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Abstract: Anomaly detection in operational communication data of cyber-physical systems is an important part of any 
monitoring activity in such systems. This paper suggests a new method of anomaly detection named cross-
over data compression (CDC).  The method belongs to the group of information theoretic approaches and is 
based on the notion of Kullback-Leibler Divergence. Data blocks are compressed by a Sequitur-like algorithm 
and the resulting grammars describing the compression are applied cross-over to the all the other data blocks. 
Divergences are calculated from the length of the different compressions and the mean values of these 
divergences are used to classify the data in normal and anomalous. The paper describes the method in detail 
and shows the results derived from a real-world example (communication data from a substation).

1 INTRODUCTION 

Systems where embedded computing devices sense, 
monitor, and control physical processes through 
networks, usually with feedback loops in which 
physical processes affect computations and vice versa 
(Lee, 2008) are called cyber-physical systems (CPS). 
These systems are becoming literally ubiquitous, and 
our society and economy depends in a high degree on 
the precise and stable operation of these systems.  

Therefore, it is of course necessary to build and 
install such systems according to rules of safety and 
security. Besides that – which is a big challenge of its 
own – it is necessary to monitor the operational 
system continuously. External influence from the 
environment might seriously disturb the system’s 
operation, which could lead to unwanted 
malfunctioning and in case of safety-critical system 
even have disastrous consequences. Such external 
influences may have their causes in abnormal changes 
in the environment, in malfunctions of the interfaces 
between the environment and the CPS, or in attacks 
against the system. Especially the threat of cyber-
attacks legitimately gets more and more attention as 
their number is increasing rapidly. The majority of 
applications makes use of IP-based technology and 

 
a https:// https://isf.fhstp.ac.at/en 
b https://www.limessecurity.com 

standard computing devices, hence opening points of 
exposure and increasing the attack surface of CPSs in 
a way that cannot be neglected any more. Moreover, 
the complexity of the systems is growing rapidly as 
they become smarter, make use of advanced 
technologies, and consist of a high number of devices. 
So the protection of these systems is a challenging 
task. 

One measure to meet these challenges are so-
called intrusion prevention and intrusion detection 
systems. But, these defence mechanisms were 
designed for common IT systems and often are not 
applicable in smart CPS environments. Moreover, 
there is no guarantee that any intrusion will be 
detected in time. To ensure the protection of these 
environments, a second line of defence is needed: 
Certain security controls that monitor system 
communication and operation in real-time, or at least 
close-to-real-time are necessary. One possibility for 
such defence systems is the implementation of an 
anomaly detection system. Anomaly detection 
systems consist of a formal model of normal system 
behaviour and a monitoring component that compares 
in real time the actual behaviour of the system with 
the formal model. Too large deviations of the 
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system’s behaviour from the model forecasts are 
identified as anomalies and will raise an alarm.  

As of today, various formal models are used in 
connection with anomaly detection: many of 
statistical nature, such as outlier detection, cluster 
analysis, or hidden Markov models; others are of 
structural nature: neural networks, association rules 
and syntactic pattern matching (Chandola et al., 
2009). 

This paper suggests a new method for defining the 
behaviour model of a CPS belonging to the family of 
information theoretic models. 

2 RELATED WORK 

2.1 Anomaly Detection in General 

For the field of anomaly detection there exists a still 
valid survey article from 2009 by Chandola et al. 
(Chandola et al., 2009) that gives a comprehensive 
overview of methods and applications of anomaly 
detection covering most of the field. With respect to 
anomaly detection in (computer) networks there are 
three more survey articles from recent years (Bhuyan 
et al., 2013), (Ahmed et al., 2016), (Fernandes et al., 
2019) with thorough overviews.  

The generally accepted definition of an anomaly 
from (Chandola et al., 2009) reads as follows: 
Anomalies are patterns in data that do not conform to 
a well-defined notion of normal behaviour. 

(Fernandes et al., 2019) gives a structured 
overview of methods used for anomaly detection: 
 Statistical Methods 
 Clustering Methods 
 Finite State Machines 
 Classification Methods 
 Information Theory Models 
 Hybrid/Others 

2.2 Statistical Methods 

Statistical methods are based on stochastic models 
and assume that normal “events” are found in regions 
predicted by the model with high probabilities, while 
anomalies are located in regions with low probability.  

