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Abstract: In this paper the classical EPQ model is extended to account for the cost and quality of the raw material used 
in the production process and to incorporate the effects of shortages into the model. A production process that 
uses n different types of raw material is considered. The various types of raw material acquired in batches 
from the suppliers are assumed to contain a percentage of imperfect quality items of raw material. The 
proportion of imperfect quality raw material found in a batch is a random variable having a known probability 
distribution. A mathematical model describing the inventory/production situation is formulated and used to 
derive a system of equations whose solution is the optimal production and shortage quantities that minimizes 
the total cost. It is shown that the total cost function depends on the determination of the maximum of a set of 
n independent random variables obtained from the proportions of imperfect quality raw material. A process 
for obtaining the probability function of the maximum along with its expected value is described. Expressions 
for the probability density function and the expected value of the maximum are developed for the case when 
the random variables are uniformly distributed. A numerical example illustrating the determination of the 
optimal policy is presented. 

1 INTRODUCTION 

The classical economic production quantity (EPQ) 
model describes a situation where an item is produced 
to meet the demand. Let  denote the production rate, 
 the demand rate, C0 the production setup cost, C the 
unit production cost, and h the holding cost per unit 
per unit time. The total inventory cost per unit time 
function is given by 
(ܻ)ܷܥܶ  = ߚܥ + ܻ/ߚ଴ܥ + ℎ ቀ1 − ఉఈቁܻ/2,  (1)

 
where Y is the quantity ordered for production at the 
beginning of each production cycle. The optimal 
production quantity, or the economic production 
quantity, that minimizes the TCU function is  
∗ݕ  = ඨ ଶ஼బఉ௛ቀଵିഁഀቁ.    (2)

Note that the classical model does not take into 
account the cost or quality of the raw materials used 
in the production process and considers only the cost 
of the finished product. Also, the classical model 
assumes that shortages are not allowed.  

The classical EPQ model is based on several 
assumptions that simplify the model. Numerous  
research studies have extended the classical EPQ 
model by relaxing some of its underlying assumptions 
so that the model becomes more realistic (Yassine, 
2018; Khan & Jaber, 2011). Some of the factors 
introduced to relax the simplifying assumptions of the 
classical EPQ model include cost of raw material 
(Salameh & El-Kassar, 2007), quality of items 
produced (Salameh & Jaber, 2000; Khan et al., 2011), 
quality of  the raw material used in the production 
process (Yassine, 2016; Yassine 2018), deterioration 
(Bandaly & Hassan, 2019), supply chain 
considerations (Khan et al., 2011; Khan & Jaber, 
2011; Bandaly et al. 2014; Bandaly et al. 2016), and 
green and sustainable practices (Yassine, 2018). 
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Environmental concerns and resource limitations 
coupled with pressure  from internal and external 
stakeholders have forced corporations to not only 
consider efficient and effective operations (El-Khalil 
& El-Kassar, 2016), but also to engage in responsible 
and environmentally friendly activities. Driven by 
ethical practices, engaging in responsible activities 
has been shown to enhance performance (El-Kassar 
& Singh, 2019; Singh et al., 2019, El-Khalil & El-
Kassar, 2018), improve governance (ElGammal et al., 
2018), and lead to employee and customer favorable 
outcomes (El-Kassar et al. 2017). In addition to the 
environmental and responsible practices, companies 
in general and manufacturers in particular are 
utilizing strategic resources, such as information and 
communication technologies and innovation, for 
enhancing their competitiveness level (Singh & El-
Kassar, 2019; Yunis et al., 2017; Yunis et al., 2018). 
Recently, these factors have been incorporated into 
the classical EPQ model (Lamba et al., 2019; Yassine, 
2018).      

Salameh and Jaber (2000) introduced a new 
modeling approach to account for the quality of items 
produced or aquired. This approach triggered a new 
line of research (Khan et al., 2011; El-Kassar, 2009; 
Yassine et al. 2018). Incorporating the costs and 
quality of raw material used in the production process 
has been the focus of several studies (Salameh & El-
Kassar, 2007; El-Kassar et al., 2012). Yassine (2018) 
considered an EPQ model that takes into account the 
quality of raw material; however, the model assumes 
that shortages are not allowed. Yassine and 
AlSagheer (2017) examined a production model with 
shortages and raw materials but did not account for 
the quality of the raw material. 

