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Abstract: Inertial measurement units (IMUs) are now considered as an economical solution for long term assessment in 
real conditions. However, their use in running gait analysis is relatively new and limited. Detecting the timing 
at which the foot strikes the ground (initial contact, IC) and the timing at which the foot leaves the ground 
(terminal contact, TC) gives access to many relevant temporal parameters such as stance, swing or stride 
durations. In this paper, we present an original algorithm to extract IC and TC timings and associated 
parameters from running data. These data have been measured using a newly developed IMU-based hardware 
system in ten asymptotic participants who ran at three speeds (slow, normal, and fast) with different running 
patterns (natural, rearfoot strike, mid-foot strike, and forefoot strike). This algorithm has been validated 
against a 200 Hz video camera based on 7056 IC and TC timings and 6861 temporal parameters. This 
algorithm extracted ICs and TCs with an accuracy and precision of (median [1st quartile; 3rd quartile]) 5 ms [-
5 ms, 15 ms] and 0 ms [-5 ms, 5 ms], respectively. The relative errors in the extraction of stride and stance 
durations are -1.56 ± 3.00% and 0.00 ± 1.32%, respectively. 

1 INTRODUCTION 

Quantitative analysis of running is of critical interest to 
the sports science field. For example, this analysis can 
give insight into aetiology or treatment and recovery of 
running injuries. In the same manner, it can help sports 
coaches to improve the performances of their athletes. 
Initial contact (IC) and terminal contact (TC) are key 
timings in running: IC occurs at landing when the foot 
initiates contact with the ground while TC is when the 
foot ends contact. From these two key timings, it is 
possible to compute relevant temporal parameters, 
such as stance, swing or stride durations.  

The stance phase, also known as the ground-
contact phase, starts at the foot IC and ends at TC. The 
swing phase starts at TC and ends at the next IC. 
Finally, a stride phase is the duration between two 
ipsilateral ICs. Temporal parameters are related to 
running performances: for instance, a shorter contact 
time is linked to a good running economy and a faster 
speed (Weyand, 2000). 

Traditionally, timings are detected by using force 
platforms. Nevertheless, these systems can only be 
used in controlled laboratory environments where the 
capture volume could be limited to a few steps.  

The rapid technological advances in micro-electro-
mechanical systems have allowed the inertial 
measurement units (IMUs) to become light, small, and 
relatively cheap. Due to their portability and low power 
consumption, IMU-based systems allow obtaining real 
condition data. 

IMUs have shown to give accurate and reliable 
information on walking (Boutaayamou et al., 2015 and 
2016). However, running differs from walking. As the 
speed increases, the double support phase (both feet 
simultaneously touching the ground) of the walking 
gait cycle is replaced by a double swing phase, where 
both feet are in the air. Indeed, by definition, someone 
is running if both feet are never simultaneously 
touching the ground. Moreover, when walking, people 
are usually landing on their heel first. However, during 
running, there are three possible different landing 
strategies: rearfoot strike (RFS), mid-foot strike 
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(MFS), and forefoot strike (FFS). Compared to 
walking, the biomechanics involved in running is also 
different: a wider range of motion of all the lower limb 
joints, higher impact forces, and higher eccentric 
muscle contraction (Nicola et al., 2012).  

The use of IMU sensors in running gait analysis is 
relatively new. In the literature, different localisations 
for IMU sensors are considered such as trunk 
(Bergamini et al., 2012) or tibia (Purcell et al., 2006). 
Among all existing studies, only a few of them 
include a concurrent validation of their algorithm 
using a reference system. Both Chew et al. (2017) and 
Falbriard et al. (2018) used the signal of an IMU 
placed on the dorsal side of the foot to compute ICs 
and TCs. The first one used a threshold-based 
method, while the second one compared different 
algorithms. However, to the authors’ knowledge, 
there is no study available using foot-worn IMU 
sensors that take into account the different existing 
landing strategies.  

