
Multi-level Modeling without Classical Modeling Facilities

Ferenc A. Somogyi1 a, Zoltán Theisz2 b, Sándor Bácsi1 c, Gergely Mezei1 d

and Dániel Palatinszky1 e

1Department of Automation and Applied Informatics, Budapest University of Technology and Economics,
Muegyetem rkp. 3., Budapest, Hungary

2Evopro Systems Engineering Ltd., Budapest, Hungary

Keywords: Multi-level Modeling, Multi-layer Modeling, Potency Notion.

Abstract: Multi-level modeling is a modeling paradigm that has been becoming more and more popular in recent years.
The ultimate goal of multi-level modeling is to reduce accidental complexity that may arise from modeling
methodologies that are not suitable to describe multi-level models. However, currently, most multi-level mod-
eling approaches are dependent on classical modeling facilities, like OMG’s four-level modeling architecture.
The potency notion is one of the most widely-used enablers of multi-level modeling that governs the depth
model elements can be instantiated at. In this paper, we propose an alternative implementation to the first in-
carnation of the potency notion, the so-called classic potency notion. Its multi-level nature is mapped into our
multi-layer modeling framework, which liberates it from direct dependence on classical modeling facilities.
We examine the proposed mapping in details and also demonstrate it via a simple case study. This work is
aimed as the first step towards a generic multi-level modeling framework where researchers can freely exper-
iment with novel multi-level modeling ideas and can share and compare their results without worrying about
any sorts of tool dependence.

1 INTRODUCTION

Multi-level modeling (Atkinson and Kühne, 2001) is
a well-established paradigm within the realm of mod-
ern modeling approaches based on the initial core
ideas of OMG’s Model Driven Architecture (MDA)
(MDA, 2001). Multi-level modeling had been origi-
nally conceived as a technical extension to go beyond
the strictly preset four-level meta-model layering pre-
scribed by OMG’s MDA blueprint and related techni-
cal documentation. OMG does not seem to fully em-
brace multi-level modeling and give its official recog-
nition to acknowledge full membership within the
standardized modeling facilities. Thus, it has mostly
remained and has been developed inside the model-
ing research community. Moreover, in recent years,
it has enjoyed a renaissance by the rediscovery of
some of its most successful techniques, such as the
potency notion (Atkinson and Kühne, 2001; Kühne*,

a https://orcid.org/0000-0001-5491-4412
b https://orcid.org/0000-0002-0222-867X
c https://orcid.org/0000-0002-4814-6979
d https://orcid.org/0000-0001-9464-7128
e https://orcid.org/0000-0002-6168-3963

2018). Both theoretical and practical interest in ap-
plying multi-level modeling to real case studies has
been growing not only within, but also beyond the
modeling research community. Therefore, we believe
that the potential of thorough analysis in an effec-
tive research playground for multi-level modeling and
its foundations is beneficial to the academic research
community and – in the longer term – for the industry
as well.

Our motivation of writing this paper has been
mostly influenced by our interest to look for alter-
natives of doing multi-level modeling in Orthogo-
nal Classification Architecture (OCA) (de Lara et al.,
2014). In OCA, entites have two orthogonal classifi-
cal dimensions: the ontological dimension defined by
the modeled domain, and the linguistic dimension de-
fined by the modeling structure. In our understand-
ing, multi-level modeling in OCA is mainly a model-
ing paradigm that is supposed to relax the constraints
of OMG’s four-level modeling stack by the introduc-
tion of additional modeling levels. Hence, as an add-
on supplement to legacy meta-modeling, multi-level
modeling requires every facility of OMG’s model-
ing infrastructure: (1) object-oriented modeling con-
cepts like inheritance and (2) standardized tool sup-

Somogyi, F., Theisz, Z., Bácsi, S., Mezei, G. and Palatinszky, D.
Multi-level Modeling without Classical Modeling Facilities.
DOI: 10.5220/0008973503930400
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 393-400
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

