
Assessing Testing Strategies for Access Control Systems: A Controlled
Experiment

Said Daoudagh1,2 a, Francesca Lonetti1 b and Eda Marchetti1 c

1ISTI-CNR, Pisa, Italy
2Department of Computer Science, University of Pisa, Pisa, Italy

Keywords: Access Control Systems, Controlled Experiment, Testing.

Abstract: This paper presents a Controlled Experiment (CE) for assessing testing strategies in the context of Access
Control (AC); more precisely, the CE is performed by considering the AC Systems (ACSs) based on the
XACML Standard. We formalized the goal of the CE, and we assessed two available test cases generation
strategies in terms of three metrics: Effectiveness, Size and Average Percentage Faults Detected (APFD). The
experiment operation is described and the main results are analyzed.

1 INTRODUCTION

Access Control Systems (ACSs) play a critical role
inside the information technology systems. They
are concerned with determining the allowed activi-
ties of legitimate users, ensuring that only the in-
tended subjects can access the protected data and re-
sources. Most of the existing access control systems
rely on the eXtensible Access Control Markup Lan-
guage (XACML) (OASIS, 2013), the de facto stan-
dard for the specification of policies and requests.

Testing of access control systems represents a
key activity to guarantee the trustworthiness of sensi-
tive data and protect information technology systems
against inappropriate or undesired user access. Sev-
eral strategies for the generation of test cases (i.e., ac-
cess requests) for access control systems have been
defined in scientific literature. They leverage the ap-
plication of the combinatorial approaches to XACML
policies values for generating test inputs (Bertolino
et al., 2013b; Bertolino et al., 2012a; Martin and Xie,
2006); or exploit change-impact analysis for test cases
generation starting from policies specification (Mar-
tin and Xie, 2007); or are based on the representa-
tion of policy-implied behavior by means of mod-
els (Mouelhi et al., 2008; Daoudagh et al., 2019b)

The need for effective and efficient evaluation
methods of test cases generation strategies is growing

a https://orcid.org/0000-0002-3073-6217
b https://orcid.org/0000-0002-4864-2219
c https://orcid.org/0000-0003-4223-8036

in order to gain confidence that a system meets its se-
curity requirements. Indeed, the selection of the most
effective test generation strategy for the access con-
trol systems allows: i) on one side to exercise all the
security-critical aspects and discover all the possible
faults of the access control systems; ii) on the other
side to develop a successful and cost-effective test-
ing phase. The assessment of the most effective test
cases generation strategies for XACML based access
control systems usually relies on several techniques,
e.g., coverage (Martin et al., 2006) or mutation anal-
ysis (Bertolino et al., 2013a) and is based on specific
metrics and evidences gathered or from formal assur-
ance techniques or from experimental evaluations.

However, in software engineering there is still an
important lack in the application of standardized and
systematic procedures for performing assessment or
generalization of case studies results. Usually, associ-
ating to the results the standard means or the deviation
values as well as their confidence levels are the syn-
onymous of statistical evidences. But, these values
are meaningless if the testing process cannot be rig-
orously conducted and, more important, replicated.
Indeed, software engineering research activities still
miss the knowledge of what is a Controlled Exper-
iment and how to apply it. Controlled experiments
have a very long application history in disciplines as
medicine, biology and chemistry, because they are
the most effective means for minimizing the effect of
variables which are not of interest of the study. The
Controlled Experiment lets to focus on an object, pop-
ulation, or any other variable which a scientist would

Daoudagh, S., Lonetti, F. and Marchetti, E.
Assessing Testing Strategies for Access Control Systems: A Controlled Experiment.
DOI: 10.5220/0008974201070118
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 107-118
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

107

like to control and fixes the exact conditions in which
the experiment can be performed and replicated: no
deviations in the environment of the experiment can
influence the final results.

Even if well known Controlled Experiments are
rarely applied in software engineering (Jedlitschka
and Pfahl, 2005) and specifically in software test-
ing (Do et al., 2005) with the aim of obtaining reliabil-
ity as well as generalization of results, in the context
of testing of XACML based access control systems
there is a complete lack of such kind of well defined
approaches.

Thus, the aim of this paper: to provide for
the fist time a Controlled Experiment for eval-
uating two XACML based test cases generation
strategies available in literature, specifically Mul-
tiple Combinatorial (Bertolino et al., 2013b) and
XACMET (Daoudagh et al., 2019b). We use the
Goal Question Metric (GQM) template (Basili and
Rombach, 1988) to formalize the goal of the ex-
periment and define three metrics that are: effec-
tiveness, size and average percentage faults detected
(APFD). Moreover, as infrastructure for perform-
ing the controlled experiment, our proposal leverages
the XACML Mutation Framework (XMF) (Daoudagh
et al., 2019a) that allows for replicability of the ex-
periment as well as generalization of results, finding
aggregating, and finally reducing of experimentation
costs.

In summary, the main contribution of the paper
is the formal definition of a Controlled Experiment
within the access control domain. Therefore, accord-
ing to (Wohlin et al., 2012; Juzgado and Moreno,
2001), we present the thee main steps:

• the definition of a controlled experiment for the
evaluation of two test cases generation strategies;

• the instrumentation and execution of the experi-
ment;

• the analysis of the results.

Outline. Section 2 introduces the basic concepts
used in the remaining sections. We define goals, con-
text and variables of our controlled experiment in Sec-
tion 3. Then, Section 4 presents the execution of the
experiment whereas Section 5 provides an analysis of
the results. Section 6 presents related works. Finally,
Section 7 shows discussions and conclusions.

2 BACKGROUND

Access Control. Access Control (AC) is a mech-
anism used to restrict access to data or systems ac-

cording to Access Control Policy (ACP), i.e., a set of
rules that specify who has access to which resources
and under which circumstances (Sandhu and Sama-
rati, 1994).

Among the AC models proposed in the litera-
ture, we refer to the Attribute-Based Access Control
(ABAC) (Jin et al., 2012) which is currently one of
the most adopted in industrial environment (Hu et al.,
2019).