In this work, we present a newly developed 
algorithm to extract IC timing and TC timing 
extracted from IMU signals measured at the level of 
the foot (toe and heel). From these timings, the 
ipsilateral stance, swing, and stride durations are 
computed. This algorithm is tested on data obtained 
from ten healthy participants running at steady speeds 
on a treadmill. Furthermore, we validated this 
algorithm against synchronously recorded reference 
data obtained from a frame-by-frame analysis of 2D 
high-speed (200 Hz) videos. 

2 METHOD 

2.1 Participants and Treadmill 
Running Setting 

In total, ten asymptotic participants (7 men and 3 
women), who were regularly active at the time of the 
tests, were volunteered for this study. The set of 
participants includes both recreational and professional 
runners. They were all informed with the procedure 
and they have all signed an informed consent.  

Table 1 shows the anthropometric characteristics 
(mean ± standard deviation (STD)) of these 
participants. Among them, seven were naturally RFS 
while two were MFS, and one was FFS. 

Each participant was equipped with an IMU-based 
hardware system (Boutaayamou et al., 2019) 
integrating three-axis accelerometers (range: ±16 g) 
and three-axis gyroscopes (range: 2000 deg/s). This 
system includes an acquisition box (memory, micro- 
controller, and battery) linked by wires to four small  

Table 1: Anthropometric characteristics of the participants 
measured at the time of the test. 

Mean ± STD 
Age [years] 26.1 ± 3.9 
Height [cm] 179.3 ± 11.4 
Body mass [kg] 70.0 ± 12.3 

IMU sensors (2.1 × 1.0 × 0.8 cm, weight = 16 g). 
Consequently, it is portable with an autonomy of 4h30. 
The IMU acquisition frequency is 200 Hz. No 
restrictions on the shoes were imposed, to enlarge the 
range of applications of the algorithm. 

The sensors were directly attached to the right shoe 
at the level of the first distal phalange (toe), calcaneus 
(heel), the fifth metatarsal, and dorsal side of the foot. 
In this work, only the toe and the heel sensors will be 
considered. The fixation procedure used has been 
validated in the case of walking (Boutaayamou et al., 
2015) and shows satisfying results for running gait 
analysis. 

The three-dimensional linear acceleration signals 
[m/s2] are denoted by 𝑎௫, 𝑎௬, and 𝑎௭, while the three-
dimensional angular velocity signals [deg/s] are 
denoted by 𝜔௫, 𝜔௬, and 𝜔௭ along sensitive axes 
represented schematically in Figure 1 . 

Each test began with a standardized time to warm 
up and to become familiar with the treadmill and 
instrumentation system (during approximately five 
minutes). At the same time, a preferential running 
speed (PRS) is selected with the participant, at which 
he should be able to run during ten minutes without 
loss of intensity. The PRS (mean ± STD) of the 
volunteers is 8.3 ± 1.3 km.h−1. During the tests, they 
were asked to run at three different speeds: slow 
(computed by PRS−0.25×PRS), normal (PRS), and 
fast (computed by PRS+0.25×PRS). At each speed, the 
participants performed six trials (in the following 
order): three with a natural foot strike pattern, one 
rearfoot strike (RFS), one mid-foot strike (MFS), and 
one forefoot strike (FFS). In total, the participants were 
asked to perform 18 trials of 60 s. The minimum total 
test duration was 69 minutes per participant, including 
3 minutes of rest between each trial. All running tests 
were performed at the Laboratory of Human Motion 
Analysis (University of Liège, Belgium), on a 
treadmill (SportsArt T650). At the same time, all the 
trials were recorded using a 2D high-speed video 
camera (Basler Pilot) with a sampling frequency of 200 
Hz. This video camera will be used as the reference 
system. Signal and data processing were carried out 
using the software Matlab® (R2017a, Mathworks, 
Natick, MA, USA).  
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2.2 Extraction Algorithm of IC and TC 
Timings 

The proposed algorithm first computes an estimated 
IC based on the average stride duration. Then, an 
exact IC timing is obtained from the different linear 
accelerations. Subsequently, TCs are found between 
two successive ICs.  