The purpose of this paper is to extend the classical 
EPQ model to account for the cost and quality of the 
raw materials used in the production process and to 
incorporate the effects of shortages into the model. 
We consider the case that n different types of raw 
material are used in the production process in which 
each unit of the finished product requires one unit of 
each type of raw material. At beginning of each 
production/inventory cycle, the various types of raw 
material are acquired in batches from the suppliers. 
Each batch is assumed to contain a percentage of 
imperfect quality items of raw material. The 
proportion of imperfect quality raw material found in 
a batch is a random variable having a known 
probability.  

The model also allows for shortages and 
backorders and accounts for two types of shortage 
cost, a constant administrative cost and a linear time 
dependent cost.  

A mathematical model describing the problem at 
hand is formulated and used to derive a system of 
equations whose solution is the optimal policy. It is 
shown that the formulation of the mathematical 
model depends on the determination of the maximum 
of a set of n independent random variables obtained 
from the proportions of imperfect quality raw 
material. Thus, a process for obtaining the probability 
function of the maximum along with its expected 
value is described. Moreover, expressions for the 
probability density function and the expected value of 
the maximum are developed for the case when the 
random variables are uniformly distributed. The 
results are then applied to the EPQ model considered 
in this paper. A numerical example illustrating the 
determination of the optimal policy is presented.   

The rest of this paper is organized in the following 
manner. In section 2, the mathematical model is 
formulated. The determination of the distribution and 
the expectation of the maximum of a set of 
independent random variables is discussed in section 
3. In section 4, a case is presented to illustate the 
calculation of optimal solution. The paper concludes 
in section 5.       

2 MATHEMATICAL MODEL 

In this section, the mathematical model describing the 
problem at hand is formulated and used to derive a 
system of equations whose solution is the optimal 
policy.   

2.1 Notation 

The following notation is used throughout the rest of 
this paper: 
 

Y Order size of finished product 
S Size of planned shortage 
M Maximum inventory level 
Uj Order size of raw material of type j 
Α Production rate  
β Demand rate 
C0 Production set up cost  
Cp  Unit production cost  
Cj Ordering cost of raw material of type j 
Crj Unit purchasing cost of raw material of 

type j 

Cdj 
Screening cost per unit of raw material of 
type j 
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Cb Administrative cost per unit short of the 
finished product 

Cs Cost per unit short of the finished product 
per unit time  

hrj Holding cost per unit of raw material of 
type j per unit time 

hP Holding cost per unit of finished product 
per unit time 

γj Screening rate of raw material of type j 

j Percentage of imperfect quality of raw 
material of type j 

gj(j) Probability density function of j 
µj Expected value of j 
Srj Salvage value per unit of imperfect quality 

raw material of type j  
Tp Length of the production period 
T Length of the inventory cycle 

T1 Time to fulfil the backorder of size S 

T2 Time to build the maximum inventory 
level  

T3 Time to deplete the maximum inventory 
T4 Time to build a backorder of  size S 

2.2 Problem Formulation 

Let Y be the order size of the finished product, an 
unknown to be determined by minimizing the total 
cost per unit time function. At the start of each 
production cycle, the various types of raw material 
acquired from the suppliers are processed into a 
finished product at a production rate . The batch of 
raw material of type j acquired from supplier j is 
screened for imperfect quality items at a rate j. The 
screening period is Uj/j, where Uj is the order size of 
raw material of type j. Suppose that is 
 

Uj = Y/(1µj),    (3)
 
where µj is the expected value of j, the proportion of 
imperfect quality raw material of type j. From Eq. (3), 
the amount of perfect quality raw material of type j is  
 

(1j)Uj = (1j)Y/(1 µj),    (4)
 
so that its expected value is  
 

E[(1j)Uj] = E[1j]Y/(1 µj) = Y.    (5)
 
On the other hand, the amount of imperfect quality 
raw material of type j is 
 

jUj = jY/(1 µj), (6)

and its expected value is 
 

E[jUj] = E[jY/(1 µj)] = µjY/(1 µj).    (7)
 