The basic idea of ABAC is to use attributes of dif-
ferent entities to formulate access control decisions
regarding a subject’s (e.g., user or process) access on
an object (e.g., file or database) in a system. The au-
thorization decisions are obtained by means of autho-
rization policies specified using a policy specification
language. ABAC policies are a set of rules defined
based on the attributes of subjects, objects and opera-
tions as well as other attributes, such as contextual or
environmental attributes.

The ABAC model is usually implemented using
the XACML (OASIS, 2013) standard that defines
ACPs and access control decision requests/responses
in a XML format. A XACML policy defines the ac-
cess control requirements of a protected system. An
access request that aims at accessing a protected re-
source is first evaluated against the policy, after which
the access is granted or denied. A XACML Request is
composed of four main elements: 1. Subject, the en-
tity requesting the access; 2. Resource, the requested
object that is described in terms of attributes; 3. Ac-
tion, the operation that the subject wants to perform;
and 4. Environment, the contextual information such
as the request time and the location. The core compo-
nent of a XACML Policy is the Rule, which represents
the basic enforceable element: it is composed of an
Effect (Deny or Permit value); Target and Condition
which defines the applicability of the rule. The rules
are evaluated by the Policy Decision Point (PDP)
which is the AC component in charge of formulating
an authorization decision. In particular, the effect of
the rule is returned by the PDP when the evaluation of
a given request meets the constrains of its target and
condition. For more details about XACML we refer
to its specification (OASIS, 2013).

Testing of Access Control Mechanisms. A typical
AC systems testing process, shown in Figure 1, con-
sists of at least four main steps: (A) test cases genera-
tion; (B) mutants generation; (C) test cases execution;
and finally, (D) results analysis.

The first step is related to the generation of
test cases (step A) for the aim of generating a
test suite starting from a given ACP. Among the
available test cases generation strategies we refer to

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

108

two different approaches: (1) Multiple Combinato-
rial strategy provided by X-CREATE tool (Bertolino
et al., 2013b) generates test inputs using combina-
torial approach of the XACML policies values; and
(2) XACMET (Bertolino et al., 2012b; Bertolino et al.,
2018) strategy based on the expected behavior of an
XACML-based PDP. The next step (B in Figure 1) is
related to the generation of PDP mutants; the mutated
versions of the PDP can be generated by applying a
set of mutation operators. The basic idea of mutation
testing is to simulate typical programmer’s mistakes,
by seeding syntactic faults in the original program in
order to produce a set of faulty programs, called mu-
tants, each one containing one fault. The main pur-
pose of mutation testing is to assess the adequacy of
a test suite. Each test case is executed on the original
program and its mutants (in our case the PDP and the
its mutated versions), then outputs are collected (i.e.,
the authorization responses): if the mutant’s output is
different from the original program’s one, the fault is
detected and the mutant is said to be killed. The muta-
tion score is the ratio of the number of detected faults
over the total number of seeded faults and indicates
the effectiveness of the test suite.

The results of steps A and B are then used in
the next phase (step C in Figure 1), that allows the
execution of test cases on the original PDP and on its
mutated versions. Finally, the result of step C is used
in step D of the testing process (see Figure 1).

Figure 1: Workflow of the Testing Process.

All the above steps must be performed automati-
cally to speed-up the testing phase. Among the au-
tomated frameworks for testing purpose of AC sys-
tems currently available, in this paper we refer to the
XACML Mutation Framework (XMF) “which pro-
vides three main functionalities: test case genera-
tion, execution and assessment, and mutants gener-
ation” (Daoudagh et al., 2019a).

3 EXPERIMENTS DEFINITION
AND PLANNING

The controlled experiment definition consists of three
main steps: i) defining the goal of the experiment,

the research questions and the associated Hypothe-
ses that have to be formally tested as in Section 3.1;
ii) introducing the context of the experiment as well
as the variables, the subjects and the object of the
experiment as in Section 3.2; iii) designing and in-
strumenting the experiment, i.e., the realization of the
means for performing the experiment and monitoring
it, without affecting the control of the experiment as
in Section 3.3.

3.1 Goal and Hypotheses Formulation

According to the Goal Question Metric (GQM) tem-
plate (Basili and Rombach, 1988), our research goal
is as follows:

Analyze two Test Generation Strategies
(T GS1 and T GS2) for the purpose of evalu-
ation with respect to their Effectiveness, Size
and APFD of test suite produced from the
point of view of the researcher in the context
of XACML policy decision point testing.

In order to address the goal of our experiment, we
defined three research questions and their associated
hypotheses:

• RQ1 Effectiveness: How much does the qual-
ity of a test suite produced by Strategy1 (T GS1)
differ from the quality of test suite produced by
Strategy2 (T GS2) in terms of Effectiveness, i.e.,
the mutation score? For evaluating the effective-
ness of the strategies we consider full test suites
derived from each strategy;

• RQ2 Size: How much does the cost of a test
suite produced by Strategy1 differ from the cost of
test suite produced by Strategy2 in terms of Size,
i.e., the number of test cases? For evaluating the
cost of the strategies in terms of the number of
XACML requests generated, we assume that all
requests have the same cost in terms of generation
and evaluation as well as verdict verification;

• RQ3 APFD: How much does the Average Per-
centage Faults Detected (APFD) of a test suite
produced by Strategy1 differ from the APFD of
test suite produced by Strategy2?

To answer the above research questions, the fol-
lowing Null Hypotheses have been defined:

• H0E f f : µE f f T GS1 = µE f f T GS2 the Strategy1 finds
on average the same number of faults, i.e., the ef-
fectiveness, as the Strategy2, where µ denotes the
average percentage of the killed mutants using the
complete test suites generated by the two strate-
gies;

Assessing Testing Strategies for Access Control Systems: A Controlled Experiment

109

• H0Size : µSizeT GS1 = µSizeT GS2 the size of test suite
is equal for Strategy1 and Strategy2;

• H0APFD : µAPFDT GS1 = µAPFDT GS2 the average
APFD is equal for Strategy1 and Strategy2.

A null hypothesis states that there are no real under-
lying trends or patterns in the experiment setting; the
only reasons for differences in the observations are
coincidental. This is the hypothesis that we want to
reject with a higher significance. When the null hy-
pothesis can be rejected with relatively high confi-
dence, it is possible to formulate an alternative hy-
pothesis, as follows:

• H1E f f = ¬H0E f f ;

• H1Size = ¬H0Size;

• H1APFD = ¬H0APFD.