393



port for OMG-style modeling with predefined meta-
levels. Therefore, OCA can be regarded as a pe-
culiarly constructed co-architecture to OMG’s MDA
stack. Namely, OCA integrates multi-level model-
ing into the standard linguistic meta-level setup of
OMG’s MDA framework by the presumption of the
so-called ontological instantiation concept. The main
reason of OCA’s success is the fact that its ontologi-
cal instantiation assumes or prescribes no implicit se-
mantics in OMG’s MDA design, which positions it
clearly against the linguistic instantiation that does re-
quire it. Hence, state-of-the-art MDA tools may be
capable of supporting OCA out-of-the-box. Never-
theless, the orthogonal coupling of the two instanti-
ations also has consequences: on the positive side,
OCA can easily provide smooth integration of multi-
level modeling into the standard modeling frame-
work; on the negative side, OCA’s particular inter-
pretation of multi-level modeling is not semantically
defined within OMG’s MDA meta-modeling frame-
work. Thus, the semantics of ontological instantiation
must be encoded, mainly in an ad-hoc manner, inside
the various modeling tools. Therefore, OCA’s multi-
level modeling is by its very nature tool dependent
without offering any encompassing theory to reunite
the particular implementation flavours of similar or
same multi-level modeling concepts. A good compar-
ison to observe the divergence in semantics of similar
concepts in ontological instantiation is to be found in
(Gerbig et al., 2016).

By analyzing some of the core concepts of OCA’s
multi-level modeling, it may seem almost as obvious
that the potency notion can be regarded as the princi-
pal holder of semantics for the definition of ontolog-
ical levels via deep instantiation. Indeed, the potency
notion introduces for example an abstract counter that
is to be attached to the core OMG meta-modeling
entities, that is, to nodes, fields, and edges. Thus,
the semantics of the potency notion defines thereby
the required layering of ontological levels. Based
on the orthogonal design, OCA only had to rely on
OMG’s linguistic instantiation for its compliant func-
tionality within MDA, which ultimately resulted in a
theoretical-practical hybrid solution. However, it also
meant that there was no purely abstract implementa-
tion of the potency notion semantics without it being
bundled to legacy modeling tools or languages.

In this paper, we intend to report on an alternative
implementation of the original (classic) potency no-
tion (Atkinson and Kühne, 2001) specification within
our multi-layer modeling framework not based on
OCA. The framework only plays the role of an ex-
ecutable playground for specifying the logic of the
potency notion without following a rigid specifica-

tion hard-coded in a tool. Therefore, we think that
our re-implementation of the classic potency notion
clearly demonstrates how legacy tool-dependence can
be avoided. Namely, we relied only on our neutral in-
terpretation of deep instantiation, on its abstract math-
ematical level, our modeling tool is based on. Al-
though the existence of multiple modeling layers is
supported by our formalism, the semantics of those
modeling layers is neutral from the point of view of
the potency notion since it differs from that of the lev-
els potency notion does require. Thus, the potency no-
tion had to be encoded (modeled) through an explicit
semantics mapping between the underlying deep in-
stantiation by multi-layering and the specified con-
straints defined on the functionality of the potency
notion. Although there is no explicitly required de-
pendency on classical modeling facilities in our pro-
posal, for the reason of practical model validation a
framework implementation has also been created1.

The paper is structured as follows. In Section 2 we
discuss the concept and brief history of the potency
notion. We also introduce our multi-layer modeling
framework. Section 3 contains an explicit specifica-
tion of the classic potency notion. Section 4 presents
the mapping of multi-level concepts into our multi-
layer modeling framework in reasonable detail, and
also includes a case study. Finally, Section 5 con-
cludes the paper by highlighting future work in this
research field.