Since each unit of the finished product requires 
exactly one unit of perfect quality raw material of 
type j, Uj must be larger than the order size of the 
finished product Y. Note that the imperfect quality of 
raw material of type j is accounted for as follows: 
 ௝ܷ = ௒ଵିఓೕ = ௒ି௒ఓೕା௒ఓೕଵିఓೕ = ܻ + ௒ఓೕଵିఓೕ	.  (8)

 
The additional amount ordered is exactly the expected 
amount of imperfect quality of raw material of type j. 
However, the actual amount of perfect quality raw 
material may differ. Let Zj denote this difference. 
From Eqs. (6) and (7),    
 ௝ܼ = ೕ௒ଵିఓೕ − ௒ఓೕଵିఓೕ = ൫ೕିఓೕ൯௒ଵିఓೕ .    (9)

 
This difference determines the number of finished 
items produced using the perfect quality raw material 
received during the current production cycle. Let Wc 
denote this number. Then,  
 

  Wc = Y  Max{Zj : 1 ≤ j ≤ n}  
    = YYMax{(j  µj)/(1 µj) : 1 ≤ j ≤ n}.  (10)

 
Hence, the determination of the optimal production 
quantity depends on calculating the maximum of the 
n independent continuous random variables  
 ௝ܺ = ೕିஜೕଵିஜೕ .    (11)

 
Note that each of these variables has a mean of 0.  
 Define the expected value of the maximum of 
X1, X2, …, Xn  to be  
 

µ = E[Max{Xj : 1 ≤ j ≤ n}].   (12)
 
The value of µ depends on the distribution of the 
variables Xj, 1 ≤ j ≤ n. In section 3, we consider the 
case where the random variables 1, 2, …, n are 
uniformly distributed.  
 

From Eq. (10), the expected number of finished 
items produced using the perfect quality raw 
materials received during the current cycle is 
 

E[Wc] = Y(1µ).   (13)
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Note that, from Eqs. (4) and (10), the number of 
unused good quality items of raw material of type j 
received during the current cycle is  
 

௝݁ = (1 − ௝)ܻ1 − ௝ߤ − ௖ܹ. (14)

 
Using Eqs. (5) and (13), the expected number of 
unused good quality items of type j raw material is  
ൣܧ  ௝݁൧ = ൫ଵିఓೕ൯௒ଵିఓೕ − ܻ(1 − (ߤ = (15)    .ܻߤ

 
The on-hand good quality raw materials are processed 
at a rate  until the end of the production period. The 
length of the production period is  
 ௉ܶ = (16)    ,ߙ/ܹ
 
where W is the total number of items produced during 
the current production cycle using both the perfect 
quality raw materials received at the beginning of the 
inventory cycle as well as the excess perfect quality 
raw materials kept in stock from previous cycles. Let 
Wp be the number of finished items produced using 
the excess perfect quality raw materials kept in stock 
from previous cycles. Hence, W = Wc+Wp. 

Since each excess amount has the same expected 
value of E[ej] = µY, the expected number of finished 
product produced using the excess amount is also µY. 
Hence, the expected total number of finished product 
produced during a production cycle is exactly the 
order quantity Y. That is, 
 

E[W] = E[Wc +Wp] = Y(1µ)+µY = Y.   (17)
 
 From Eqs. (16) and (17), the expected length of 
the production cycle is  
 

E[Tp] = E[W/]=Y/. (18)
 

During the production period, items of the 
finished product are produced at a rate  and used at 
a rate  to meet the demand. At the start of the 
production period and until time T1, the excess 
amount of the finished product is used to fulfil the 
backorders at a rate of . Hence, 

T1 = S/().   (19)
 
After such time and until the end of the production 
period, the excess amount of the finished product is 
used to accumulate finished product inventory at a 

rate of . This occurs during a time period of T2, 
where Tp = T1+T2. Hence,  
 T2 =	TP T1 =	W/		S/().   (20)
 
At the end of this period, a maximum inventory level 
M is reached. Then,  
ܯ  = ଶܶ(ߙ − (ߚ = ܹ(1 − (ߙ/ߚ − ܵ.    (21)
 
