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Abstract: 3D hand pose estimation is a challenging problem in human-machine interaction applications. We introduce 
a simple and effective approach for 3D hand pose estimation in grasping scenarios taking advantage of a low-
cost RGB-D camera. 3D hand pose estimation plays a major role in an environment where objects are handed 
over between the human and robot hand to avoid collisions and to collaborate in shared workspaces. We 
consider Convolutional Neural Networks (CNNs) to determine a solution to our challenge. The idea of 
cascaded CNNs is very appropriate for real-time applications. In the paper, we introduce an architecture for 
direct 3D normalized coordinates regression and a small-scale dataset for human-machine interaction 
applications. In a cascaded network, the first network minimizes the search space, then the second network is 
trained within the confined region to detect more accurate 2D heatmaps of joint’s locations. Finally, 3D 
normalized joints are regressed directly on RGB images and depth maps can lift normalized coordinates to 
camera coordinates.   

1 INTRODUCTION 

In a Human-Machine Interaction (HMI) environment, 
3D pose of the hand is significant. When handing over 
objects between machines like robots and humans, it is 
important to recognize and track the human hand in 
order to avoid collisions and collaboration. For 
grasping objects, in addition to tracking the hand it is 
also important to track the objects. The aim is to find 
free space on the surface of the object to grasp it. Thus, 
the most important information is the position of 
fingers. The robot should not grasp where humans hold 
the object as shown in Figure 1. 3D hand pose tracking 
has many such applications, including sign language, 
virtual reality, and gesture recognition but the building 
blocks of this paper have been motivated for robotics 
applications.  

In the past few years, pose estimation has gained 
significant attention and has been improved, but in a 
human-robot collaboration scenario, high dexterity and 
self-occlusion of the human hand increase the 
complexity of 3D hand pose estimation. It still is a 
challenging issue. Due to high self-occlusion and 
dexterity, sensing equipment is preferred like markers, 
data-gloves or motion capture sensors to communicate 
with robots and to acquire the dataset. Most of the 
state-of-the-art techniques rely completely on depth 
information to estimate the 3D hand pose. The sensors 
like Kinect and Intel Realsense provide both RGB and 

depth information. With the information from low-cost 
RGB-D cameras, Convolutional Neural Networks 
(CNNs) have become the norm for pose estimation 
techniques.  

In this paper, we introduce a complete pipeline for 
tracking the upper body pose and 3D hand pose in 
human-robot collaborated workspace. Due to 
integration flexibility, the Intel Realsense D435 
camera will be considered for hand over applications 
in HMI environments as shown in Figure 1. Our goal 
is to estimate 3D human upper body poses and 3D hand 
poses in RGB images, given the respective aligned 
depth maps. Our approach consists of cascaded CNNs, 
post-processing to extend 2D heatmaps to 3D pose, and 
direct regression of the 3D pose from the network. The 
first network localizes the upper body and hand in the 
scene. 

 
Figure 1: Human-Robot interaction. 
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Localization drastically reduces the search space and 
further passed through the second cascaded network 
that estimates the heatmaps of keypoints in 2D images 
and then regresses the 3D normalized pose. Finally, the 
3D normalized coordinates are transformed into 
camera coordinates or world coordinates. In addition to 
the unique pose network, we introduce a new small-
scale multiview hand pose dataset (SSMH) for HMI 
applications. 

2 RELATED WORKS 
3D hand pose estimation is a very challenging task due 
to the high dexterity of the human hand (i.e., 21 degrees 
of freedom). We briefly review the state-of-the-art of 
2D and 3D pose estimation methods that were 
successful over the past few years. The successful 
breakthrough in pose estimation was related to human 
pose estimation as in (Tompson et al., 2014) and 
(Toshev and Szegedy., 2014). The idea of belief maps 
was mentioned by (Wei et al., 2016) for 2D human 
pose estimation applying convolutional pose 
machines. Many papers were published based on this 
idea of heatmaps to improve the accuracy and to 
provide further extensions to 3D (Garcia-Hernando et 
al., 2018). (Tompson et al., 2014) presented the idea of 
hand pose recovery implementing CNNs in real-time 
inferring intermediate heatmap features to extract 
accurate 3D pose with the help of an inverse kinematic 
model on depth datasets. (Wan et al., 2017) proposed a 
deep 3D hand pose estimation approach that uses depth 
images. In this approach, depth feature maps from 
CNNs were divided into regions to form a tree-
structured region ensemble network, these regions are 
passed through fully connected layers for 3D 
coordinate regression and for better accuracy.  