The use of wavelet analysis for anomaly detection 
is described by (Hamdi et al., 2007) in detail. 
Principal Component Analysis (PCA) is a method 
based on dimension reduction and was first 
introduced by (Lakhina et al., 2004). Several 
improvements of the approach have been suggested. 
(Yeung et al., 2007) introduced covariance matrices 

to filter for variables having a high discriminatory 
effect. 

2.3 Clustering Methods 

The 𝑘-means algorithm (MacQueen, 1967) assumes 
that there are 𝑘 given clusters to group the elements 
and is mainly based on comparing distances. The 
method 𝑘-Nearest Neighbour first published in 1967 
(Cover et al., 1967) clusters training data in an 𝑛-
dimensional space and uses these clusters to assign 
new instances to the best-fitting cluster. 

(Agrawal et al., 1998) describes a method for 
dimensional reduction and calls it Subspace 
Clustering; the approach assumes that projecting data 
into a space with fewer dimensions may facilitate 
clustering. 

2.4 Finite State Machines 

Finite state machines are an often-used mechanism to 
detect anomalies. Normal data sequences are 
modelled by regular expressions and the 
corresponding finite state machine is used to verify 
normal behaviour. Any data sequence not accepted by 
the automaton is rejected as anomaly. This method 
often comes along together with Markov chains 
(Estevez-Tapiador et al., 2003). Intrusion detection 
and prevention systems for conventional IT systems 
often use this approach. 

2.5 Classification Methods 

Classification methods play an important role in 
machine learning. The most important representatives 
are Bayesian Networks (Jensen, 1997) and (Nielsen 
et. al., 2007), Support Vector Machines (SVM) 
(Schölkopf et al., 2001) and Neural Networks 
(Haykin, 1994). 

2.6 Information Theoretic Models 

Shannon Entropy (Shannon, 1948) measures the 
amount of uncertainty involved in the value of a 
random variable.  

Kullback-Leibler Divergence (Kullback et al., 
1951) is a measure for the difference between two 
probability distributions. It can be used when 
comparing two segments of data that represent the 
behaviour of a system. The suggestion for a method 
of anomaly detection described in this paper is 
inspired by Kullback-Leibler Divergence. For further 
details, see below.  
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Lee et al. (Lee et al., 2001) suggest a variety of 
entropy-based methods to detect anomalies in data 
used by intrusion detection systems. They analyse 
Shannon Entropy, the entropy of dependent 
probability distributions, the relative entropy of two 
probability distributions, and information gain of the 
attributes of a set of data. Bereziński (Bereziński et 
al., 2015) and Martos (Martos et al., 2018) published 
work using entropy-based methods, too. 

2.7 Other Methods 

Other methods used for anomaly detection are 
derived from evolution theory (Kar, 2016), Artificial 
Immune Systems (Castro et al., 2002), (Hooks et al., 
2018), Genetic Algorithms (Aslahi-Shahri et al., 
2016), (Hamamoto et al., 2018), Particle Swarm 
Optimization (Bamakan et al., 2016), (Wahid et al., 
2019), Differential Evolution (Storn et al., 1997), 
(Elsayed et al., 2015), and some hybrid approaches 
combining two or more of the methods mentioned. 

3 ANOMALY DETECTION BY 
CROSS-OVER DATA 
COMPRESSION 

We define features relevant in describing the (normal) 
operation of the CPS and an observation interval 𝑖. 
We then collect the relevant data transmitted during 
this interval in the network giving one block of data.  

We do this with 𝑛  consecutive intervals. Each 
interval yields a data block 𝑏௜ . Now we compress 
each data block separately as described later on. Each 
compression results in a compressed file 𝑐௜,௜  and a 
grammar (substitution table) 𝑔௜  describing the 
compression; we assume 𝑔௜ is contained in 𝑐௜,௜. In the 
next step we use all grammars 𝑔௝  instead of 𝑔௜  to 
compress the block 𝑏௜  which results in the 
compressed files 𝑐௜,௝. We do this for all combinations 
of 𝑖 and 𝑗. Since 𝑔௝ is not optimal to compress 𝑏௜, the 
compressed file 𝑐௜,௝  will be larger than 𝑐௜,௜ . The 
difference of the lengths of 𝑐௜,௝ and 𝑐௜,௜ is called the 
divergence 𝑑௜,௝ . It is a measure for the degree of 
similarity of the block 𝑏௜  (which was compressed) 
compared to the block 𝑏௝ (from which the grammar, 
used in the compression algorithm, was extracted).  