This maximum level will be used to meet the demand 
at a rate  until time T3, when the inventory level of 
the finished product reaches zero. Hence,  
 ଷܶ = ெఉ = ௐ(ଵିఉ/ఈ)ିௌఉ = ௐఉ ቀ1 − ఉఈቁ − ௌఉ.    (22)

 
Throughout the remainder of the inventory cycle, 

a planned shortage of size S is accumulated at a rate 
 during a time period of T4, where 
 ସܶ = (23)    .ߚ/ܵ
 
The finished product inventory level is shown in Fig. 
1. Note that the length of the inventory cycle is T = T1 
+ T2 + T3 + T4. Eqs. (19), (20), (22) and (23) give that 
 ܶ = (24)    .ߚ/ܹ
 
From Eqs. (13) and (24), the expected inventory 
length is 
[ܶ]ܧ  = (25)    .ߚ/ܻ
 

2.3 The Cost Function 

The optimal production quantity Y* and the optimal 
shortage quantity S* are determined by minimizing 
the total cost per unit time function given by 
,ܻ)ܷܥܶ  ܵ) = ்஼(௒,ௌ)் 	,  (26)

 
where TC(Y, S) is the total cost per inventory cycle 
function. The TC(Y, S) function comprises of the 
following cost components: 
 
 Ordering, purchasing, screening and holding 

costs of raw material. 
 Setup cost of production. 
 Production and holding costs of finished product. 
 Shortage and backorder costs. 
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Figure 1: Finished Product Inventory level. 

The ordering cost of raw materials of type j is Cj 
and the purchasing cost is CrjUj. The purchasing cost 
of raw material is reduced by an amount SrjjUj, 
which is the salvage value resulting from discarding 
the imperfect quality items at a discount price. Fig. 2 
depicts the inventory level of raw material. Note that 
the drop in inventory level represents the selling of 
the jUj imperfect quality items of raw material.  

The raw materials holding cost is the holding cost 
per unit of raw material per unit time, namely hrj, 
multiplied by the average on hand inventory of raw 
material times the cycle length. That is, hrj multiplied 
by the area under the curve in Fig. 2. Hence, the total 
holding cost of raw material per inventory cycle is 
 Raw	Material	Holding	Cost =∑ ℎݎ௝ ൬௎ೕ൫ଵିఋೕ൯்ುଶ + ఋ೔௎ೕమఊೕ + ௝݁൰௡௝ୀଵ .    (27)

The cost of producing the W units of the finished 
product is the sum of the setup C0 and the variable 
production cost given by CpW. The holding cost per 
unit of the finished product per unit time is hp. Thus, 
the finished product holding cost is the average 
inventory of on hand finished product times the 
inventory cycle length times the holding cost per unit 
per unit time, which is hp times the area in Fig. 1 under 

the curve and above the x-axis. Using Eqs. (20) to 
(22),  
 Finished	Product	holding	Cost= ℎ௉2 .ܯ. ( ଶܶ + ଷܶ). (28)

 
From Fig. 1 and using Eqs. (19) to (23), the shortage 
cost is  
 Shortage	Cost = ௕ܵܥ + ଵଶ )௦ܵܥ ଵܶ + ସܶ).   

(29)= ௕ܵܥ + ௦ܵܥ12 ൬ ߙܵ − ߚ + = ൰ߚܵ ௕ܵܥ + 1)ߚ௦2ܥ − (ߙ/ߚ ܵଶ. 
 
Hence, the total inventory cost per cycle is 
,ܻ)ܥܶ  ܵ) = ଴ܥ + ∑ ௝ܥ +௡௝ୀଵ ∑ ൫ܥ௥௝ +௡௝ୀଵܥௗ௝ − ௜ܵ௥௝൯ߜ ௝ܷ + ௉ܹܥ + ௕ܵܥ +ଵଶ )௦ܵܥ ଵܶ + ସܶ) + ∑ ℎ௥௝ ൬௎ೕ൫ଵିఋೕ൯்ುଶ +௡௝ୀଵఋ೔௎ೕమఊೕ + ௝݁൰ + ௛ುଶ .ܯ. ( ଶܶ + ଷܶ).    (30)
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Figure 2: Inventory level of raw material of type j component. 