Later, 3D hand pose estimation in single RGB 
images was proposed by (Zimmermann and Brox, 
2017). A three-network structured approach consisting 
of HandSegNet for hand segmentation, PoseNet for 2D 
keypoints and lifting to 3D pose. (Zimmermann and 
Brox, 2017) created synthetic 2D and 3D hand pose 
datasets where the inference model cannot generalize 
well on real test data. Although the proposed network 
is efficient, it cannot be applicable in real-time. An 
extension to this is introduced in (Mueller et al., 2018). 
(Mueller et al., 2018) is one of the best state-of-the-art 
RGB only based 3D hand pose estimation 
architectures.  One of the best state-of-the-art 
techniques for heatmap generation is mentioned in 
(Newell, Yang, and Deng, 2016). The authors use a 
stacked hourglass network to retain 2D heatmap 
information. (Wan et al., 2017) also worked on a 

similar idea of heatmaps on depth images for 2D and 
3D, in addition to 3D directional vectors for 3D 
regression of hand pose. The further extensions to 
stacked hourglass network can be observed in (Zhou et 
al., 2017). The 2D CNNs are trained to infer heatmaps 
and the authors extend the network to output the 3D 
pose by adding a regression network. The unique 
pipeline presented in this paper is developed based on 
(Zhou et al., 2017).  

To train the pose estimation architectures, the 
datasets are the key. There are many hand datasets 
available for research purposes, and most of them are 
captured for certain application. The most widely used 
open-source datasets are the NYU hand dataset 
(Tompson et al., 2014), ICVL (Tang et al., 2014), and 
the First-Person Hand Action Benchmark (Garcia-
Hernando et al., 2018). The datasets consist of depth 
images with respective keypoints in 2D and 3D as the 
labeled dataset. The first-person action database is a 
large-scale dataset with depth maps, and it is annotated 
using motion capture sensors and kinematics. The 
available RGB datasets are the GANerated dataset 
(Mueller et al., 2018) and Large-Scale Multiview hand 
pose dataset (LSMH) (Gomez-Donoso, Orts-Escolano, 
and Cazorla, 2017).  GANerated dataset is a hybrid 
dataset that builds a bridge between real and synthetic 
data for better generalization of trained network, but 
the data is egocentric. GANerated images are shown in 
Figure 2a and 2b. The LSMH pose dataset is captured 
with a leap motion sensor calibrated with 4 RGB 
cameras with distinct views, the dataset has many 
outliers. Few sample images can be seen in Figures 2c 
and 2d. 

 
Figure 2: a) GANerated Hands with self-occlusion, b) with 
object occlusion, c) and d) LSMH dataset. 
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3 PROPOSED METHOD 

The goal of the new efficient approach is to infer 3D 
joints of the human hand and the pose of the upper 
body. We tackle this problem using two-staged CNNs. 
Given a color image 𝐼∈𝑅𝑁𝑥𝑀𝑥3, the first network 
localizes the persons and their respective hands in the 
image. The localization reduces the search space for 
the 2D pose estimation network. Object localization 
has gained many research advancements since the 
introduction of CNNs. In this paper, we experiment 
with an architecture to estimate the 3D pose of the hand 
on the frame level. Cascaded CNNs are extremely 
helpful in multi-feature tracking applications (i.e., 
human, face and hand pose tracking). To work in a 
collaborated environment, human tracking and hand 
pose tracking is the key task to avoid collisions and to 
work as a team. In this approach, two-staged cascaded 
networks seem feasible for tracking hands and the 
upper body. The localized result from the first network 
can be connected to the distinct branches as described 
in Figure 3 to obtain 3D hand poses and/or body poses. 