3.1 Data Acquisition and Features 

We consider a communication network in a CPS. We 
collect the data transmitted over the network splitting 

it into segments. These segments or blocks will be the 
units of analysis later on. There are two main features 
we have to take into consideration: 
a) Whether the data stream is encrypted or not. 
b) Whether the protocol used in the network is 

synchronous (like Modbus, HDLC and others) or 
asynchronous (like Canbus or IEC 61850 or IEC 
60879-5-104). 
If the data stream is encrypted and we do not have 

the possibility to access the decrypted information, 
anomaly detection can be based on the available 
metadata only, like packet frequency or roundtrip 
times. 

The type of protocol (synchronous or 
asynchronous) has influence on the collection 
intervals of the data. If the protocol is synchronous, 
we can construct data segments by simple time 
slicing: In case of an asynchronous protocol, time 
slicing is not an appropriate method as data packets 
arrive in arbitrary intervals. In this case, we can 
construct segments by counting the number of 
packets of a certain important type: a segment is 
defined as the interval necessary to transmit a 
predefined number of packets. 

3.2 Anomaly Detection 

The method so far yields a sequence of features from 
each block of data analysed. The question now is how 
to compare these blocks to decide whether the data 
describes normal or abnormal operation of the 
system.  
We suggest a method that measures a special form of 
“distance” between the blocks by looking at the 
amount of redundancy contained in a block. The 
method is inspired by the notion of Kullback-Leibler 
Divergence (also known as “relative entropy”). This 
is a non-negative real number that can be calculated 
from two probability distributions 𝑃 and 𝑄, where 𝑄 
in many cases is a predicted distribution (a 
hypothesis) and 𝑃  is a measured distribution 
(empirical data). The formula is: 𝐷ሺ𝑃 ∥ 𝑄ሻ = ෍ 𝑃ሺ𝑥ሻ ∙ logଶ 𝑃ሺ𝑥ሻ𝑄ሺ𝑥ሻ௫∈௑  

The alphabet 𝑋 is the set of all characters 𝑥 that 
may appear in both distributions. 𝑃ሺ𝑥ሻ  is the 
probability that the character 𝑥  will appear at any 
arbitrary position within the distribution 𝑃; 
analogously for 𝑄ሺ𝑥ሻ. 

The formula above can be converted to: 
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𝐷ሺ𝑃 ∥ 𝑄ሻ = ൭− ෍ 𝑃ሺ𝑥ሻ ∙ logଶ 𝑄ሺ𝑥ሻ௫∈௑ ൱ 
− ൭− ෍ 𝑃ሺ𝑥ሻ ∙ logଶ 𝑃ሺ𝑥ሻ௫∈௑ ൱ 

The part in the first pair of big brackets is the cross 
entropy of 𝑃  and 𝑄 , the part in the second pair of 
brackets is the well-known Shannon Entropy 𝛨 of 𝑃. 

The Shannon Entropy is a property of a character-
source that emits characters from the alphabet 𝑋 with 
probability distribution 𝑃.  𝛨  is the amount of 
information per character emitted by this source. 
Often 𝛨  is interpreted as a compression factor: A 
string of 𝑛  characters, which is emitted from this 
source can (so says theory), be compressed to a binary 
string with a length of 𝑛 ∙ 𝛨 bits. 

In accordance with this interpretation of Shannon 
Entropy, Kullback-Leibler Divergence can be inter-
preted as the average number of bits wasted per 
character when a string, emitted by a source having 
probability distribution 𝑃  is not compressed by a 
method optimized for its own distribution 𝑃 but using 
a method that is optimized for the probability 
distribution 𝑄. 

The problem with the value calculated using the 
formula shown above is that within probability 
distributions the effective order of the characters is 
irrelevant. Take these 3 strings as an example: 

A: 00000000000000001111111111111111 
B: 01010101010101010101010101010101 
C: 01101001000110010001111101110100 
They all consist of 16 zeros and 16 ones, so for all 

3 examples we have 𝑃ሺ0ሻ = 𝑃ሺ1ሻ = ଵଶ  and therefore 
all three have the same Shannon Entropy 𝛨஺ = 𝛨஻ =𝛨஼ = 1.  However, compressing those strings 
optimally (make them as short as possible), one finds 
that A and B will result in shorter compressed strings 
than C. 