The next step is to determine the expected total cost 
per inventory cycle. For this purpose, we note that in 
a typical inventory cycle, depicted in Fig. 1, the 
expected time required to build up the maximum 
inventory of finished items obtained using Eqs. (17) 
and (20) is  
 E[T2]	=	Y/	 S/().    (31)
 
Similarly, Eqs. (17) and (21) give the expected 
maximum  inventory of finished items as 
[ܯ]ܧ  = ܻ ቀ1 − ఉఈቁ − ܵ.    (32)

 
Also, the expected time to deplete the maximum 
inventory is obtained from Eqs. (17) and (22) as 
]ܧ  ଷܶ] = ߚܻ ൬1 − ൰ߙߚ − (33) .ߚܵ

 
The area under the curve in Fig. 1 representing the 

on-hand inventory of the finished product is used to 
calculate the expected holding cost of the finished 
product. From Eqs. (28) and (31) to (33), we have  
 Expected	Finished	Product	Holding	Cost

(34)

		= ℎ௉2 . ൬ܻ ൬1 − ൰ߙߚ − ܵ൰ 

   . ቀ௒

	 ௌ


	+ ௒ఉ ቀ1 − ఉఈቁ − ௌఉቁ 

= ℎ௉	 (1 − /)ܻଶ − 2ܻܵ + ܵଶ	(1 − /)2ߚ .  

Similarly, during a typical cycle, the expected 
area under the curve representing the on-hand 
inventory of the raw material of type j can used to 
calculate the expected total holding cost of the raw 
material. From Eqs. (15), (18) and (27), we have 
 Expected	Raw	Material	Holding	Cost =∑ ℎݎ௝ ൮ ೊభషഋೕ൫ଵିఓೕ൯௒ଶఈ + ఓೕቆ ೊభషഋೕቇమఊೕ + ൲௡௝ୀଵܻߤ    

(35)=෍ℎݎ௝ ൭ܻଶ2ߙ + ௝൫1ߛ௝ܻଶߤ − ௝൯ଶߤ + ൱௡ܻߤ
௝ୀଵ  

 
The expected total inventory cost per cycle ETC(Y,S) 
= E[TC(Y, S)] obtained by taking the expected value 
of the various costs in Eq. (30) is 
,ܻ)ܥܶܧ  ܵ) = ଴ܥ + ∑ ௝ܥ +௡௝ୀଵ ∑ ൫ܥ௥௝ +௡௝ୀଵܥௗ௝ − ௝ܵ௥௝൯ߤ ௒ଵିఓೕ + ௉ܻܥ + ௕ܵܥ +஼ೞଶఉ(ଵିఉ/ఈ) ܵଶ + ∑ ℎݎ௝ ቆ௒మଶఈ + ఓೕ௒మఊೕ൫ଵିఓೕ൯మ +௡௝ୀଵܻߤቇ + ௛ುଶఉ ቆቀ1 − 


ቁܻଶ − 2ܻܵ + ௌమ	(ଵି/)ቇ.  

(36)

 
The expected total inventory cost per unit time, 

ETCU(Y,S) = E[TCU(Y, S)] = E[TC(Y, S)/T], is 
approximated using the Renewal Reward Theorem as 
ETCU(Y,S) = E[TC(Y, S)]/ E[T]. Dividing Eq. (36) by 
the expected cycle length T given by Eq. (25). Hence,  
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,ܻ)ܷܥܶܧ ܵ) = ఉ௒ ቀܥ଴ + ∑ ௝௡௝ୀଵܥ + ௕ܵܥ +஼ೞଶఉ(ଵିఉ/ఈ) ܵଶቁ + ∑ ൫ܥ௥௝ + ௗ௝ܥ −௡௝ୀଵߤ௜ܵ௥௝൯ ఉଵିఓೕ + ߚ௉ܥ + ∑ߚ ℎݎ௝ ቆ ௒ଶఈ +௡௝ୀଵఓೕ௒ఊೕ൫ଵିఓೕ൯మ + ቇߤ + ௛ು	ଶ ቆቀ1 − 


ቁܻ − 2ܵ +

ௌమ	(ଵି/)ଢ଼ቇ.    
(37)

 
Note that the expected total cost per unit function 

depends on the determination of the expected value µ 
of the maximum of the random variables in X1, X2, …, 
X n.  In section 3, the calculation of µ is described in 
the case where the random variables are uniformly 
distribution.  