2 BACKGROUND AND RELATED
WORK

2.1 The Potency Notion

The main goal of multi-level modeling is to reduce ac-
cidental complexity (Atkinson and Kühne, 2008) by
using an unlimited number of meta-levels to assign
the right amount of abstraction details to every level.
Accidental complexity refers to parts of the solution
that are needed to express its multi-level nature, in-
stead of describing the domain in question. Using the
Item Description pattern to describe multiple domain
levels in object-oriented languages is an example of
such accidental complexity (Atkinson and Kühne,
2008). Levels have been present for a long time in
modeling, dating back to the Unified Modeling Lan-
guage (UML) (Fowler and Scott, 2000). Kühne ar-
gues that well-defined levels ”safeguard against ill-
formed models” (Kühne, 2018), which means that it is
easier to create valid, well-formed models. Atkinson

1https://www.dmla.hu

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

394



and Kühne compare this concept to strongly-typed
programming languages, while approaches that ”ig-
nore the fact that there are levels” are akin to weakly-
typed languages (Atkinson et al., 2014). They call the
former level-adjuvant, and the latter level-blind ap-
proaches.

The basic enablers of most level-adjuvant multi-
level modeling approaches are i) the notion of clab-
jects (Atkinson and Kühne, 2000) and ii) the so-called
potency notion (Atkinson and Kühne, 2001). Clab-
jects are entities that have a class and object facet at
the same time, thus, they can behave as either of the
two. This makes it possible to instantiate elements at
any level in the model. The potency notion is a mech-
anism responsible for governing deep instantiation,
which is the mechanism of instantiation across multi-
ple levels. In the context of this paper, we are mostly
focusing in the original version of potency (Atkinson
and Kühne, 2001), often referred to as ”classic po-
tency” (Kühne*, 2018). Our long-term goal is to im-
plement all the related concepts of the potency notion
in order to harmonize the different solutions by iden-
tifying their practical strengths and weaknesses.

In the interpretation of the classic potency notion,
the potency value is an integer number given to ev-
ery model element (nodes, edges, and fields) that de-
fines the depth to which a model element can be in-
stantiated (Atkinson and Kühne, 2001). Every time a
model element is instantiated, its potency value (and
its level) is decreased by one. The potency value of a
model element must always be less or equal than its
level. This allows the creation of model elements that
reach their fully concretized state (a potency value of
0) at a level higher than 0. Elements with a potency
value of 0 cannot be instantiated further. Fields (fea-
tures of nodes) are differentiated based on whether
they can only get a value when their potency reaches
0 (called single fields), or they get a value every time
their potency decreases (called dual fields).

Inheritance is an important concept in both the
object-oriented and modeling world. While the pa-
per describing the classic potency notion (Atkinson
and Kühne, 2001) does not elaborate on inheritance
much, we felt this was too important a concept to be
left out of our initial work. Therefore, we took inspi-
ration from later work in this regard (Kühne*, 2018).
This extended classic potency notion (extended with
inheritance) is explicitly specified in Section 3.

Using the two main concepts of clabjects and the
potency notion, model elements can receive features
from more than one level above them, which is re-
ferred to as deep instantiation (Atkinson and Kühne,
2001). This stands in contrast with the shallow instan-
tiation mechanism of UML and other MOF-based ar-

Figure 1: Online store domain as a multi-level model.

chitectures (MOF, 2005), as instantiation in this case
only covers two modeling levels at a time. Among
the main motivations of multi-level modeling are i)
the better expressive power of models, and ii) less-
ened complexity of models by eliminating accidental
complexity.

Figure 1 depicts a simple multi-level model using
the classic potency notion. The example was taken
from related work (Kühne and Schreiber, 2007). The
domain in question is an online store that sells differ-
ent products: books and DVD-s. Product types have
a tax rate, and every instance of a product type has
a price. In this online store domain, we can see how
the potency notion governs deep instantiation. The
taxRate feature of the clabject ProductType receives a
value one level below (in clabjects Book and DVD),
while the price feature receives it two levels later.

The concept of clabjects and the potency notion
were introduced in many approaches, for example,
in DeepJava - an object-oriented language extended
to multiple levels - in order to support multi-level
programming (Kühne and Schreiber, 2007). This is
one of the earliest applications of multi-level con-
cepts. DeepJava seemed to be a feasible solution to
multi-level programming, although being based on an
object-oriented language, there was still some acci-
dental complexity left that it aimed to avoid. There
were also some pitfalls with the original potency no-
tion that later variations aimed to improve upon. Var-
ious multi-level modeling approaches emerged in re-
cent years (Atkinson and Gerbig, 2016; de Lara and
Guerra, 2010; Clark and Willans, 2012), and the
potency notion received many alterations, variations
and interpretations over time (Neumayr et al., 2018;
Frank, 2014; Atkinson et al., 2012). These variations
were discussed in related work (Atkinson et al., 2014;
Kühne*, 2018; Kühne, 2018), and is not the scope of
this paper to elaborate upon.