3.2 Context, Variables and Subjects
Selection

In the context of Access Control Systems (ACSs),
the aim of our controlled experiment is the evaluation
of test cases generation strategies by means of the
mutation analysis at the level of the Java based PDP
engine. The comparison involves the effectiveness
of the test suite generated by each strategy, the cost
associated to each test suite in terms of its size and
the velocity at which that effectiveness is reached.
According to the classification of the experiment
context in (Wohlin et al., 2012), the comparison
of the selected test strategies has been conducted
through a Multi-test within object study, i.e., a kind of
controlled experiment that examines a single object
across a set of subjects. In this experiment the object
is the PDP engine, while the subjects are the XACML
policies.

The variables involved in the experiment are: one
Independent variable, i.e., the test case generation
strategy with two levels or alternatives (treatments)
for the main factor (i.e., Level 1 and Level 2) and three
Dependent Variables, i.e., the Effectiveness, the Size
(or the cost) of the test suites and the APFD metrics.
The Object of the experiment is the Policy Decision
Point developed by Sun, SunPDP (Sun Microsystems,
2006).

According to (Juzgado and Moreno, 2001), the
Parameter, that could influence the result of the ex-
periment or, alternatively, the response variable, is the
Mutation Generator tool or strategy used to gener-
ate the mutated versions of the PDP. Among the cur-
rently available tools, we selected the µJava tool (Ma
et al., 2006; seung Ma et al., 2005), but other solutions

could be selected, such as Javalanche (Schuler and
Zeller, 2009), Major (Just, 2014) or Judy (Madeyski
and Radyk, 2010).

Finally, we defined the Subjects involved in the
experiment, i.e., the XACML Policies. According to
the recommendation in (Juzgado and Moreno, 2001),
the selection is closely connected to the generalization
of the results from the experiment, thus the selection
must be representative for that population.

For this, we considered a set of real-world
XACML policies taken from real contexts and Euro-
pean projects as summarized in Table 1. In particular,
the columns represent the number of rules, conditions,
subjects, resources, actions and distinct functions
within each policy. As in the table, policies named
demo-5, demo-11 and demo-26 have been taken from
the Open Source repository software Fedora (Flex-
ible Extensible Digital Object Repository Architec-
ture) (fed, 2019) for controlling the access to the
administered digital contents; the remaining six are
those released by the TAS3 European project (TAS3
Project,).

The GQM template, considering the context of
Access Control, is as the following:

Analyze Multiple Combinatorial and
XACMET Strategies for the purpose of
evaluation with respect to their effectiveness
and size of test suite produced from the point
of view of the researcher in the context of
XACML policy decision point testing.

3.3 Experiment Design and
Instrumentation

The comparison between the performances of the dif-
ferent test strategies has been defined using the Paired
Comparison design, a particular kind of one factor
with two treatments (Wohlin et al., 2012) 1. In this
design, each subject uses both treatments on the same
object. In the context of this paper it can be translated
into: both test strategies (Multiple Combinatorial and
XACMET) have to be applied to each XACML pol-
icy and both the obtained test suites evaluated using
the SunPDP and its mutants.

According to (Wohlin et al., 2012), an important
step for the controlled experiment is the instrumenta-
tion, i.e., the realization of the means for performing
the experiment and monitoring it. In particular, the
instruments considered are of three types, namely ob-
jects, guidelines and measurement instruments.

1The same design is called “randomized paired com-
parison design: two alternatives on one experimental unit”
in (Juzgado and Moreno, 2001).

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

110

Table 1: XACML Policies Subjects.

Xacml Policy Functionality

Rule # Cond # Sub # Res # Act # Funct

2 73020419964 2 6 5 3 3 0 4
create-document-policy 3 2 1 2 1 3
demo-5 3 2 2 3 2 4
demo-11 3 2 2 3 1 5
demo-26 2 1 1 3 1 4
read-document-policy 4 3 2 4 1 3
read-informationunit-policy 2 1 0 2 1 2
read-patient-policy 4 3 2 4 1 3
Xacml-Nottingham-Policy-1 3 0 24 3 3 2

Object. When planning for an experiment, it is im-
portant to choose objects that are appropriate. The
object of our experiment is an XACML-based PDP
named Sun PDP (Sun Microsystems, 2006), which
is an open source implementation of the OASIS
XACML standard, written in Java. We decided on
Sun’s PDP engine because it is currently one of the
most mature and widely used engine for XACML pol-
icy evaluation, which provides complete support for
all the mandatory features of XACML 2.0 as well as
a number of optional features. This engine supports
also all the standard attribute types, functions and
combining algorithms and includes APIs for adding
new functionalities as needed. The Sun PDP source
code is broken into ten packages: seven packages in-
clude the core implementation, two packages include
classes used for the configuration code, rarely used
by programmers, and one package contains test code
samples.

The comparison of the selected test strategies re-
quired the definition of the SunPDP Mutants. There-
fore, through the Mutation Generator and Mutation
Integrator components, the mutation operators (both
class-level and method-level operators) have been ap-
plied to the Sun PDP code and executable mutant ver-
sions derived.

Guidelines and Measurement. Guidelines are
needed to guide the participants in the experiment
and they include process descriptions and checklists.
Measurements are conducted via data collection that
in human-intensive experiments are generally per-
formed by manual forms or interviews. Since we con-
ducted a technology-oriented experiment, we embed-
ded both aspects in the automation process. Specifi-
cally, we leveraged the functionalities of XMF frame-
work, i.e., test cases generation, mutants generation,
test cases execution and results analysis, to perform

our controlled experiment and automatically collect
the data.

4 EXPERIMENT OPERATION

The experiment operation mainly consists of three
steps: preparation, execution and data validation.
Specifically, the preparation step focuses on the
preparation of the subjects, object and the material
needed.

In our experiment, the preparation step consists of:
XACML policy selection, XACML requests genera-
tion, XACML based PDP selection, and finally the
mutants generator selection.

During the execution step, the XACML requests
are evaluated and obtained data are collected.