2.4 The Optimal Solution 

To obtain the optimal production quantity Y* and the 
optimal shortage size S*, we find the first partial 
derivatives of ETCU(Y, S) and set these derivatives 
equal to zero. Differentiating ETCU(Y, S) with 
respect to S, we get 
,ܻ)ܷܥܶܧ߲  ܵ)߲ܵ = ߚܻ ൬ܥ௕ + 1)ߚ௦ܥ − (ߙ/ߚ ܵ൰ 

(38)+ℎ௉	 ൬−1 + ܵ	(1 − /)Y൰. 
 
Setting the derivative in Eq. (38) equal to zero and 
rearranging, we get  
 ℎ௉	ܻ − (஼ೞା௛ು	)(ଵିఉ/ఈ) ܵ − (39)   .0 =	ߚ௕ܥ

 
Now we differentiate ETCU(Y, S) with respect to Y, 
we get 
 	డா்஼(௒,ௌ)డ௒ = − ఉ௒మ ቆܥ଴ + ∑ ௝௡௝ୀଵܥ + ௕ܵܥ +஼ೞଶఉቀଵିഁഀቁ ܵଶቇ + ∑ ௝ݎℎߚ ቆ ଵଶఈ +௡௝ୀଵ

ఓೕఊೕ൫ଵିఓೕ൯మቇ + ௛ು	ଶ ൭ቀ1 − 


ቁ − ௌమ	ቀଵି

ቁ௒మ൱.    
(40) 

 
Setting the derivative in Eq. (40) to zero and 
rearranging, we have 
 

଴ܥ൫ߚ2− + ∑ ௝௡௝ୀଵܥ + ௕ܵ൯ܥ +ܻଶ ቆℎ௉	 ቀ1 − 


ቁ + ߚ2 ∑ ℎݎ௝ ቆ ଵଶఈ +௡௝ୀଵఓೕఊೕ൫ଵିఓೕ൯మቇቇ − ௛೛ା஼ೞቀଵି

ቁ ܵଶ = 0.    (41) 

 
The solution of the system of equations (39) and 

(41) provide the optimal production quantity Y* and 
optimal shortage quantity S*. Note that the second 
partial derivatives obtained from (38) and (40) may 
be used to either demonstrate the uniqueness of the 
optimal solution or provide conditions that guarantee 
it. In the following section, we describe how the 
expected value of the maximum of a set of 
independent random variables can be calculated.     

3 MAXIMUM OF A SET OF 
RANDOM VARIABLES 

Functions of random variables have many 
applications in various fields, see (Yassine, 2018; 
Yassine and El-Rabih, 2019). The optimal solution 
derived in section 2 depends on  the exepected value 
of the maximum of random variables each having a 
mean equal to 0. Hence, a process for obtaining the 
probability function of the maximum along with its 
expected value is needed. In the following, we 
describe such a process based argumentes similar to 
those Yassine (2018) used to determine the 
probability distribution and expected value of the 
minimum of uniformly distributed random variables 
each having a mean equal to 1. 

Let X1, X2,…, Xn be n independent continuous 
random variables and let gj(Xj) denote the probability 
distribution  of Xj.  Since X1, X2, …, Xn are 
independent, the cumulative distribution of the 
random variable Max(X1, X2, …, Xn) is 
(ݐ)ܪ  = )ݔܽܯ)ܲ ଵܺ, ܺଶ, … , ܺ௡) ≤  (ݐ

(42)      = ܲ( ଵܺ ≤ ଶܺ)ܲ(ݐ ≤ ௡ܺ)ܲ…(ݐ ≤ = (ݐ .(ݐ)ଵܩ  ,(ݐ)௡ܩ…(ݐ)ଶܩ
 
where Gj(t) is the cumulative distribution of Xj.  
In the case where each Xj is uniformly distributed over 
an interval [mj,  mj] centered at zero, the probability 
distribution of Xj is 
 

݃௝൫ݔ௝൯ = ۔ۖەۖ
ۓ 0 ݂݅ ௝ݔ < − ௝݉12 ௝݉ ݂݅ − ௝݉ ≤ ௝ݔ ≤ ௝݉0 ݂݅ ௝ݔ > ௝݉

, (43)
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and its cumulative distribution, a continuous function, 
is  
 