The first step is to obtain an estimated average 
stride duration, 𝑑௦௧௥௜ௗ௘  [𝑠], based on the Fourier Fast 
Transform of the heel angular velocity signal (heel 𝜔௬). The first peak, which is also the highest, 
corresponds to the stride frequency [Hz]. 𝑑௦௧௥௜ௗ௘ is, 
then, obtained from this stride frequency using the 
following formula  𝑑௦௧௥௜ௗ௘ = 1stride frequency .  (1)

Alternatively, 𝑑௦௧௥௜ௗ௘ can be obtained from the 
auto-correlation of the same signal. In that case, the 
positive lag corresponding to the first positive local 
maxima after 0 is the average 𝑑௦௧௥௜ௗ௘ (available in 
Matlab® using the function xcorr).  

After computing 𝑑௦௧௥௜ௗ௘, estimated ICs are 
obtained in the filtered heel 𝜔௬ signal. The filter used 
is a high pass Butterworth filter of order 4 with a cut-
off frequency of 15 Hz. A high pass filter allows to 
remove the movement components of the signal and 
to keep only the shock parts. Estimated ICs can then 
be obtained by detecting a minimum in the filtered 
heel 𝜔௬. The distance between two successive 
minima is imposed to be of at least 85% of 𝑑௦௧௥௜ௗ௘ , 
allowing for small variations of 𝑑௦௧௥௜ௗ௘  at each stride. 

Potential exact ICs are obtained by looking for  
local extrema, in a time window around the estimated 
IC, in different linear acceleration signals of both 
sensors. Namely, the algorithm is looking for: a local 
minimum in toe 𝑎௫, local minimum in toe 𝑎௭, local 
minimum in heel 𝑎௫, and local maximum in heel 𝑎௭, 
in the time window [-20 ms; 5 ms] around the 
estimated IC. 

Then, the exact IC corresponds to the first time 
instant among all these extrema. The acceleration 
signals in the transverse direction (Y-axis) are not 
considered since they are runner dependent. For 
instance, they can be influenced by foot movements 
like supination or pronation. 

As the tip is always the last part of the foot in 
contact with the treadmill, TCs will be detected using 
the toe sensor. The toe total acceleration in the sagittal 
plane, given by has shown the highest accuracy. 

 
Figure 1: Schematic illustration of the position of the IMU 
sensors used in the proposed algorithm, including the three 
local axes (X-axis, Y-axis, and Z-axis). The two sensors are 
placed on the right shoe at the level of the first distal phalange 
(toe) and at the calcaneus (heel). 

𝑎௦௔௚௜ = ඥ𝑎௫ + 𝑎௭, (2)

TCs are determined based on the intuitive 
principle that there is always a TC between two 
successive ICs. Hence, for each stride i, a TC(i) will 
be searched in the time window between IC(i) and 
IC(i+1). This window can be further reduced to 
increase the accuracy of the event extraction method. 
The upper bound of the time interval can be obtained 
based on the definition of running: someone is 
running if there is a double float phase, where both 
legs are in the swing phase simultaneously. This is 
only possible if the stance phase lasts for less than 
50% of the stride duration. 
Hence, the upper limit is defined as follows 𝐿𝑖𝑚௦௨௣ = 𝐼𝐶(𝑖) + ூ஼(௜ାଵ)ିூ஼(௜)ଶ .   (3)

This limits the application of the algorithm to only 
running cases. However, this improves the accuracy. 
In fact, in some cases, the acceleration linked to the 
swing movement of the foot is higher than the shock 
corresponding to the TC (see Figure 2).  