Multi-level Modeling without Classical Modeling Facilities

395



2.2 Dynamic Multi-layer Algebra

In this section, we summarize the most important
features of Dynamic Multi-Layer Algebra (DMLA)
(Urbán et al., 2018; Urbán et al., 2017). DMLA is a
multi-layer modeling framework that consists of two
main parts: (i) the Core containing the formal def-
inition of modeling structures and its management
functions; (ii) the Bootstrap having a set of essential
reusable entities of any modeled domains in DMLA.

The Core contains the formal mathematical defi-
nition how each model entity is defined as a 4-tuple
(unique ID, meta-reference, attributes and concrete
values). Beyond giving the formal definition of the
tuples, the Core also declares some primitive func-
tions that directly manipulate the model, like adding
new model entities or select existing ones. These
mathematical constructs together define the Core of
DMLA, which is interpreted over an Abstract State
Machine (ASM) (Börger and Stärk, 2003). The Boot-
strap (Mezei et al., 2019) is the initially defined set of
tuples needed for meta-modeling constructs and built-
in model elements.

Instantiation in DMLA means gradual constrain-
ing (refinement). Whenever a model entity claims
another entity as its meta, the framework automat-
ically validates if there is indeed a valid instantia-
tion between the two entities. The semantics of valid
instantiation are modeled by the Bootstrap entities.
When an entity is being instantiated, one can decide
which of the slots are being instantiated and which
are merely cloned, that is, being copied to the instance
without any modifications. Besides gradually narrow-
ing the constraints imposed on a slot, DMLA also en-
ables the division of a slot into several instances, thus
fragmenting a general concept into several, more spe-
cific ones. Moreover, it is also possible to omit a slot
completely during the instantiation if it does not vio-
late its cardinality constraint. Similarly to the relation
between an entity and its meta-entity, each slot origi-
nates from a meta-slot defining the constraints it must
take into consideration. These include, but are not
limited to type and cardinality constraints.

The most important entity, ComplexEntity, has a
slot called Children. The cardinality of the slot Chil-
dren allows any number of instances (0..*) of any
practically available type. Since all slots in DMLA
must have a meta, it is not possible to add new fea-
tures to an entity, unless the meta-entity has an appro-
priate meta-slot. The Children slot allows us to extend
entities by adding new slots. If we omit the slot, we
can deny any further introduction of slots into the in-
stances of the given entity.

3 SPECIFICATION OF THE
CLASSIC POTENCY NOTION

In this section, we present the specification of the
classic potency notion as discussed in Section 2. In
some cases, where the original work (Atkinson and
Kühne, 2001) was not clear enough (like in the case of
handling inheritance), we borrowed ideas from later
work (Kühne and Schreiber, 2007; Kühne*, 2018).
These differences can be found when comparing Fig-
ures 1 and 3, and are explained later.

3.1 Level-related Requirements

L1 Levels serve as a logical separation between dif-
ferent model elements (Kühne, 2018). Every
model element (nodes, edges and fields) is as-
signed a level value.

∀ME ∈ ELEMENT S : ∃ME.l (1)

L2 A level value is always greater than or equal to 0.

∀ME ∈ ELEMENT S : ME.l ≥ 0 (2)

L3 The level of a field in a node is always equal to the
level of the node itself.

∀FN ∈ f ields(N) : FN .l = N.l (3)

L4 When an instantiation occurs, the level of the
model element decreases by 1. This means that
the level of an instance is always less than the
level of its meta element by 1.

meta(ME1,ME2) : ME1.l = ME2.l−1 (4)

L5 Cross-level references are not allowed. A cross-
level reference is an edge that runs between two
nodes that are on different levels.