 
Figure 3: Proposed architecture, the gray blocks represent 
localization network, the blue blocks represent upper body 
pose estimation network, and the orange blocks represent the 
hand pose network.  

3.1 Localization Network 

In the localization network, object detection technique 
is used to obtain the region of interests (i.e., body and 
hands) as a bounding box and its score threshold. Since 
object detection is a highly researched topic, a 
significant number of architectures are built for object 
detection (e.g., ResNet (He et al., 2015), MobileNet 
(Howard et al., 2017), Darknet (Redmon et al. 2018). 
You only look once (YOLO) is one of the state-of-the-
art real-time object detection system that uses the 
Darknet architecture. The more recent YOLOv3 
(Redmon and Farhadi, 2018) architecture is fast and 
accurate compared to its predecessors and other 
available architectures. In this work, frame-based 
person and hand detection are trained by applying 
transfer learning on YOLOv3 darknet-53 architecture 

using the MPII Human Pose dataset (Andriluka et al., 
2014). Leveraging the 2D keypoints extrema, 
bounding boxes were extracted from the MPII dataset. 
Since the dataset does not provide bounding box 
locations of the hands, hands were trained with a 
custom dataset and ego-hands dataset (Bambach et al., 
2015). The network is retrained with these datasets. 

3.2 Pose Network 

Once the persons and hands are localized, the image 
containing hand is passed through the second network 
to detect heatmaps of 2D keypoints of respective hands 
in given RGB images. To estimate 3D coordinates, one 
could use the depth map to extend the 2D keypoints to 
3D using calibration parameters. Another possibility is 
to train an encoder-decoder architecture to detect 
heatmaps and to directly regress 3D joints on RGB 
images. For training the network, the joint order must 
be preserved for visualization and further processing. 
Body joints and hand joints order used for training can 
be observed in Figure 4.  

 
Figure 4: Hand and body joint annotation order. 

3.2.1 SSMH Pose Dataset 

In this work, the GANerated dataset and the LSMH 
pose dataset are considered for the experimentation 
with an RGB pipeline. Both datasets provide 2D and 
3D joint locations of fingers and they have certain 
limitations. In addition to the available public datasets, 
we introduce a SSMH pose dataset. The dataset was 
captured using Intel Realsense D435 cameras in 
distinct settings. In the first setting, hand images and 
the respective aligned depth images are captured 
without self-occlusions. In the second set, two cameras 
are placed orthogonal to each other and calibrated 
together. The simultaneous frames with respective 
RGB and aligned depth information are captured. 
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Figure 5: top: Single camera setting without self-occlusions, 
bottom: Two camera calibrated orthogonal to each other with 
self-occlusions. 

The transformations are used to convert keypoints 
from one camera to another. The keypoints are labeled 
manually. In two camera settings, the visible points in 
each image are labeled. Then the visible 2D keypoints 
are extended to 3D using the depth map and the 
intrinsic parameters. The images from dataset can be 
observed in Figure 5. In Figure 5, bottom, images are 
captured using two views and based on keypoint 
visibility all 21 joints are manually annotated. The 
advantage of this dataset is that both RGB images and 
depth images are available for experimentation unlike 
available dataset.  

3.2.2 Stacked Encoder-decoder Architecture 

One of the successful approaches to regress 3D joints 
are implemented on human pose estimation as 
described in (Zhou et al., 2017). In this work, we 
consider encoder-decoder architecture as the ratios of 
input and output images must be kept constant. The 
outputs of such architecture are 2D heatmaps of the 
joints. To create encoder-decoder architecture 
ResNet34 blocks are used. Instead of single encoder-
decoder architecture, a stacked encoder-decoder 
network is designed for better generalization of data.  
Heatmaps of 21 joints are considered for training. To 
this network, we add a regressor block to train the 3D 
coordinates of normalized joints, the simple overview 
of the architecture is mentioned in Figure 6. In this 
architecture, images with three channels (i.e., RGB) 
are passed as input features. The input images of size 
3x128x128 pixels and with convolution, features are 
extracted from 64x64x64 to as low as 512x4x4. Then 
the features are again upsampled using bilinear 
interpolation from 512x4x4 to 64x64x64.  