Furthermore, the lower bound of the time window 
(𝐿𝑖𝑚௜௡௙) is obtained using the entropy of the signal. 
During the stance phase, the foot has a constant 
acceleration and this signal flat zone is characterized 
by a low entropy. Hence, the lower limit is obtained 
by computing the entropy over a sliding window. The 
size of the window has been determined empirically: 
on one side, it should be as small as possible to have 
good local information. On the other side, it must be 
large enough to not detect the flatter zone that 
appears for  some runners after the toe-off peak. 
This was generally a problem for FFS running 
patterns. A window of 15 samples (i.e., 75 ms) has 
shown good results for all participants.  𝑇𝐶(𝑖) is then determined by finding a maximum 
in the toe sagittal acceleration signal over the time 
window : [𝐿𝑖𝑚௜௡௙(𝑖);  𝐿𝑖𝑚௦௨௣(𝑖)]. 
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Figure 2: Determination of TCs using the toe sagittal acceleration signal. TC is found between two successive ICs. An upper 
limit can be obtained using the definition of running: the stance duration must be less than 50% of the stride duration. This 
prevents to wrongly detect local maximum coming from the movement acceleration. The signal flat phase can be used as a lower 
limit, which can be detected using the entropy of the signal over a sliding window. 

 

 
Figure 3: Determination of IC and TC timings using the 2D high-speed video camera. IC (upper pictures) is the first frame 
where the pixels representing one shoe are directly in contact with those representing the belt of the treadmill. TC (lower 
pictures) corresponds to the last frame where the pixels of the shoe are in contact with those of the treadmill.  

2.3 Concurrent Validation and 
Evaluation Methods 

The reference timings are obtained from a frame-by-
frame analysis of 2D high speed videos. A precise 
definition is used to select the frame corresponding to 
an IC and to a TC: IC is the first frame where the pixels 
representing one shoe are directly in contact with those 
representing the belt of the treadmill. In other words, it 
is the first frame where there are no white pixel (i.e., 
background pixel) in-between the shoe and the 
treadmill. 

Conversely, TC corresponds to the last frame 
where the pixels of the shoe are in contact with those 
of the treadmill (see Figure 3). 

Finally, the different temporal parameters are 
computed from IC and TC timings, as follows 𝑑௦௧௔௡௖௘(𝑖) = 𝑇𝐶(𝑖) െ 𝐼𝐶(𝑖), (4)𝑑௦௪௜௡௚(𝑖) = 𝐼𝐶(𝑖 + 1) െ 𝑇𝐶(𝑖), (5)𝑑௦௧௥௜ௗ௘(𝑖) = 𝐼𝐶(𝑖 + 1) െ 𝐼𝐶(𝑖). (6)

The reference system has a maximum achievable 
resolution of 5 ms. Additionally, at some point in the 
video, there are two identical frames following each 
other. In that case, a 5 ms error can also occur.  

These reference timings are used to concurrently 
validate the events obtained using the proposed 
algorithm. For each stride, the results for (1) IC, (2) TC, 
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(3) 𝑑௦௧௔௡௖௘, and (4) 𝑑௦௧௥௜ௗ௘ are computed. The results 
for  𝑑௦௪௜௡௚ have been computed but are not shown in 
this paper  

Finally, the accuracy and precision of ICs and TCs 
extraction is quantified by the mean and STD or 
median and inter-quartile range (IQR) values (i.e., 1st 
quartile (Q1); 3rd quartile (Q3)) of the differences 
between these timings and the reference system, 
depending on the normality of data distributions. This 
is done for each participant separately and for all 
participants together. The normality of data 
distributions is tested using Jarque-Bera test (available 
in Matlab® using the function jbtest). Additionally, 
relative errors are computed as the mean of the stride-
by-stride differences between the IMU temporal 
parameter and the reference temporal parameter 
divided by the reference temporal parameter. These 
errors are only meaningful for temporal parameters and 
they will not be computed for timings.  

3 RESULTS 

This work focuses on running trials from the acquired 
data. In some trials, particularly at low speeds, some 
participants exhibited a double support phase.  

Consequently, as these trials are considered as 
walking trials, they have been excluded from this study. 
In total, 39 trials out of 183 were not considered. 

Additionally, some trials have been reclassified 
according to the real running pattern observed that, in 
some cases, was different from the supposed running 
pattern. Indeed, some participants had difficulties in 
voluntarily performing MFS or FFS. 

First of all, an intra-participant comparison 
between the IMU results and reference results is 
carried out. In this paper, the median is used as the 
data are not normality distributed. However, in 
general in this study, the mean and median values and 
STD values IQR ones were similar. The same 
conclusion can be drawn for STD values IQR ones. 