∀E ∈ EDGES : E.N1.l = E.N2.l = E.l (5)

3.2 Potency-related Requirements

P1 Potency governs the depth a model element can be
instantiated. Every model element (nodes, edges
and fields) is assigned a potency value.

∀ME ∈ ELEMENT S : ∃ME.p (6)

P2 A potency value is always greater than or equal to
0.

∀ME ∈ ELEMENT S : ME.p≥ 0 (7)

P3 The potency of a field in a node is always less
than or equal to the potency of the node except if
the node is an abstract node.

∀FN ∈ f ields(N) : FN .p≤ N.p;
N ∈ NODES−ABST RACT (8)

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

396



P4 When an instantiation occurs, the potency of the
model element decreases by 1. This means that
the potency of an instance is always less than the
potency of its meta element by 1.

meta(ME1,ME2) : ME1.p = ME2.p−1 (9)

P5 If the potency of a model element is 0, then it can-
not be instantiated further.

ME1.p = 0 : @ME2 : meta(ME2,ME1) (10)

P6 Abstract nodes have a potency value of 0. There-
fore, they cannot be instantiated, they can only be
inherited from.

NA ∈ ABST RACT : NA.p = 0 (11)

P7 Abstract nodes can only have fields with a po-
tency value greater than 0.

∀FN ∈ f ields(NA) : FN .p > 0;NA ∈ ABST RACT
(12)

P8 Single fields only get a value at potency 0. Dual
fields get a value every time their potency de-
creases.

F.p 6= 0,F ∈ SINGLE : @F.val and
F.p 6= 0,F ∈ DUAL : ∃F.val (13)

P9 When a field gets a potency value of 0, it is omit-
ted from the instance node in the next instantiation
step.

∀F ∈ f ields(M),meta(I,M) : F /∈ f ields(I);
F.p = 0, I,M ∈ NODES (14)

P10 The potency of a model element is always less
than or equal to its level.

∀ME : ME.p≤ME.l (15)

P11 Inheritance is a special edge that always has a
potency of 0 and connects two nodes.

inh(N1,N2).p = 0;N1,N2 ∈ NODES (16)

P12 When inheriting from a node, the meta node of
the descendant has to be the meta node of the par-
ent.

inh(D,P),meta(D,M) : meta(P,M);
D,P,M ∈ NODES (17)

4 MAPPING OF THE CLASSIC
POTENCY NOTION

In this section, we discuss the mapping of the clas-
sic potency notion in our multi-layer modeling frame-
work, DMLA. First, we present the architecture of
the mapping, namely, where the mapping takes place
in the current architecture of DMLA. Next, we dis-
cuss how each of the requirements described in Sec-
tion 3 are satisfied, giving more details on cases where
the mapping is not trivial. Finally, we demonstrate
the mapping of the classic potency notion through a
simple case study. It is important to emphasize that
our mapping solution is devoid of any tool-imposed
limitations since we only rely on the mathematically
backed up validation mechanism of DMLA in order
to implement the semantics of the classic potency no-
tion.

4.1 Mapping Architecture

There were two theoretical options in DMLA on how
to map the classic potency notion onto it: i) by in-
troducing a new Bootstrap and build up a new set of
entities from the ground up, or ii) by introducing a
new stratum of entities that is responsible for the map-
ping between DMLA’s layer and the potency notion’s
level-based semantics. After thorough deliberation,
we decided on the second option, since by reusing the
entities already defined in the standard Bootstrap, it
seemed sufficient to only implement the mapping be-
tween the semantics. Thus, the model validation en-
coded in DMLA entities can also verify the interpre-
tation logic of the mapping itself. The mapping stra-
tum lies directly below the Core and the Bootstrap,
which means that it is only dependent on them. Do-
main models will be able to easily apply the classic
potency notion in DMLA as they are positioned be-
low the mapping stratum. Thus, our choice of map-
ping implementation allowed us to create an effective
mapping infrastructure that can be further extended
by other multi-level modeling concepts.