The process is repeated for one more stage and the 
output heatmaps are processed and concatenated with 
intermediate features and passed through 
convolutional block. Finally, features are linearized to 
get 3D normalized joint coordinates. The complete 

feature representation architecture can be understood 
from Figure 7. 

 
Figure 6: Stacked encoder-decoder architecture. 

 
Figure 7: Feature representation of encoder-decoder 
architecture. 

3.3 Pose Estimation 

3.3.1 Upper Body Pose Estimation 

From a localization network, a person and their 
respective hands are detected. The results of the 
localized network can be seen in Figure 8 left. The 
localized person is passed through single encoder-
decoder architecture. As the 3D joints information of 
the MPII pose dataset is not available, 2D pose 
information is trained with the single model. The 
applied single encoder-decoder can be seen in Figure 6 
(i.e., in red block). The images are scaled to similar size 
for batch normalization during training process. 20k 
images and their respective heatmaps are used for 
training.      

Figure 8 right represents the detection of 2D 
keypoints of a person. Once 2D keypoints are 
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estimated, joints are extended to 3D using depth maps 
and camera calibration parameters.  

 
Figure 8: left: Bounding box, right: 2D Pose. 

3.3.2 Hand Pose Estimation 

The architecture mentioned in section 3.2.2 can be 
trained for 3D hand pose estimation. Since the LSMH 
pose dataset, the SSMH dataset introduced in this 
paper and the GANerated hands dataset contains 3D 
and 2D joint locations, we experiment with stacked 
encoder-decoder architecture for 3D pose regression. 
To train the network, images must be pre-processed 
(i.e., resizing the image and generating the heatmaps 
before passing through the training loop). Closely 
cropped hands from the localized network are first 
resized to 128x128 pixels and respective gaussian 
heatmaps of joints are generated with the size 
21x128x128. The 3D joints are normalized with 
respect to the position of middle finger joint or joint 
number 9 in Figure 4 left for LSMH dataset and SSMH 
dataset. For GANerated dataset, 3D joints provided are 
normalized with respect to joint 9 and normalized 
distance from joint 0 to joint 9 is 1. This normalization 
assumes that the most constant values are joint 0 and 
joint 9. 

Once the 2D heatmaps are estimated, the depth map 
of the respective RGB image with calibration 
parameters can be used to extend 2D joint positions to 
3D coordinates. This technique can be implemented in 
an application where the average coverage area of 
fingers is adequate instead of accurate fingertips or in 
an application where self-occlusion is neglected. The 
spatial error due to conversion from 2D to 3D can be 
fixed with the help of the kinematic chain model.  

3.3.3 Pose Estimation on LSMH Data, 
GANerated Data and SSMH Data  

The LSMH pose dataset contains real images, the 
regressor architecture is trained with the dataset. Figure 
9a contains images from the validation dataset. The 2D 

keypoint detections can be observed in Figure 9a. It 
might be seen that the detections have a slight error in 
2D, but it is, in fact, an error in the dataset. The ground 
truth keypoints from leap motion sensor were not post-
processed. 

Later, the architecture is trained with GANerated 
hands dataset. This dataset contains over 300k 
synthetic images with and without objects. The 
GANerated dataset is highly egocentric and the hands 
have high self-occlusion. The output of the network 
with 2D keypoints can be seen in Figure 9b. We can 
observe that the detected 2D keypoints are almost error 
free even for high self-occlusion.  