Finally, during the data validation step, the depen-
dent variables are calculated, the collected data are
managed and analyzed so to provide a valid picture of
the experiment. In the following sections, we report
the results of our data validation.

4.1 Data Validation

The data validation phase includes: i) a former de-
scriptive statistics, which allows the visualization of
the information using informal representations. In our
experiment, these statistics span from the number of
generated requests, to the distribution of the mutants
on the different Java PDP classes, to the evaluation of
the different test case executions. Even if simple and
informal, these descriptive statistics let both to high-
light an important criticality on the data set consid-
ered, that could have compromised the entire experi-
ment, and to find out the corrective actions for solv-
ing it. Due to space limitation, in the following we
report only the number of executions and the number

Assessing Testing Strategies for Access Control Systems: A Controlled Experiment

111

of distinct mutants. ii) a latter formal description of
the experiment results. In our experiment we focused
on the Paired T-Test with Null Hypothesis and present
the results in Section 5.

Number of Executions. Table 2 reports for each
of the nine XACML policies, the number of exe-
cutions for the test suites derived by the XACMET
and the Multiple combinatorial test strategies (sec-
ond and third column respectively). The total amount
of executions is reported in the last column of the
table. From the data collected, as reported in the
last row, only 16% of the executions is performed by
XACMET strategy, meaning that testing cost of such
strategy is very low compared to the one of the Mul-
tiple Combinatorial strategy.

Table 2: Number of Executions by XACML Policy and
Strategy.

Xacml Policy # of Executions All

XACMET Mulitlple

2 73020419964 2 12320 481800 494120
create-document-policy 13560 96360 109920
demo-11 104390 321200 425590
demo-26 64240 128480 192720
demo-5 128480 674520 803000
read-document-policy 4014 240900 244914
read-informationunit-policy 27752 48180 75932
read-patient-policy 48180 240900 289080
Xacml-Nottingham-Policy-1 38892 55072 93964

All 441828 2287412 2729240

For aim of completeness, for each XACML pol-
icy, Figure 2 reports the percentage of executions for
the two testing strategies considered. In particular,
the blue bars (black in black and white printing) re-
fer to the XACMET testing strategy, while the orange
bars (light gray in black and white printing) report the
percentage of executions of Multiple Combinatorial
strategy.

Figure 2: % of Executions by XACML policy, by
XACMET and Multiple strategy.

Number of Distinct Mutants. The information
about the number of executions can be analyzed also

from the point of view of how many distinct mu-
tated PDPs are evaluated by each XACML policy.
In particular, Table 3 reports, in the second column,
the number of distinct mutated PDPs considering the
XACMET strategy, while in the third column those
related to the Multiple Combinatorial ones are pre-
sented. By analyzing the data in the table only four
of the nine XACML policies are evaluated by all mu-
tated PDPs set. Specifically, for the first, second, sixth
and seventh policies listed in the Table, only the test
suite derived by the Multiple Combinatorial strategy
is able to execute all the mutated PDPs; for the last
policies neither of the two test suites is able to exe-
cute all the mutated PDPs.

Table 3: Number of Distinct MutatedPDP Evaluated by
XACML Policy and Strategy.

Xacml Policy # of Distinct MutatedPDP All

XACMET Mulitlple

2 73020419964 2 1540 8030 9570
create-document-policy 2712 8030 10742
demo-11 8030 8030 16060
demo-26 8030 8030 16060
demo-5 8030 8030 16060
read-document-policy 669 8030 8699
read-informationunit-policy 6938 8030 14968
read-patient-policy 8030 8030 16060
Xacml-Nottingham-Policy-1 1389 3442 4831

All 45368 67682 113050

The results reported in this table highlighted an
important criticality for the evaluation of the con-
trolled experiment metrics (Effectiveness and APFD).
Indeed, because there is a difference in the number
of distinct mutated PDPs for the two test suites, the
Hypotheses testing could be invalidated and conse-
quently also the answers to the target RQs. For a fair
experiment and evaluation, it is important to guaran-
tee that both strategies are evaluated using the same
set of mutated PDPs. Therefore, the data sets have
been reduced considering only the minimal common
set of mutated PDPs for each test strategy.

As natural consequence such reduction has also an
impact on the number of executions for the test suites
derived by the XACMET and the Multiple combina-
torial strategies as reported in Table 4. The compar-
ison of the data of this table with those reported in
the previous one (Table 2) shows that the reduction
has the biggest impact on the Multiple Combinatorial
strategy. For the sake of completeness we report, in
Table 5, the percentage of reduction of executions as-
sociated to each XACML policy.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

112

Table 4: Number of Reduced Executions by XACML Pol-
icy and Strategy.

Xacml Policy # of Executions All

XACMET Mulitlple

2 73020419964 2 12320 92400 104720
create-document-policy 13560 32544 46104
demo-11 104390 321200 425590
demo-26 64240 128480 192720
demo-5 128480 674520 803000
read-document-policy 4014 20070 24084
read-informationunit-policy 27752 41628 69380
read-patient-policy 48180 240900 289080
Xacml-Nottingham-Policy-1 38892 22224 61116

All 441828 1573966 2015794

Table 5: % of Reduced Executions by XACML Policy and
Strategy.

Xacml Policy # of Distinct MutatedPDP % of Reduction

XACMET Mulitlple Multiple All

2 73020419964 2 1540 1540 81% 79%
create-document-policy 2712 2712 66% 58%
demo-11 8030 8030 0% 0%
demo-26 8030 8030 0% 0%
demo-5 8030 8030 0% 0%
read-document-policy 669 669 92% 90%
read-informationunit-policy 6938 6938 14% 9%
read-patient-policy 8030 8030 0% 0%
Xacml-Nottingham-Policy-1 1389 1389 60% 35%

ALL 45368 45368 31% 26%

5 RESULTS

According to (Juzgado and Moreno, 2001; Wohlin
et al., 2012), we applied the Paired T-Test to formally
verify the Null Hypothesis with the confidence level
of 95%. This choice was a natural consequence of
the type of design adopted, i.e, the paired comparison.
Following the standard best practices, we decided to
accept a probability of 5% of committing a Type-1-
Error (Wohlin et al., 2012), i.e., the Null Hypothesis
is rejected if the computed p-value is less or equal to
0,05 (al pha = 0.05).