4.2 Mapping Details

In the following, we describe the mapping of the
classic potency notion based on the specification de-
scribed in Section 3. Figure 2 visually depicts the
mapping from the concepts of the potency notion to
their implementation in DMLA. The top of the fig-
ure depicts the elements of the classic potency notion,
while the bottom shows the structure of the mapping
in DMLA. The slots are shown embedded into the
entities. Meta-slot relationships are represented with

Multi-level Modeling without Classical Modeling Facilities

397



Figure 2: Mapping multi-level concepts in DMLA.

Slot:MetaSlot labels. The different constraints (type,
cardinality, potency, level, and field) are expressed be-
tween curly brackets. As we can see, the basic con-
cepts of nodes and edges are mapped to separate enti-
ties, while fields are mapped to slots in DMLA. While
the internal technicalities of DMLA’s framework are
out of scope of this paper, we believe that we should
not totally disregard them for the sake of better under-
standing of the mapping logic. Thus, we describe the
main concepts of the mapping, but we omit low level
details, such as the syntax of DMLA’s operation lan-
guage. Nevertheless, the complete DMLA solution
can be found on our webpage2. In the following, we
explain the mapping, referencing Section 3 regarding
the satisfied requirements:

• PotencyEntity. The entry point to the mapping
layer, nodes and edges are instantiated from this
entity. Contains level and potency values as slots,
which are mandatory and is of a simple number
type. This partially satisfied requirements [L1,
P1]. Due to the nature of validation in DMLA, the
validation logic defined in this entity validates ev-
ery entity instantiated from it, including nodes and
edges. The validation logic checks basic require-
ments regarding the level and potency values, i.e.,
the aforementioned values must be greater than 0,
or that they decrease by 1 when instantiating, and
so on [L2, L4, P2, P4, P5, P10]. In the valida-
tion code of the PotencyEntity, we also check if
there is a valid instantiation between two entities
regarding their potency values. Namely, we can-
not instantiate from a node with a potency value
of 0 (such as abstract nodes), and that fields with

2https://www.dmla.hu

a potency value of 0 must be omitted from the in-
stance [P6, P9].

• PotencyNode. Maps the concept of nodes from
the classic potency notion. The Children slot is
the new entry point for defining fields in domain
models. Fields are annotated with potency, level,
and the nature of the field (single or dual). Ab-
stract nodes are marked by the IsAbstract flag, and
they are checked to have a potency of 0 in the val-
idation logic [P6]. The validation logic checks i)
if an abstract node only has fields with potency
greater than 0 [P7], and ii) the relationship be-
tween field and node level and potency [L3, P3].

• PotencyEdge. Edges are modeled as entities in
our mapping, since we can apply level and po-
tency to the edges, and we can more easily man-
age cross-level references. Also, it is possible to
model special edges like inheritance more accu-
rately this way, using the flexible validation logic
of DMLA. The PotencyEdge entity has two con-
nected nodes as slots, and validates against cross-
level references (checking the level values of the
edge and its two connected nodes) [L5]. It also
checks if the connected nodes conform to the con-
nected nodes in the meta edge, if there are any.

• Inheritance is a special edge that has a potency
of 0 [P11]. Inheritance is instantiated from Po-
tencyEdge, thus, it behaves like an edge, but has
special constraints. The validation checks that ev-
ery field in the parent must be present in the de-
scendant, and that the descendant must instantiate
the meta of the parent [P12], thus simulating the
concept of inheritance.

• PotencyConstraint. A potency value is assigned
to fields in the form of a constraint [P1]. The vali-
dation logic checks the basic rules for the potency
value, similarly to PotencyEntity [P2, P4, P10].
We also validate that the field gets an assigned
value when it reaches potency 0 [P8].

• LevelConstraint. Behaves similarly to Potency-
Constraint, assigning a level value to fields [L1].
Validation is also similar, checking the basic rules
of level values [L2, L4].

• FieldConstraint contains a simple flag that can
be used to mark a field as single or dual [P8]. The
validation is responsible for checking the assigned
values as described by the classic potency notion
[P8]. It also ensures that once the nature of a field
is defined, it can never be overwritten. The con-
straints from Figure 2 can be found on the Chil-
dren field in PotencyNode, from which every new
field is created.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

398



Figure 3: The extended online store model.