(ݐ)௝ܩ = ۔ۖەۖ
ۓ 0 ݂݅ ݐ ≤ − ௝݉ݐ + ௝݉2 ௝݉ ݂݅ − ௝݉ ≤ ݐ ≤ ௝݉1 ݂݅ ݐ ≥ ௝݉

. (44)

 
Since each interval [mj, mj] is centered at 0, we may 
assume, without loss of generality, that these intervals 
are nested so that  
 
mn ≤…≤m2 ≤m1≤ 0 ≤ m1≤m2≤… ≤ mn. (45)

 
From Eqs. (42) and (44), the cumulative distribution 
of the maximum is  
 

(ݐ)ܪ = ۔ۖەۖ
ۓ 0∏ ௧ା௠೔ଶ௠೔௡௜ୀଵ ݂݂݅݅ ݐ ≤ −݉ଵ−݉ଵ ≤ ݐ ≤ ݉ଵ∏ ௧ା௠೔ଶ௠೔௡௜ୀ௝ ݂݅ ௝݉ିଵ ≤ ݐ ≤ ௝݉1 ݂݅ ݐ ≥ ݉௡

. (46)

 
The expected value µ of Max(X1, X2,…, Xn) is 
calculated using  
 μ = න ஶି,ݐ݀(ݐ)ℎݐ

ିஶ  
(47)

 
where h(t) is the derivative of H(t).  

In case when n = 2, the cumulative distribution in 
Eq. (46) reduces to 

(ݐ)ܪ = ۔ۖەۖ
ۓ 0 ݂݅ ݐ ≤ −݉ଵ(௧ା௠భ)(௧ା௠మ)ସ௠భ௠మ ݂݅ −݉ଵ ≤ ݐ ≤ ݉ଵ௧ା௠మଶ௠మ ݂݅ ݉ଵ ≤ ݐ ≤ ݉ଶ1 ݂݅ ݐ ≥ ݉ଶ

, (48)

 
and the probability density function h(t) of Max(X1, 
X2,…, Xn) is 
 

ℎ(ݐ) = ۔ۖەۖ
ۓ 0 ݂݅ ݐ < −݉ଵଶ௧ା௠భା௠మସ௠భ௠మ ݂݅ −݉ଵ ≤ ݐ < ݉ଵଵଶ௠మ ݂݅ ݉ଵ ≤ ݐ ≤ ݉ଶ0 ݂݅ ݐ > ݉ଶ

. (49)

 
Hence,  
ߤ  = න ݐ2)ݐ + ݉ଵ +݉ଶ)4݉ଵ݉ଶ ௠భି௠భݐ݀  

(50)

+න ݐ݀(2݉ଶ)/ݐ = ݉ଵଶ12݉ଶ + ݉ଶ4 .௠మ௠భ 	
 

When each j is uniformly distributed over an 
interval [aj, bj], the random variable Xj is also 
uniformly distributed over an interval centred at 0, 
say [mj, mj], where   
 ௝݉ = ௕ೕିఓೕଵିఓೕ = ௕ೕି(௔ೕା௕ೕ)/ଶଵି(௔ೕା௕ೕ)/ଶ = ௕ೕି௔ೕଶି௔ೕି௕ೕ.    (51)

4 NUMERICAL EXAMPLE 

Consider a production process where the demand rate 
for an item is 100 units per day and the production 
rate is 400 units per day. Assume that the percentage 
of imperfect raw material of type 1 used in production 
is uniformly distributed over [10%, 30%] so that the 
mean is 20%. Similarly, the percentage of imperfect 
raw material of type 2 is uniformly distributed over 
[10%, 40%] so that the mean is 25%. Screening for 
imperfect quality items of the raw material of type 1 
is conducted at a rate of 1200 units per day and at a 
cost of $0.20 per unit, and for type 2 at a rate of 800 
units per day and at a cost of $0.25 per unit. The 
ordering cost for the raw material of type 1 is $2,000, 
of type 2 is $3,000, and the production setup cost is 
$4750. The holding cost of raw material of type 1 is 
$0.2 per unit per day and $0.3 per unit per day for raw 
material of type 2. The holding cost per unit of the 
finished product per day is $0.92. The production cost 
is $ 30 per unit. The purchasing cost of one item of 
raw material of type 1 is $10 and $20 for type 2. 
Planned shortages are permitted. The cost of having 
one finished short is $2.6 per day and the 
administrative cost of a unit short is $10. The 
production cost per unit is $30. The Salvage value per 
unit of imperfect quality raw material of type 1 is $5 
and $10 for type 2.  