Stating from the data collected we generated the
necessary sample data so as to test each Null Hy-
pothesis formulated in Section 3. In the next subsec-
tions detailed results for each research question are
reported and discussed.

5.1 RQ 1: Effectiveness

As presented in Section 3 the aim of RQ 1 is to An-
alyze Multiple and XACMET Strategies for the pur-
pose of evaluation with respect to their test suite ef-
fectiveness from the point of view of the researcher
in the context of XACML PDP testing without con-
straints (i.e., considering the whole test suite gener-

ated).
A general attribute for the evaluation of the quality

of a test cases generation strategy is its effectiveness,
defined in terms of number (or percentage) of mutated
PDPs killed. Therefore the effectiveness is calculated
as:

E f f ectiveness =
#mutatedPDPsKilled

#mutatedPDPs

It is important to remark that in order to correctly
compute this measure the number of distinct killed
mutants by each strategy and on each policy must be
considered. The samples relative to the effectiveness
of Multiple Combinatorial and XACMET test strate-
gies for Null Hypothesis testing (H0E f f) are reported
in Table 6 (columns 2 and 3). In particular, the up-
per part of the table reports the samples associated to
each test cases generation strategy, while the lower
part reports some statistical information of each sam-
ple. Both the strategies have a similar behaviour: the
test suites are able to kill less than 20% of the mutated
PDPs.

Table 6: RQ 1: Effectiveness and RQ 2: Size.

Xacml Policies Subjects Effectiveness Size

Multiple XACMET Multiple XACMET

2 73020419964 2 2,14 13,57 60 9
create-document-policy 15,30 14,93 16 5
demo-11 8,78 8,89 40 13
demo-26 7,67 8,97 16 8
demo-5 9,18 9,14 84 16
read-document-policy 19,88 19,43 30 6
read-informationunit-policy 8,59 8,91 6 4
read-patient-policy 7,68 8,79 30 6
Xacml-Nottingham-Policy-1 19,65 19,65 16 18

Samples Statistics

N 9 9 9 9
Missing Count 0 0 0 0
Mean 10,987 12,4766 33,1111 9,4444
Standard Deviation 5,988 4,6064 24,9822 5,0525
Standard Error Mean 1,996 1,5355 8,3274 1,6841

This informal observation is confirmed also by the
results of the Paired T-test associated to H0E f f (Ta-
ble 7, column 2).

Because the p-value obtained is 0,2705 > 0.05,
from the sample considered there is no difference
from the point of view of effectiveness between the
two test strategies.

For sure, the low values of fault detection effec-
tiveness obtained in this experiment are not encour-
aging for any kind of test strategy. However from
a deeper analysis we highlighted the two following
main reasons.

First, the choice of XACML policies: these are
real ones, therefore they contain the mostly used func-
tionalities and constructs. They are not artificially de-
veloped for testing objective; therefore, they are not
a complete representation of the XACML policy pop-

Assessing Testing Strategies for Access Control Systems: A Controlled Experiment

113

ulation. However, here the target is to asses the ef-
fectiveness of the test strategy on the few functions,
data types, XACML elements that are currently used
in the practice, so to focus as much as possible the
testing activity on the most critical aspects.

The second reason concerns the mutation oper-
ators adopted. The operators implemented in the
framework for the generation of mutated PDPs are the
standard ones and are applicable to any kind of Java
program. They do not consider the peculiarities of the
XACML language and therefore could not be targeted
by the XACML requests used as a tests input.

Thanks to this analysis we were able to discover
two possible important improvements for the imple-
mented testing framework as well as precious hints
for future research activity in improving the mutation
operators set and test strategy definitions.

5.2 RQ 2: Size

As presented in section 3, the aim of the RQ 2 is to
Analyze Multiple and XACMET Strategies for the
purpose of evaluation with respect to their cost in
terms of number of test cases generated from the
point of view of the researcher in the context of bud-
get programming.

An important aspect for the selection of a test
cases generation strategy is its cost evaluated in terms
of: the time for the test cases execution and the time
necessary for the debugging activity. Supposing that
each test case has potentially the same impact on the
overall testing effort, the execution time becomes di-
rectly connected with the number of test cases exe-
cuted: i.e., the size of a test suite represents also its
cost.

The samples relative to the sizes of Multiple
Combinatorial and XACMET test strategies for Null
Hypothesis testing (H0Size) are reported in Table 6
(columns 4 and 5). In particular, the upper part of
the table reports the samples associated to each test
cases generation strategies, while the lower part re-
ports some statistical information of each sample.

Except for Xacml-Nottingham-Policy-1 policy,
XACMET strategy generates smaller test suites with
respect to those generated by Multiple combinato-
rial. Considering the size metric, the test suites of
XACMET cost about 70% less than those of Multiple
Combinatorial one, but reaching the same quality in
terms of errors found or mutants killed.

This result is formally confirmed by the Paired T-
test associated to H0Size and illustrated in Table 7, col-
umn 3. The p-value obtained (0,0253 < 0.05) sug-
gests, rejecting the Null Hypothesis H0Size, of no dif-
ference from the point of view of the size between the

Table 7: Paired T-Test: RQ 1 (Effectiveness) and RQ
2(Size).

RQs RQ 1 RQ 2

Label Multiple - XACMET

t -1,1838 2,7426
df 8 8
p-value (2-tailed) 0,2705 0,0253
Mean -1,4896 22,6667
Standard Deviation 3,7749 24,7942
Standard Error Mean 1,2583 8,2647
CI (Lower Bound) -4,3913 3,6082
CI (Upper Bound) 1,412 41,7251

two test strategies. Therefore we can conclude that the
XACMET strategy outperformed Multiple strategy in
terms of cost.

5.3 RQ 3: APFD

As presented in section 3 the aim of RQ 3 is to An-
alyze Multiple and XACMET Strategies for the pur-
pose of evaluation with respect to their effectiveness
in terms of APFD from the point of view of the re-
searcher in the context of interruption of XACML
PDP testing activity.

For unexpected time constraints or budgets reduc-
tion reasons, the testing activity could be interrupted
before its overall completion. In this case, not all the
test case could be executed with a consequent risk for
the final quality and efficiency of the product devel-
oped.