Table 2 summarizes the results for each 
participant, the values have been rounded to the 
sample period (i.e., 5 ms) of the hardware systems. 

This analysis includes all the valid trials (different 
speeds and different foot strikes) and at least 30 valid 
strides per trial, when available. The number of 
observations depends on the number of valid events 
taken into account. In the case of ICs, the mean of the 
extraction accuracies is 5 ms. Consequently, the 
algorithm tends to detect the ICs one frame later than 
the reference system. The mean of the extraction 
precisions obtained in the case of IC is 10 ms. 

Table 2: Intra-participant differences between IMU 
timings/temporal parameters and reference data. It includes 
the median and the interquartile range values ([1st quartile 
Q1; 3rd quartile Q3]) as well as the number of observations 
(nbr. of obs.). 

Partici-
pants 

Running 
timings/ 
parameters

Median 
[Q1; Q3]  

[ms] 

Nbr. 
of obs. 

1 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

0 [-10; 10] 
0 [-5; 5] 
5 [-5; 15] 

0 [-10; 10] 

211 
205 
205 
191 

2 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

  -10 [-20; 0] 
0 [-5; 5] 

    10 [-5; 25] 
0 [-10; 10] 

306 
306 
306 
291 

3 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

0 [-20; 20] 
0 [-5; 5] 
5 [-15; 25] 

0 [-10; 10] 

437 
437 
437 
403 

4 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

5 [0; 10] 
0 [0; 10] 

     -5 [-10; 0] 
0 [-10; 10] 

366 
366 
365 
348 

5 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

10 [5; 15] 
0 [-5; 5] 

   -10 [-15; -5] 
0 [-10; 10] 

484 
394 
385 
462 

6 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

    10 [5; 15] 
0 [-5; 5] 

   -10 [-15; -5] 
      0 [-5; 5] 

332 
332 
332 
314 

7 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

    15 [5; 25] 
0 [-5; 5] 

   -15 [-30; 0] 
0 [-10; 10] 

129 
129 
129 
125 

8 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

0 [-15; 15] 
0 [-5; 5] 
0 [-20; 20] 

0 [-15; 15] 

312 
213 
213 
303 

9 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

    10 [5; 15] 
0 [-5; 5] 

     -5 [-15; 5] 
0 [-10; 10] 

468 
450 
448 
451 

10 

IC 
TC 𝑑௦௧௔௡௖௘ 𝑑௦௧௥௜ௗ௘ 

5 [-15; 25] 
0 [-5; 5] 

     -5 [-25; 15] 
0 [-10; 10] 

608 
571 
567 
586 

 
The worst-case for the IC determination appears for 
participants 3 and 10, with an IQR of 20 ms away 
from the median value. The best case is for participant 
4 with a median error of one sample (i.e., 5 ms) and 
IQR of 5 ms around this median error. In that case, 
the precision obtained exactly corresponds to the 
maximum achievable precision. Indeed, the 
maximum precision depends on the sampling rate of 
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both the IMU system and the high-speed video, as 
well as the 5 ms error than can be explained by errors 
in the reference system.  

In the case of TCs, the results obtained with IMU 
are similar to those obtained with the reference 
system. Indeed, the mean of median errors between 
the two systems is 0 ms and the mean of the IQRs is 
5 ms, for all participants. Therefore, the algorithm can 
detect TCs with the maximum possible accuracy. 
For the stance duration, the algorithm tends to 
underestimate the duration compared to the reference 
values. This can be explained by the fact that ICs are 
generally detected later with the algorithm. The mean 
of the median values is -3 ms, which is less than one 
sample of difference and less than the maximum 
accuracy. The mean of the variability values is 12.5 ms, 
this is slightly higher than the maximum precision 
expected. Indeed, IC(i) can be determined with a 
maximum precision of 5 ms and TC(i) can also be 
determined with a maximum precision of 5 ms. As the 
errors may cumulate, a maximum precision of 10 ms is 
expected for durations. However, the variability is of 5 
ms for three participants out of ten. 

