CNN Hyperparameter Tuning Applied to Iris Liveness Detection

Gabriela Kimura, Diego Lucio, Alceu Britto Jr., David Menotti

Abstract

The iris pattern has significantly improved the biometric recognition field due to its high level of stability and uniqueness. Such physical feature has played an important role in security and other related areas. However, presentation attacks, also known as spoofing techniques, can be used to bypass the biometric system with artifacts such as printed images, artificial eyes, and textured contact lenses. To improve the security of these systems, many liveness detection methods have been proposed, and the first Internacional Iris Liveness Detection competition was launched in 2013 to evaluate their effectiveness. In this paper, we propose a hyperparameter tuning of the CASIA algorithm, submitted by the Chinese Academy of Sciences to the third competition of Iris Liveness Detection, in 2017. The modifications proposed promoted an overall improvement, with 8.48% Attack Presentation Classification Error Rate (APCER) and 0.18% Bonafide Presentation Classification Error Rate (BPCER) for the evaluation of the combined datasets. Other threshold values were evaluated in an attempt to reduce the trade-off between the APCER and the BPCER on the evaluated datasets and worked out successfully.

Download


Paper Citation


in Harvard Style

Kimura G., Lucio D., Britto Jr. A. and Menotti D. (2020). CNN Hyperparameter Tuning Applied to Iris Liveness Detection.In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, ISBN 978-989-758-402-2, pages 428-434. DOI: 10.5220/0008983904280434


in Bibtex Style

@conference{visapp20,
author={Gabriela Kimura and Diego Lucio and Alceu Britto Jr. and David Menotti},
title={CNN Hyperparameter Tuning Applied to Iris Liveness Detection},
booktitle={Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,},
year={2020},
pages={428-434},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0008983904280434},
isbn={978-989-758-402-2},
}


in EndNote Style

TY - CONF

JO - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP,
TI - CNN Hyperparameter Tuning Applied to Iris Liveness Detection
SN - 978-989-758-402-2
AU - Kimura G.
AU - Lucio D.
AU - Britto Jr. A.
AU - Menotti D.
PY - 2020
SP - 428
EP - 434
DO - 10.5220/0008983904280434