In this case, the standard metrics adopted for mea-
suring such a risk is the APFD metric, which is calcu-
lated by taking the weighted average of the percent-
age of faults detected during the execution of the test
suite. It is formally defined as follows (Elbaum et al.,
2002):

APFD =
∑

n−1
i=1 Fi

n× l
+

1
2n

where, n is the number of test cases in the test suite T,
l is the number of faults, and Fi is the number of faults
detected by at least one test case among the first i test
cases in T.

By construction, APFD values range from 0 to
1; higher values imply faster (better) fault detection
rates. Thus APFD is commonly used to evaluate the
prioritization techniques because it is able to estimate
the speed with which an ordered test suite can reach
the maximum number of discovered faults. In other
words, it is the measure of how quickly the faults are
detected by a testing strategy. Improving the rate of
fault detection can have an impact on the testing cost
and effort: software engineers may locate and correct-
ing faults earlier in advance and better evaluate the

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

114

risk of test activity interruption (Elbaum et al., 2002;
Bertolino et al., 2015).

Since the APFD measure is connected to the con-
cept of (ordered) test suites having the same cardinal-
ity, its application in this experiment requires that the
number of XACML requests generated by the Multi-
ple Combinatorial and XACMET test strategy is the
same. For this, the following corrective actions have
been applied:
Test suite size and requests selection the cardinality

N of the test suite has been fixed to the minimum
one between the values of the Multiple Combina-
torial and XACMET test strategy and the N test
cases randomly selected among those available.

Prioritize the test cases each reduced test suite has
been ordered in terms of mutated PDPs killed, so
to assure the optimal fault detection effectiveness
of each set.

APFD calculation for each ordered test suite the
APFD has been calculated.
Considering in detail the Prioritize the test cases

action, the technique used, called mutation-based
heuristic, is a greedy-optimal selection of test cases
computed on the mutation coverage. The heuristic is
a sub-optimal algorithm, since it orders the test cases
according to the cumulative number of different mu-
tants killed. For implementing the selected heuris-
tic the mutated PDPs killed by each test case have
been organized into a matrix (request, mutated PDPs)
where each cell(i, j) is equal to 1 if the i-th request
kills the j-th mutated PDP, and 0 otherwise.

Informally, the algorithm for implementing the
mutation-based heuristic works as follows:

1. it calculates the number of killed PDPs for each
request;

2. it selects the request s.t. the number of killed
PDPs is maximum;

3. it removes the request and the mutated PDPs
killed by such request from the matrix;

4. it repeats the steps 1-3 until all requests are se-
lected.

To avoid experimental bias, the above steps have
been repeated ten times and the APFD computed.

The samples relative to the APFD of Multiple
Combinatorial and XACMET test strategies for Null
Hypothesis testing (H0APFD) are reported in Table 8
(columns 2 and 3). In particular the upper part of
the table reports the samples associated to each test
case generation strategies, while the lower part reports
some statistical information of each sample. The re-
sults of the Paired T-test associated to H0APFD are il-
lustrated in Table 9. Because the p-value obtained is

Table 8: RQ 3: APFD.

Xacml Policies Subjects APFD

Multiple XACMET

2 73020419964 2 0,932588598 0,9159689
create-document-policy 0,843173312 0,876790123
demo-11 0,956210668 0,953673777
demo-26 0,931931707 0,917708333
demo-5 0,964039803 0,965003406
read-document-policy 0,874445036 0,905128205
read-informationunit-policy 0,779981164 0,849919094
read-patient-policy 0,85009274 0,893767705
Xacml-Nottingham-Policy-1 0,980102041 0,978416605

Samples Statistics

N 9 9
Mean 0,9014 0,9174
Standard Deviation 0,0676 0,0422
Standard Error Mean 0,0225 0,0141

Table 9: Paired T-Test: RQ 3(APFD).

RQs RQ 3

Label XACMET - Multiple
t 1,6135
df 8
p-value (2-tailed) 0,1453
Mean 0,016
Standard Deviation 0,0297
Standard Error Mean 0,0099
Confidence Interval Probability 0.95
Confidence Interval of the Difference (Lower Bound) -0,0069
Confidence Interval of the Difference (Upper Bound) 0,0388

0,1453 > 0.05, from the sample considered there is
no difference from the point of view of the APFD be-
tween the two test strategies, i.e., XACMET and Mul-
tiple Combinatorial have the same velocity in reach-
ing their effectiveness.

6 RELATED WORK

The work presented in this paper spans over two main
research directions: (1) XACML based test gener-
ation strategies and (2) modeling and supporting of
controlled experiment in the context of access control
systems.

XACML based Tests Generation. Considering
the automated test cases generation, solutions have
been proposed for testing either the XACML pol-
icy or the PDP implementation (Bertolino et al.,
2014; Bertolino et al., 2013b). Among them, the
most referred ones use combinatorial approaches
for test cases generation. Specifically, the X-
CREATE tool (Bertolino et al., 2013b) and the Tar-
gen tool (Martin and Xie, 2006) generate test in-
puts using combinatorial approaches of the XACML
policies values and the truth values of independent

Assessing Testing Strategies for Access Control Systems: A Controlled Experiment

115

clauses of policy values, respectively, whereas the
work in (Pretschner et al., 2008) applies combinato-
rial analysis to the elements of the model (role names,
permission names, context names) to derive test cases.

Alternatively, the Cirg approach (Martin and Xie,
2007) applies change impact analysis for test case
generation starting from policy specification. Specifi-
cally, it provides a framework able to derive test cases
as counterexamples that evidence semantic difference
between two different versions of the policy under
test.

Other approaches leverage existing symbolic ex-
ecution techniques for generating test cases. Specifi-
cally, in (Li et al., 2014), first the access control policy
under test is converted into semantically equivalent C
Code Representation (CCR). Then, the CCR is sym-
bolically executed to generate test inputs.