4.3 Case Study

The case study was inspired by examples found in re-
lated work (Kühne and Schreiber, 2007). Figure 3
depicts the online store domain previously seen in
Figure 1, extended with new concepts, which are
as follows. Every ProductType instance (and thier
instances, and so on) have a name. This means
that Book has a defining name (”Book”), while book
instances also have their own name (like ”Moby
Dick”). To realize this, ProductTypes inherit from
NamedNode, which is an abstract node with a potency
value of 0. Its name field is a dual field, which means
that it must receive a new value every time its potency
decreases. Please note that while ProductType could
be an abstract clabject, we chose to remain faithful
to the original example, and left it as non-abstract.
The other extension is that every DVD is based on a
book, which is modeled as an association with a role
name. Every field other than name is single, which
means that they only receive a value when their po-
tency reaches 0. On the middle level, we have the
ProductType instances: Book and DVD. There is an
association between the two (basedOn), which has a
potency value of 1, meaning that it can be instanti-
ated one level below. On the lowest level, we have the
Book and DVD instances: MobyDick DVD is based
on MobyDick Book.

Figure 4 depicts the mapped online store domain
in DMLA. The most significant differences are per-
haps the modeled edges which appear as entities (like
BasedOn). The notation on the figure is deliberate
and is aimed at highlighting the differences compared
to classical modeling facilities. For example, since
there are no explicit levels in DMLA, the levels ap-
pear as they are present in the mapping, namely, as
slots (fields) in the entities. That is a DMLA tech-
nicality and it has nothing to do with the semantics
of the levels. Constraints on the slots are marked be-

Figure 4: Online store domain mapped in DMLA.

tween curly braces, similarly to Figure 4. For exam-
ple, the TaxRate slot in the ProductType node has a
type of Number, a cardinality of 1..1, a potency of 1,
a level of 2, and it is a single field (”S” means single,
”D” means dual). Please note that the validation logic
does not appear in the figure, as it is not part of the
structural mapping, and it closely follows the specifi-
cation presented in Section 3.

5 CONCLUSIONS

Multi-level modeling has a well-established literature
in the modeling research community. In our par-
ticular branch of research, level-adjuvant approaches
show strict level cohesion and segregation principles
(Kühne, 2018), and they mostly rely on the potency
notion as a concrete means of achieving deep instan-
tiation. Due to its relative importance in this regard,
the potency notion had been developed over the years,
with a few variations existing in both theory and prac-
tice today. Hence, in this paper, we discussed a di-
rect mapping between the main concepts of the classic
potency notion and its DMLA representation, which
is our level-blind multi-layer modeling framework.
However, this paper is only the beginning of a series
of research studies which we intend to publish where
our aim is to provide a practical modeling playground
with automatic model validation in order to be able

Multi-level Modeling without Classical Modeling Facilities

399



to better investigate and verify the semantics of many
multi-level modeling concepts. Therefore, in our cur-
rent work, we have implemented the concepts of the
potency notion according to its original definition and
presented how the mapping thereof was encoded in
DMLA. The results are promising for a multi-level
modeling framework to support future research work
such as i) implementing more varieties and interpre-
tations of existing multi-level concepts, and ii) in-
troducing domain-specific languages to adopt level-
adjuvant concepts in DMLA.

ACKNOWLEDGEMENTS

The research has been supported by the European
Union, co-financed by the European Social Fund
(EFOP-3.6.2-16-2017-00013, Thematic Fundamental
Research Collaborations Grounding Innovation in In-
formatics and Infocommunications.

REFERENCES

Atkinson, C. and Gerbig, R. (2016). Flexible deep mod-
eling with melanee. In Modellierung 2016 - Work-
shopband : Tagung vom 02. März - 04. März 2016
Karlsruhe, MOD 2016, volume 255, pages 117–121,
Bonn. Köllen.

Atkinson, C., Gerbig, R., and Kennel, B. (2012). Symbiotic
general-purpose and domain-specific languages. In
Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pages 1269–1272,
Piscataway, NJ, USA. IEEE Press.