Table 3: Inter-participant comparison including the 
extraction accuracies and precisions of 7 participants, 
running with their preferential running style at speeds 
ranging from 7.1 to 9 km.h-1. 

Running 
timings/ 
parameters 

Mean ± 
STD  
[ms] 

Median  
[Q1; Q3] 

[ms] 

Median 
[Q1; Q3]  

[%] 

  IC 5 ± 9  5 [-5; 15] / 

  TC 1 ± 4 0 [-5; 5] /   𝑑௦௧௔௡௖௘ -5 ± 15 -5 [-15; 5] -1.56 
[-4.56; 2.56]  𝑑ௌ௧௥௜ௗ௘ 0 ± 10   0 [-10;10] 0.00 
[-1.32; 1.32]

The accuracy for the stride duration is 0 ms for all 
participants, which is the best possible achievable 
accuracy. The precision obtained is on average 10 ms, 
which is the expected precision, as explained before. 
Note that, one participant out of the ten has a better 
precision (5 ms) and only one participant has a worst 
precision (15 ms) than the one expected. 

Finally, an inter-participant comparison is done, 
including only the natural foot strike trials at PRS 
condition (i.e., three trials per participant). We did not 
include the trials performed by three participants as at 
least one of the three above mentioned trials was not 
valid. The speed of the trials considered was between 
7.1 and 9.0 km.h-1.  

Table 3 provides the mean ± STD as well as the 
median and IQR values of the differences between the 
extracted IMU values and the reference values. The 
mean errors and the median errors are similar for all 
timings and temporal parameters. The extraction 
precisions expressed in terms of STD are identical to 
those expressed in terms of IQR except for the stance 
duration, where the STD value is influenced by some 
outlier values.  

The extraction accuracy in the case of ICs is 5 ms. 
The algorithm tends, then, to detected ICs one sample 
later than those extracted by the reference system. This 
could be explained by the fact that IMUs will detect the 
interaction (shock) between the shoe and the belt of the 
treadmill while, in the video, the selected frame is the 
one when the shoe and the treadmill touch each other 
but have not yet interacted. The precision obtained for 
the ICs is 10 ms, which is one frame higher than the 
maximum achievable precision. On the other side, TCs 
are extracted with both the maximum achievable 
accuracy (i.e., 0 ms) and precision (i.e., 5 ms). 

The stance durations tend to be underestimated by 
the algorithm. On average, they are 5 ms shorter than 
those obtained with the reference system. Again, this is 
explained by the fact that ICs have a tendency to be 
detected 5 ms later with the IMUs. Finally, the stride 
duration, which only depends on successive ICs, are 
extracted with the best possible accuracy (i.e., 0 ms) 
and a precision equal to the maximum expected 
precision due to the accumulation of errors. Indeed, 
there could be 5 ms of error in the first IC (IC(i)) and 5 
ms of error for the successive IC (IC(i+1)). All in all, 
it can be seen that the inter-participants and intra-
participant comparison give similar results.  

It is also interesting to express the errors in both 
stance and stride duration estimates as a percentage of 
the total duration. The 𝑑௦௧௔௡௖௘ relative error is (median 
[Q1, Q3]) -1.56 % [-4.56 %; 2.56 %] and the maximum 
relative error is -9.52 %. The 𝑑௦௧௥௜ௗ௘ relative error is 
(median [Q1, Q3]): 0.00 % [-1.32 %; 1.32 %] and the 
maximum computed error is 4.49%. 

4 DISCUSSION 

This article presents an original algorithm to extract 
the two main timings (ICs and TCs) at different 
running speeds (slow, normal, and fast) and with 
different running styles (natural, RFS, MFS, and 
FFS). The data collected for this work are obtained 
using two IMU sensors placed on regular shoes at the 
level of the heel (calcaneus) and toe (first distal 
phalange). 