Differently from the above approaches, the work
in (Daoudagh et al., 2019b) proposes the XACMET
strategy based on the expected behavior of an
XACML-based PDP. XACMET models the expected
behaviour of the evaluation of a given XACML policy
as a labeled graph and guarantees the full path cover-
age of such graph. The test cases generated are used
only for the PDP testing purposes. The main benefits
of XACMET deal with i) the derivation of XACML
requests that explicitly take into account the seman-
tics of XACML functions as well as the policy and
rule combining algorithms; ii) the derivation for each
test request of its expected verdict.

In the controlled experiment presented in this
paper, we aim to compare the Multiple Combina-
torial strategy implemented into X-CREATE tool
(Bertolino et al., 2013b) and the XACMET strat-
egy (Daoudagh et al., 2019b) in terms of effective-
ness, size and APFD.

Supporting Controlled Experiment. Empirical
validations play a key role in the evaluation of a soft-
ware system. Validation in software engineering dis-
cipline, as in other research fields, relies on build-
ing different models of this discipline, i.e., modeling
the objects of the domain, the processes manipulating
the objects, the relations between processes and ob-
jects (Wohlin et al., 2012). The authors of (Wohlin
et al., 2012) give first an overview of empirical strate-
gies such as surveys, case studies, experiments and
then define the main steps of experiment process such
as scoping, planning, operation, analysis and interpre-
tation, presentation and package.

The work in (Briand and Labiche, 2004) discusses
specific challenges and issues of performing empiri-
cal studies with software testing techniques whereas
the authors of (Do et al., 2005) identify two main

complementary classes of empirical studies addressed
in software testing: case studies (Runeson and Höst,
2008) and controlled experiments (Jedlitschka and
Pfahl, 2005).

Controlled experimentation in software testing
leverages numerous software artifacts, including for
instance different versions of software systems, test
suites, test object, fault data, mutated software. Ob-
taining such artifacts and organizing them in an envi-
ronment able to support controlled experimentation is
a difficult task.

The work in (Do et al., 2005; Do et al., 2004)
presents first a survey of papers on testing that pro-
vide empirical studies identifying the main challenges
of experimentation in software testing. These identi-
fied challenges are then used for designing and con-
structing an extensible infrastructure able to support
controlled experimentation with software testing and
regression testing techniques. This infrastructure pro-
vides guidelines for object selection, organization,
and setup processes with the aim of reducing the costs
of executing and replicating controlled experiments as
well as aggregating results across experiments.

In this paper, we aim to leverage the advantages
of the controlled experiments in the context of access
control by defining and executing a controlled exper-
iment for the evaluation of two test cases generation
strategies adopted in literature.

7 DISCUSSION AND
CONCLUSIONS

Automation and replication are two important aspects
for the assessment of the effectiveness of different
testing strategies and key factors for the overall testing
process. Thus, the target of the paper: defining and
executing a controlled experiment for the compari-
son of two test cases generation strategies, specifically
Multiple Combinatorial and XACMET approach, in
the context of access control.

According to the analysis and results in the pre-
sented experiment, the two strategies have the same
effectiveness (RQ1) and behaviour in terms of APFD
(RQ3), while they are significantly different in terms
of cardinality of the test suites (RQ2), and therefore
in their cost. This means that in case of budgets or
effort constraints, because both of the test strategies
provided the same performance in terms of fault de-
tection, applying the XACMET approach could be a
winning solution for reducing testing time and guar-
anteeing the same product quality.

A crucial aspect emerged during the comparative
experiment analysis, that has never been considered

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

116

before in the literature related to the assessment of
XACML based systems: during the test suite execu-
tion, there is the possibility that different sets of dis-
tinct Mutated PDPs can be executed by different test
strategies. Ignoring such data evidence and compar-
ing the test strategies just in terms of effectiveness or
APFD could really produce invalid conclusions and
therefore wrong test strategy selection. By leveraging
XMF and the data collected during the experiment ex-
ecution, the mitigation of such a risk was possible and
a correct evaluation provided.

Concerning the validity of the experiment, i.e., the
amount of confidence in the results, the important key
factors are Subjects, Object and Parameters of the ex-
periment. Here below the strategies used to minimize
the threats to validity are described.

With respect to confidence in the results, the con-
trolled experiment used data and measurements that
satisfy the principles of independence, homogeneity
and normality.

With respect to internal validity the crucial points
are: the policy used, the PDP engine selected and the
tool integrated for the generation of the mutants set.
Concerning the Subject of the experiment, the poli-
cies included in the XMF framework are a good rep-
resentative of real world XACML Policies, because
they contain most of the constructs and functionalities
actually used in the practice. However different poli-
cies, like for instance those of XACML conformance
test suite, may produce different results. The Object
of the experiment, i.e., the Sun PDP implementation
integrated in the XMF framework, is one of the most
adopted in access control systems and therefore its
quality and performance are well established. How-
ever, different XACML-based implementations could
be considered. Finally, considering the Parameter of
the experiment, i.e., the tool integrated for the deriva-
tion of the mutants set, we included the already ex-
isting µJava tool because it is one of the most widely
used in object oriented environment. Previous works
guarantee that its performance can be comparable to
others available, however it could be possible that
other mutation tools may produce different results.

With respect to external validity, we compared
two test strategies: Multiple Combinatorial test strat-
egy, provided by X-CREATE, which is one of the
most referred in the context of access control systems,
and an innovative one, the XACMET test strategy,
so as to have elements of comparable performance.
Other strategies could have been considered and dif-
ferent results provided, but the purpose was only to
show the use of controlled experiment for test strat-
egy comparison and not to select the best one.

For future work, we plan to generalize our con-

trolled experiment by considering different subjects,
for instance the conformance test suite, different ob-
jects, i.e., different PDPs, and extend the set of con-
sidered dependent variables. Moreover, we plan to
define and perform further controlled experiments in
the context of access control for evaluating other test-
ing techniques, for mutation generation or test suites
reduction or prioritization.

ACKNOWLEDGEMENTS

This work is partially supported by CyberSec4Europe
Grant agreement ID: 830929.

REFERENCES

(2019). Fedora Commons Repository Software. http:
//fedora-commons.org/.

Basili, V. R. and Rombach, H. D. (1988). The tame
project: towards improvement-oriented software envi-
ronments. IEEE Transactions on Software Engineer-
ing, 14(6):758–773.