Finally, encoder-decoder architecture is trained 
with SSMH dataset introduced in this paper. The 
dataset consists of 5000 images with and without self-
occlusions for training. Once the joints are normalized, 
coordinates are in lower dimension and they can 
converge faster to minima during the training process. 
2D keypoint detection can be seen in Figure 9c. 3D 
hand pose estimation of all the dataset can be observed 
in Figure 10. 

 
Figure 9: 2D detections, a) detection on LSMH dataset, b) 
detections on GANerated dataset, and c) detections on SSMH 
dataset.  

4 EXPERIMENTS 

4.1 Training Parameters 

The proposed pipeline is implemented in Python using 
the Pytorch library. We opted to Pytorch as it is faster 
compared to Tensorflow and supports easy integration 
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with the Numpy library. For the localization network, 
approximately 22k images were considered for 
training. For estimating the upper body pose, the 
complete MPII dataset was trained for 1000 epochs 
with a batch size of 32 and 8 parallel workers on Nvidia 
1080 Ti 12 GB memory.  

From LSMH pose dataset, only 35k images with 
minimal error were considered for training with 
stacked encoder-decoder architecture. The weights for 
training the network were randomized and the 
complete architecture was trained from scratch. Since 
the GANerated hands dataset is synthetic, images 
contain a wide range of occlusions. Over 300k images 
were considered for training. Weights were 
randomized for SSMH dataset for training, only 5k 
labeled images were considered for training. The 
datasets were trained with multiple optimizers to test 
the accuracy. The optimizer used for this network is the 
RMSprop. Variable learning rates were implemented 
based on the number of epochs, varying from 0.005 to 
0.00025. All datasets were trained for over 1000 
epochs with 16 to 32 images per batch and 
approximately 8 to 12 parallel workers. Since the 
output is image coordinates or 3D coordinates, the 

Mean Squared Error (MSE) loss is the best fit for 
regression applications.  L୑ୗ୉ = 1n ෍ሺpredicted − actualሻଶ୬

ଵ          (1)

MSE is calculated for both 2D keypoints and 3D 
keypoints. All the models were trained using Nvidia 
1080 Ti 12 GB GPU and tested on Nvidia 1050 Ti 4 
GB GPU memory.    

4.2 Evaluation 

We evaluated our approach with multiple experiments 
to achieve the best possible solution. As mentioned in 
section 3.2, we considered the bounding box approach 
to localize hands and persons in a single RGB  image. 
The  encoder-decoder  architecture  was developed 
based on the idea of hourglass but with ResNet 
architecture. The prior mentioned datasets are trained 
with stacked encoder-decoder architecture. The results 
can be observed in Figure 10.  
 

 
Figure 10: 3D hand pose, a) and c) are images from SSMH dataset, b) and d) are images from LSMH dataset, e) and f) are from 
GANerated dataset, a) Open hand without occlusions and respective 3D hand pose, c) 3D hand pose on closed hand with low 
self-occlusion. b) Self-occluded fingers and respective 3D hand pose of LSMH dataset, d) and f) high self-occluded detections, 
predicted values are plotted in red color and actual values are plotted in green color. 
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The performance of the LSMH dataset can be 
observed in Table 1. With encoder-decoder 
architecture, the performance of images is very 
acceptable. 3D detections on all datasets can be 
observed in Figure 10. Figure 10a does not contain any 
self-occlusion and the MSE was as low as 20 mm. In 
Figure 10b, there is a slight self-occlusion between 
three fingers and the MSE was around 27 mm. In 
Figure 10d, the fingers are completely closed, and the 
network failed to generalize in such situations. Figure 
10e and f represents the GANerated hands 3D hand 
pose output. (Gomez-Donoso et al., 2018) utilized 
LSMH dataset for 2D applications and the 
improvement in MSE error can be seen in Table 1. 

Table 1: Performance of the validation set. 

