in the model derived only from the 
law of mass action, respectively.  The abscissa and 
the ordinate denote the values of the Michaelis 
constants in logarithmic scale and the parametric 
robustness, respectively.  Each colour of the graph 
corresponds to the individual regulatory reaction 
network shown in the right side of the graph. 

In the models utilizing the Michaelis-Menten 
approximation, the parametric robustness for the 
negative mutual regulatory network with two positive 
auto-regulations or one positive auto-regulation  is 
quite high especially in the area for the small 
Michaelis constants, which was reported in the 
previous study (Sueyoshi & Naka, 2017). On the 
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Figure 4: The effects of Michaelis-Menten approximation 
on the parametric robustness for the emergence of bi-
stabilities. The robustness for the model with the Michaelis-
Menten approximation and with the law of mass action is 
shown on the top, and on the bottom, respectively. Each 
colour of the graph corresponds to the regulatory reaction 
network shown in the right side of the graphs where the red 
arrows depict positive regulations, while the blue arrows 
indicate negative regulations. 

contrary, in the models not utilizing the Michaelis-
Menten approximation, the parametric robustness has 
hardly changed with respect to the values of the 
Michaelis constants in both regulatory reaction 
networks.  The unchanged value of the parametric 
robustness is as almost the same value as one for the 
large value of the Michalis constant in the model 
employing the Michaelis-Menten approximation.  
Concerning the other regulatory structures, the 
similar tendencies emanate while the parametric 
robustness is much less on the whole. 

Figure 5 shows the effects of Michaelis-Menten 
approximation on the parametric robustness for the 
emergence of tri-stability.  The top and the bottom 
graphs correspond to the aspect of the emergence of 
tri-stability in the model with the Michaelis-Menten 
approximation and in the model derived only from the 
law of mass action, respectively.  High parametric 
robustness appears in the area of the small Michaelis 
constants for the negative mutual regulatory network 
with two positive auto-regulations which yields quite 
high parametric robustness for bi-stability as 
 

 

Figure 5: The effects of Michaelis-Menten approximation 
on the parametric robustness for the emergence of tri-
stabilities. The robustness for the model with the Michaelis-
Menten approximation and with the law of mass action is 
shown on the top, and on the bottom, respectively. Each 
colour of the graph corresponds to the regulatory reaction 
network shown in the right side of the graphs where the red 
arrows depict positive regulations, while the blue arrows 
indicate negative regulations. 

mentioned before.  However, the part of high 
parametric robustness has vanished in the models not 
employing the Michaelis-Menten approximation.  
The slight emergence of tri-stability for the model 
with the Michaelis-Menten approximation in the area 
of large Michaelis constants is seen and the aspect of 
the parametric robustness is as the almost same as for 
the model without the approximation.  

Figure 6 shows the effects of Michaelis-Menten 
approximation on the parametric robustness for the 
emergence of oscillations.  The oscillations occur in 
some regulatory reaction networks while their 
parametric robustnesses are quite small.  In the case 
for the model with the Michaelis-Menten 
approximation, the oscillations occur in the area of 
the small Michaelis constants for the positive and 
negative mutual regulations with a positive auto-
regulation.  Furthermore, the oscillation appears in 
the area of the large Michaelis constants for the 
mutual positive regulations without auto-regulations.  
However, the oscillations emerged in the area of 
small Michaelis constant vanish in the models 
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Figure 6: The effects of Michaelis-Menten approximation 
on the parametric robustness for the emergence of 
oscillations. The robustness for the model with the 
Michaelis-Menten approximation and with the law of mass 
action is shown on the top, and on the bottom, respectively. 
Each colour of the graph corresponds to the regulatory 
reaction network shown in the right side of the graphs 
where the red arrows depict positive regulations, while the 
blue arrows indicate negative regulations. 

without the Michaelis-Menten approximation.  The 
aspect of the parametric robustnesses is almost the 
same in two models. 

Taken together, it is suggested that the parametric 
robustness of stability might be overestimated on the 
mathematical model employing the Michalis-Menten 
approximation.  This bias seems to be dominant in the 
condition of the small Michaelis constants.  On the 
other hand, almost the same parametric robustnesses 
are predicted in the area of the large Michaelis 
constants.  Therefore, it might be not valid to utilize 
the Michaelis-Menten approximation for analysing 
the properties even at the steady states.  The validity 
depends on the values of the Michaelis constants of 
the enzymes comprising the cellular signalling 
systems. 

The quite large value of the Michaelis constant 
implicates the much less associate rate than the 
dissociate and catalytic rate, which means that the 
concentrations of substrate-enzyme complex are 
much less than the concentrations of the free 
substrates and the enzymes.  The Michaelis 

approximation makes the substrate-enzyme 
complexes not exist in the conservative laws.  
Therefore, the large Michaelis constants might make 
the effect of the absence of the complexes less.  This 
implication may be reason why the similar aspects are 
observed about the emergence of stability for the two 
models in the area of the large Michaelis constants. 

4 CONCLUSIONS 

In this study, the validity of the Michaelis-Menten 
approximation was examined for a set of regulatory 
reaction networks comprised of the two enzymatic 
cyclic reactions, in which each enzyme also works as 
the substrate each other such like cellular signalling 
systems.  As a result, it is suggested that the 
mathematical models utilizing the Michaelis-Menten 
approximation for an enzyme which has the small 
Michaelis constant might overestimate the emergence 
of the bi-stability and the oscillations even for 
analysing the properties at the steady state. 

Although it might be safer to construct a 
mathematical model derived only from the law of 
mass action without the Michaelis-Menten 
approximation, it may cause a problem of high 
computing cost.  Furthermore, utilizing the 
Michaelis-Menten approximations often makes it 
possible to divide the target system into a number of 
sub-systems due to omitting the substrate-enzyme 
complexes.  On the contrary, utilizing only the law of 
mass action often cause the computational difficulty 
due to intra-connections of each dynamics in the 
entire system caused by the substrate-enzyme 
complexes. 
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