Bertolino, A., Daoudagh, S., Kateb, D. E., Henard, C.,
Traon, Y. L., Lonetti, F., Marchetti, E., Mouelhi, T.,
and Papadakis, M. (2015). Similarity testing for ac-
cess control. Information and Software Technology,
58:355 – 372.

Bertolino, A., Daoudagh, S., Lonetti, F., and Marchetti, E.
(2012a). Automatic XACML Requests Generation for
Policy Testing. In Proc. of ICST, pages 842–849.

Bertolino, A., Daoudagh, S., Lonetti, F., and Marchetti, E.
(2012b). Modelling and Testing of XACML policies.
In 2012-TR-010.

Bertolino, A., Daoudagh, S., Lonetti, F., and Marchetti., E.
(2013a). XACMUT: XACML 2.0 Mutants Generator.
In Proc. of 8th International Workshop on Mutation
Analysis, pages 28–33.

Bertolino, A., Daoudagh, S., Lonetti, F., and Marchetti, E.
(2018). An automated model-based test oracle for ac-
cess control systems. In Proceedings of the 13th In-
ternational Workshop on Automation of Software Test,
AST@ICSE 2018, Gothenburg, Sweden, May 28-29,
2018, pages 2–8.

Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Mar-
tinelli, F., and Mori, P. (2014). Testing of polpa-
based usage control systems. Software Quality Jour-
nal, 22(2):241–271.

Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., and
Schilders, L. (2013b). Automated testing of extensible
access control markup language-based access control
systems. IET Software, 7(4):203–212.

Briand, L. and Labiche, Y. (2004). Empirical studies of soft-
ware testing techniques: Challenges, practical strate-
gies, and future research. SIGSOFT Softw. Eng. Notes,
29(5):1–3.

Assessing Testing Strategies for Access Control Systems: A Controlled Experiment

117

Daoudagh, S., Lonetti, F., and Marchetti, E. (2019a). A
framework for the validation of access control sys-
tems. In Saracino, A. and Mori, P., editors, Proceed-
ings of the 2nd International Workshop on Emerging
Technologies for Authorization and Authentication.

Daoudagh, S., Lonetti, F., and Marchetti, E. (2019b).
XACMET: XACML Testing & Modeling. Software
Quality Journal.

Do, H., Elbaum, S., and Rothermel, G. (2004). Infrastruc-
ture support for controlled experimentation with soft-
ware testing and regression testing techniques. In Em-
pirical Software Engineering, 2004. ISESE’04. Pro-
ceedings. 2004 International Symposium on, pages
60–70. IEEE.

Do, H., Elbaum, S., and Rothermel, G. (2005). Supporting
controlled experimentation with testing techniques:
An infrastructure and its potential impact. Empirical
Software Engineering, 10(4):405–435.

Elbaum, S., Malishevsky, A. G., and Rothermel, G. (2002).
Test case prioritization: A family of empirical stud-
ies. IEEE Transactions on Software Engineering,
28(2):159–182.

Hu, C. T., Ferraiolo, D. F., Kuhn, D. R., Schnitzer, A., San-
dlin, K., Miller, R., and Scarfone, K. (2019). Guide
to attribute based access control (abac) definition and
considerations [includes updates as of 02-25-2019].
Technical report.

Jedlitschka, A. and Pfahl, D. (2005). Reporting guidelines
for controlled experiments in software engineering. In
Empirical Software Engineering, 2005. 2005 Interna-
tional Symposium on, pages 10–pp. IEEE.

Jin, X., Krishnan, R., and Sandhu, R. (2012). A unified
attribute-based access control model covering dac,
mac and rbac. In Data and Applications Security
and Privacy XXVI, pages 41–55, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Just, R. (2014). The major mutation framework: Efficient
and scalable mutation analysis for java. In Proceed-
ings of the 2014 international symposium on software
testing and analysis, pages 433–436. ACM.

Juzgado, N. J. and Moreno, A. M. (2001). Basics of soft-
ware engineering experimentation. Kluwer.

Li, Y., Li, Y., Wang, L., and Chen, G. (2014). Automatic
xacml requests generation for testing access control
policies. In SEKE, pages 217–222.

Ma, Y.-S., Offutt, J., and Kwon, Y.-R. (2006). MuJava: a
mutation system for Java. In Proceedings of the ICSE,
pages 827–830.

Madeyski, L. and Radyk, N. (2010). Judy - a mutation test-
ing tool for java. IET Software, 4(1):32–42.

Martin, E. and Xie, T. (2006). Automated test generation
for access control policies. In Supplemental Proc. of
ISSRE.

Martin, E. and Xie, T. (2007). Automated test generation for
access control policies via change-impact analysis. In
Proc. of SESS, pages 5–11.

Martin, E., Xie, T., and Yu, T. (2006). Defining and measur-
ing policy coverage in testing access control policies.
In Proc. of ICICS, pages 139–158.

Mouelhi, T., Fleurey, F., and Baudry, B. (2008). A generic
metamodel for security policies mutation. In Proc. of
ICSTW, pages 278–286.

OASIS (22 Jan 2013). eXtensible Access Con-
trol Markup Language (XACML) Version 3.0.
http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-os-en.pdf.

Pretschner, A., Mouelhi, T., and Le Traon, Y. (2008).
Model-based tests for access control policies. In Proc.
of ICST, pages 338–347.

Runeson, P. and Höst, M. (2008). Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical Software Engineering, 14(2):131.

Sandhu, R. S. and Samarati, P. (1994). Access control: prin-
ciple and practice. IEEE Communications Magazine,
32(9):40–48.

Schuler, D. and Zeller, A. (2009). Javalanche: Efficient mu-
tation testing for java. In Proceedings of ESEC/FSE,
pages 297–298, New York, NY, USA. ACM.

seung Ma, Y., Offutt, J., and Kwon, Y. R. (2005). Mujava
: An automated class mutation system. Journal of
Software Testing, Verification and Reliability, 15:97–
133.

Sun Microsystems (2006). Sun’s XACML Implementation.
http://sunxacml.sourceforge.net/.

TAS3 Project. Trusted Architecture for Securely Shared
Services. https://cordis.europa.eu/project/rcn/85331/
results/en.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2012). Experimentation in
software engineering. Springer Science & Business
Media.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

118