Large-scale 
Multiview hands 

Mean 3D Pose 
error (mm) over 
5000 images 

Mean 2D Pose 
error (px) over 
5000 images

(Gomez-Donoso 
et al., 2018) - 10 

Proposed method 20-65 8.58

The performance of the GANerated Hands dataset 
can be observed in Figure 11. MSE of all joints is 
represented in the bar graph. We can clearly observe 
that the error is high with respect to visibility. Joint 
numbers 4, 8, 12, 16, 20 are the fingertip locations and 
there exists high error compared to other joints due to 
self-occlusion and/or object occlusion. Since the 
dataset consists of normalized 3D joint coordinates, 
comparison with (Mueller et al., 2018) was not 
possible. (Mueller et al., 2018) preferred a different 
metric to evaluate the performance of their architecture 
on GANerated dataset.  

 
Figure 11: 3D coordinates MSE of GANerated dataset. 

Similarly, SSMH dataset is evaluated using MSE. 
The dataset has keypoints with respect to camera 
coordinates and is normalized with respect to joint 10. 
The MSE error was estimated in millimeters. Figure 12 
represents the error of 21 joints individually. From the 

 
1 https://orcid.org/0000-0001-7339-8425 

Figure 12, we can observe that the pose estimation of 
fingertips has an error as high as 30 mm. Overall MSE 
achieved is as low as 19 mm. The MSE was estimated 
strictly on 500 images. Images with high self-occlusion 
achieved MSE over 60 mm. We work on adding more 
images to SSMH dataset. Once the dataset is refined, it 
will be released as open source for researchers and 
further information found in 1.  

 
Figure 12: 3D coordinates MSE of our dataset. 

There exist algorithms for 3D keypoint regression 
but most of the algorithms work with RGB image 
localization and regression on direct depth maps or 
pointcloud. The state-of-the-art depth-based methods 
like (Chen et al., 2018), and (Moon et al., 2018) 
achieved MSE less than 7 mm as in Figure 13. Figure 
13 represents the mean error of hand joints between 
RGB based and RGB-D based methods. (Mueller et al., 
2018) achieved a mean error as low as 50 mm with 
high occlusion datasets.  

 
Figure 13: Mean error of hand joints in comparison to state-
of-the-art RGB and RGB-D architectures. 

We estimated the mean error for both low 
occlusion and high occlusion images and mean error is 
as low as 20 mm and as high as 60 mm respectively on 
SSMH dataset. We can observe that, the depth-based 
methods have low mean error compared to RGB only 
architectures. Nevertheless, RGB based methods have 
high potential to be improved further. In HMI 
applications highly occluded data is necessary and if 
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the data is specifically captured in that workspace, then 
the performance of the network can be improved 
further. 

5 CONCLUSIONS 

We proposed a cascaded CNN pipeline for the upper 
body pose and the 3D hand pose estimation. Heatmaps 
and regression techniques are the norms for pose 
estimation in direct RGB images. We experimented 
with the stacked encoder-decoder architecture for 
heatmap based 2D detections and 3D direct regression. 
Two large-scale RGB datasets and a new SSMH 
custom dataset were considered for training and testing 
the performance of the proposed network. We 
observed that the network performs well under 
occlusions for all the datasets. We achieved the mean 
error as low as 20 mm for images containing minimal 
or no occlusions and mean error is over 60 mm for 
highly occluded images from SSMH dataset. To apply 
the proposed pipeline in real-time Human-Machine-
Interaction applications, occlusion dataset must be 
extended and retrained. Further improvements like 
kinematic fitting and tracking could help in fingertip 
refinement. 

ACKNOWLEDGEMENTS 

This research is supported by Saechsische 
AufbauBank (SAB – application no. 100378180).   

 

REFERENCES 

Tompson, J., Stein, M., Lecun, Y., Perlin, K., 2014. Real-
Time Continuous Pose Recovery of Human Hands Using 
Convolutional Networks. ACM Transactions on 
Graphics, 33(5):1– 10. 

Wei, S., Ramakrishna, V., Kanade, T., Sheikh, Y., 2016. 
Convolutional pose machines. In Proc. of the IEEE Conf. 
on Computer Vision and Pattern Recognition (CVPR), 
pages 4724–4732. 