Algorithm for Extracting Initial and Terminal Contact Timings during Treadmill Running using Inertial Sensors

263



 

Only the right shoe has been used in this work. 
However, the algorithm is supposed to work in the 
same way for the left foot. Additionally, the IMU 
hardware system used here can record the data of up 
to four sensors at the same time. It is thus possible to 
record the data of both legs simultaneously. 
Therefore, it would be possible to obtain other 
parameters, such as the step duration. Besides, it would 
be possible to make a comparison between the two 
legs, which has a wide range of applications, including 
monitoring recovery after injury or surgery. 

The performance of the algorithm is determined 
by a concurrent validation with 2D high-speed 
videos, recorded simultaneously. The algorithm 
presented here has been concurrently validated using 
a total of 7056 timings and 6861 temporal parameters. 
This comparison has shown a good agreement 
between timings obtained using the IMU signals and 
timings detected on the 2D videos. The measures 
include running speeds ranging from 6.0 to 11.3 km.h-

1. The obtained global extraction accuracy and 
precision (median [Q1; Q3]) is 5 ms [-5 ms; 15 ms] and 
0 ms [-5 ms; 5 ms] for, respectively, ICs and TCs. 
Besides, the accuracy and precision for the stance 
durations and stride durations (median [Q1; Q3]) are -5 
ms [-15 ms; 5 ms] and 0 ms [-10 ms; 10 ms], 
respectively. This corresponds to a relative error of 
respectively -1.56 ± 3.00% and 0.00 ± 1.32%.  

The stride duration average error obtained here 
(i.e., 0 ms) is consistent with the one measured by 
Chew et al. (2018), which is between -0.44 ms and 
0.33 ms. However, Chew et al. (2018) used an 
algorithm based on a thresholding-method that relies 
on experimental values needed to determine the 
threshold. This is not the case for the algorithm 
presented here. Similarly, the stance duration errors 
are similar to those found by Purcell et al. (2006). 
They found an error (mean ± STD) of 0 ± 12 ms and 
−2 ± 3 ms, depending on the running speed, using a 
tibial accelerometer. However, they used a force 
platform with higher accuracy than the 2D video 
system used here. Falbriard et al. (2018) found better 
accuracy and precision (median [Q1, Q3]): 2 [1 ms, 3 
ms] for IC and only a better precision for TC (4 ms [2 
ms, 6 ms]). Nevertheless, this precision cannot be 
achieved here with the 200 Hz reference system used.  

The algorithm presented here is only valid for 
steady state running over a treadmill. Walking cases 
cannot be analysed using the present method, 
however, there exist algorithms to detect the type of 
activity (walking, running, and rest). Once the 
activity is appropriately determined, either a walking 

or a running algorithm can be selected to extract 
temporal events. 

5 CONCLUSION 

In this article, we presented an original algorithm to 
extract timings (IC and TC) in the case of steady-state 
running over a treadmill, using IMU sensors. From 
these two timings, three temporal parameters can also 
be computed: stance, swing, and stride durations. The 
method developed here has the following advantages:  
- The sensors are placed on the shoes and not 

directly on the feet, which allows running in 
many different conditions.  

- The algorithm only uses two IMU sensors per 
foot: one at the level of the heel and the other at 
the level of the first distal phalange (toe). 
Additionally, only one sensor (i.e., toe sensor) is 
used to determine TCs with the maximum 
achievable precision and accuracy. 

- This method has been concurrently validated 
using a 2D high-speed video camera as the 
reference system.  

- The analysis is done over a large number of 
strikes including a wide range of running speeds 
(from 6 km.h-1 to 11.3 km.h-1) and different 
running styles (natural, RFS, MFS, and FFS).  

The results showed that it is possible to achieve 
acceptable accuracy and precision using a foot-worn 
IMU-based system. These results are encouraging for 
the use of IMU for daily and out-of-lab monitoring.  

They can be seen as a good trade-off between 
expensive and laboratory-limited measurement 
instruments like force platforms that show high 
accuracy and wearable systems that can be found in 
smartwatches or in smartphones. 

Future researches may focus on the use of a single 
IMU sensor to extract the timings and associated 
temporal parameters or on the detection of spatial 
parameters like the stride length. Further work could 
also focus on extracting the durations of the stride 
sub-phases.  
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