Atkinson, C., Gerbig, R., and Kühne, T. (2014). Comparing
multi-level modeling approaches. In CEUR Workshop
Proceedings, volume 1286.

Atkinson, C. and Kühne, T. (2000). Meta-level indepen-
dent modelling. In International Workshop on Model
Engineering at 14th European Conference on Object-
Oriented Programming.

Atkinson, C. and Kühne, T. (2001). The essence of multi-
level metamodeling. In Proceedings of the 4th Inter-
national Conference on The Unified Modeling Lan-
guage, Modeling Languages, Concepts, and Tools,
pages 19–33, Berlin, Heidelberg. Springer-Verlag.

Atkinson, C. and Kühne, T. (2008). Reducing accidental
complexity in domain models. Software & Systems
Modeling, 7(3):345–359.

Börger, E. and Stärk, R. (2003). Abstract State Machines:
A Method for High-Level System Design and Analysis.
Springer-Verlag New York, Inc., 1st edition.

Clark, T. and Willans, J. (2012). Software language engi-
neering with xmf and xmodeler. In Formal and Prac-
tical Aspects of Domain-Specific Languages: Recent
Developments, volume 2, pages 311–340.

de Lara, J. and Guerra, E. (2010). Deep meta-modelling
with metadepth. In Vitek, J., editor, Objects, Mod-
els, Components, Patterns, pages 1–20, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

de Lara, J., Guerra, E., and Cuadrado, J. S. (2014). When
and how to use multilevel modelling. ACM Trans-
actions on Software Engineering and Methodology,
24(2):12:1–12:46.

Fowler, M. and Scott, K. (2000). UML Distilled (2Nd
Ed.): A Brief Guide to the Standard Object Model-
ing Language. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

Frank, U. (2014). Multilevel modeling - toward a new
paradigm of conceptual modeling and information
systems design. Business & Information Systems En-
gineering, 6(6):319–337.

Gerbig, R., Atkinson, C., de Lara, J., and Guerra, E.
(2016). A feature-based comparison of melanee and
metadepth. In Proc. of the 3rd International Workshop
on Multi-Level Modelling co-located with ACM/IEEE
19th International Conference on Model Driven En-
gineering Languages & Systems (MoDELS 2016),
Saint-Malo, France, October 4, 2016., pages 25–34.

Kühne*, T. (2018). Exploring potency. In Proc. of the
21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MOD-
ELS ’18, pages 2–12, New York, NY, USA. ACM.

Kühne, T. (2018). A story of levels. In Proceedings of
MODELS 2018 Workshops, Copenhagen, Denmark,
2018, pages 673–682.

Kühne, T. and Schreiber, D. (2007). Can program-
ming be liberated from the two-level style: Multi-
level programming with deepjava. SIGPLAN Not.,
42(10):229–244.

MDA (2001). OMG: Model Driven Architecture.
https://www.omg.org/mda. Accessed:2019-10-23.

Mezei, G., Theisz, Z., Urbán, D., Bácsi, S., Somogyi, F. A.,
and Palatinszky, D. (2019). A bootstrap for self-
describing, self-validating multi-layer metamodeling.
In Dunaev, D. and Vajk, I., editors, Proceedings of the
Automation and Applied Computer Science Workshop
2019 : AACS’19, pages 28–38.

MOF (2005). OMG: MetaObject Facility.
http://www.omg.org/mof/. Accessed:2019-10-23.

Neumayr, B., Schuetz, C. G., Jeusfeld, M. A., and Schrefl,
M. (2018). Dual deep modeling: multi-level modeling
with dual potencies and its formalization in f-logic.
Software & Systems Modeling, 17(1):233–268.

Urbán, D., Mezei, G., and Theisz, Z. (2017). Formalism
for static aspects of dynamic metamodeling. Peri-
odica Polytechnica Electrical Engineering and Com-
puter Science, 61(1):34–47.

Urbán, D., Theisz, Z., and Mezei, G. (2018). Self-
describing operations for multi-level meta-modeling.
In Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Develop-
ment - Volume 1: MODELSWARD,, pages 519–527.
INSTICC, SciTePress.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

400