The parameters of the problem are α = 400,  = 
100,  C0 = 4750, Cp = 30, C1 = 2000, C2 = 3000, Cr1 = 
10, Cr2 = 20, Cd1 = 0.2, Cd2 = 0.25, Cb = 10, Cs = 2.6, hr1 

= 0.2, hr2 = 0.3, hP = 0.92, γ1 = 1200, γ2 = 800, Sr1 = 5, 
Sr2 = 20, 1  [10%, 30%], a1 = 0.10, b1 = 0.30, g1(1) 
= 1/(0.30.1) = 5; 1 = (0.1+0.3)/2 = 0.2; 2  [10%, 
40%]; a2 = 0.10, b2 = 0.40, g2(2) = 1/(0.40.1) = 
3.33; 2 = (0.1+0.4)/2 = 0.25. 

 
To determine the optimal production policy, first 

we need to determine the random variables X1, X2, and 
Max(X1, X2). Also, the expected value µ = E(Max(X1, 
X2)) needs to be calculated. From Eq. (51), the value 
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of m1 is obtained as m1 = (0.30.1)/(20.10.3) = 
0.125. Hence, X1 is uniformly distributed over 
[0.125, 0.125]. Similarly, m2 = 
(0.40.1)/(20.10.4) = 0.2 so that X2 is uniformly 
distributed over [0.2, 0.2].  The expected value of 
Max(X1, X2) can now be calculated using Eq. (50) as 

µ = 
଴.ଵଶହమଵଶ(଴.ଶ) + ଴.ଶସ  = 0.05651.  

Solving the system in Eqs. (39) and (41) results in 
two solutions. The first has negative values for S and 
Y, which is rejected. The second solution gives the 
optimal production quantity Y* = 1600.09  1600  
and the optimal shortage quantity S* = 100.59  100. 
Then, ETCU(1600, 100) = 7801.03. The order 
quantity of raw material of type 1 is U1 = Y/(11) 
=1600/(10.8) = 2000. Similarly, U2 = Y/(12) 
=1600/(10.75) = 2133. The expected number of 
finished items produced from the raw materials 
obtained during the current production cycle is E[Wc] 
= Y(1µ) = 1510. Also,  the expected number of 
finished items produced from the excess perfect 
quality raw material kept in stock from previous 
periods is E[Wp] = E[e1] = E[e2] = µY = 90. 

The expected cycle length and production period 
are E[T] = 1600/100 = 16 and E[Tp] = 1600/400 = 4. 
The maximum inventory level of the finished product 
is E[M] = 1600(1100/400)  100 = 1100.        

5 CONCLUSION 

In this paper, an economic production model that 
accounts for the cost and quality of the raw materials 
was presented. Also, the effects of shortages were 
incorporated into the model. A mathematical model 
describing this production/inventory situation was 
formulated. It was shown that the optimal production 
and shortage quantities that minimize the total 
inventory cost per unit time function are the solution 
of a system of equations derived using the 
mathematical model. The total cost function was 
shown to depend on the maximum of a set of n 
independent random variables obtained from the 
proportion of imperfect quality raw material.  

A process for obtaining the probability function of 
the maximum and its expected value was developed 
and described. Moreover, expressions for the 
probability density function and the expected value of 
the maximum when the random variables are 
uniformly distributed were obtained. The results were 
applied to the EPQ model considered in this paper. A 
numerical example illustrating the determination of 
the optimal policy was presented.  

This study has some limitations. Due to the 
restriction on the length of the paper, uniqueness of 
the optimal solution was not demonstrated nor 
sensitivity analysis was performed. Also, the model 
considered the producer as the decision maker and 
ignored the other supply chain members. These 
limitations can be tackled in future research. 
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