Toshev, T., Szegedy, C., 2014. Human pose estimation via 
deep neural networks. In Proc. of the IEEE Conf. on 
Computer Vision and Pattern Recognition (CVPR), 
pages 1653–1660. 

Wan, C., Thomas, P., Van Gool, L., Yao, A., 2017. Dense 3D 
Regression for Hand Pose Estimation. 
arXiv:1711.08996v1 [cs.CV]. 

Garcia-Hernando, G., Yuan S., Baek, S., Kim T.K., 2018. 
First Person Hand Action Benchmark with RGB-D 

Videos and 3D Hand Pose Annotations. 
arXiv:1704.02463v2 [cs.CV]. 

Zimmermann, C., Brox, T., 2017. Learning to Estimate 3D 
Hand Pose from Single RGB Images. 
arXiv:1705.01389v3 [cs.CV]. 

Mueller, F., Bernard, F., Sotnychenko, O., Mehta, D., 
Sridhar, S., Casas, D., and Theobalt, C., 2018. 
GANerated Hands for Real-Time 3D Hand Tracking 
from Monocular RGB. CVPR 2018. 

Gomez-Donoso F., Orts-Escolano, S., Cazorla, M., 2017. 
Large Scale Multiview 3D Hand Pose Dataset. 
arXiv:1707.03742v3. 

Bambach, Sven and Lee, Stefan and Crandall, David, J., and 
Yu, Chen, 2015. Lending A Hand: Detecting Hands and 
Recognizing Activities in Complex Egocentric 
Interactions, The IEEE International Conference on 
Computer Vision (ICCV). 

Newell, A., Yang, K., Deng, J., 2016. Stacked Hourglass 
Networks for Human Pose Estimation 
arXiv:1603.06937v2 [cs.CV]. 

Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y., 2017. 
Towards 3D Human Pose Estimation in the Wild: a 
Weakly-supervised Approach, Shanghai Key Laboratory 
of Intelligent Information Processing School of 
Computer Science, Fudan University, The University of 
Texas at Austin, Microsoft Research 
arXiv:1704.02447v2 [cs.CV]. 

Tang, D., Chang, H.J., Tejani, A., Kim, T.K., 2014. Latent 
Regression Forest: Structural Estimation of 3D 
Articulated Hand Posture, Proc. of IEEE Conf. on 
Computer Vision and Pattern Recognition (CVPR), 
Columbus, Ohio, USA. 

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep Residual 
Learning for Image Recognition, arXiv:1512.03385v1 
[cs.CV]. Microsoft Research. 

Howard, G.A., Zhu, M., Chen, B., Kalenichenko, D., Wang, 
W., Weyand, T., Andreetto, M., Adam, H., 2017. 
MobileNets: Efficient Convolutional Neural Networks 
for Mobile Vision Applications, Google Inc, 
arXiv:1704.04861v1 [cs.CV]. 

Redmon, J., Farhadi, A., 2018. YOLOv3: An Incremental 
Improvement, University of Washington, 
arXiv:1804.02767 [cs.CV]. 

Andriluka, M., Pishchulin, L., Gehler, P., Schiele, Bernt, 
2014. 2D Human Pose Estimation: New Benchmark and 
State of the Art Analysis, IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR). 

Chen, Xinghao, Wang, Guijin, Guo, Hengkai, Zhang, 
Cairong, 2018. Pose Guided Structured Region 
Ensemble Network for Cascaded Hand Pose Estimation. 
Neurocomputing Journal. 

Moon, G., Chang, J.Y., Lee, K.M., 2018. V2V-Posenet: 
Voxel-To-Voxel Prediction Network for Accurate 3d 
Hand and Human Pose Estimation from a Single Depth 
Map, CVPR, arXiv:1711.07399[cs.CV]. 

Sridhar, S., Mueller, F., Zollhoefer, M., Casas, D., 2016. 
Real-time Joint Tracking of Hand Manipulating an 
Object from RGB-D Input. ECCV. 

Regression-based 3D Hand Pose Estimation using Heatmaps

643