If you calculate the Kullback-Leibler Divergence 
for any pair of those strings, you will always get  𝐷 = 0, which is correct because all three probability 
distributions are equal, so there is no difference. 
However, if you find the optimal method to compress 
string C and use this very method to compress string 
A, the compression result is worse than if you had 
taken the method optimal for A. Therefore, if you 
really compress strings or files, you get different 
results than what the common interpretation of 
Kullback-Leibler Divergence suggests. 

However, we assume that the effective number of 
wasted bits you get when compressing a string with a 
method optimized for another string might be a good 
candidate to measure how different two strings are. 

Therefore, we developed a method to do exactly what 
corresponds to the common interpretation of 
Kullback-Leibler Divergence. 

Practically the method works as follows: Let the 
data from each interval 𝑖  be a block 𝑏௜  and the 
number of blocks be 𝑛 . To each block belongs a 
grammar (a set of replacement rules) which at the 
beginning is empty. 𝑏௜ is compressed by a Sequitur-
like algorithm (Nevill-Manning et al., 1997) yielding 
a compressed file 𝑐௜,௜  and a grammar 𝑔௜  describing 
the compression. The compression method searches 
for the most frequent bigram in 𝑏௜  (a bigram is a 
group of two subsequent characters) and substitutes 
each instance of this bigram with a single character, 
which did not appear in any 𝑏௝  before. The new 
replacement character and the two characters forming 
the replaced bigram together build one replacement 
rule that is added to the grammar. So, each rule in the 
grammar consists of exactly 3 characters. The data 
block wherein the bigrams have been replaced plus 
the grammar together build a compressed version of 𝑏௜ (i.e. 𝑏௜ᇱ). This procedure is repeated until no more 
improvement in the compression ratio is achieved, i.e. 
as long as 𝑏௜ᇱ becomes shorter from round to round. 
The minimum-length version of 𝑏௜ᇱ (compressed data 
plus grammar) is the compressed file 𝑐௜,௜  and the 
grammar 𝑔௜ is part of 𝑐௜,௜. 

In the next step each data block  𝑏௜ is compressed 
using all other grammars  𝑔௝. This means: You don’t 
search for the most frequent bigram, but take the 
bigram that is contained in the grammar and replace 
each instance of it with the character from the 
grammar. You repeat this for each rule in the 
grammar. Compressing 𝑛  data blocks with 𝑛 
grammars gives 𝑛ଶ compressed files 𝑐௜,௝. 

Now we subtract the length of the optimal 
compression 𝑐௜,௜  from the length of 𝑐௜,௝  where the 
length 𝑙 is the number of characters. The difference is 
the divergence 𝑑௜,௝. 𝑑௜,௝  ∶=   𝑙൫𝑐௜,௝൯ − 𝑙൫𝑐௜,௜൯ 
These lengths form an 𝑛 × 𝑛 divergence matrix ℒ. 

Note: the elements in the main diagonal of the 
matrix are always 0: 𝑑௜,௜ = 0 for all 𝑖. 𝑑௜,௝ ≥ 0 for all 𝑖 ≠ 𝑗,  which means that ll other values are non-
negative integers (equal only when 𝑏௜ and 𝑏௝ are two 
identic instances of the same string). 𝑑௜,௝ ≠ 𝑑௝,௜  for most 𝑖, 𝑗 . The matrix is not 
symmetric. By accident 𝑑௜,௝ and 𝑑௝,௜ can be equal, but 
generally they are not. 

A column of ℒ represents the length differences 
of all blocks compressed with one specific grammar. 
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A row of ℒ represents the length differences of all 
compressions of one specific block using different 
grammars. 

Now we calculate for each column and each row 
the average value of non-diagonal elements. For 
comparison we can look either at the averages of 
columns or at the averages of rows. Both should give 
a reasonable measure of the information distance 
between the blocks. The smaller the difference 
between the averages of two rows 𝑖 and 𝑗, the smaller 
is the information theoretic distance between the 
blocks 𝑏௜ and 𝑏௝. 

Whether the column averages or the row averages 
show a better correspondence seems to depend on the 
specific application where the data comes from. This 
topic still needs further investigations. For our 
analysis we use both. 

To the end of anomaly detection, we must 
calculate the matrix ℒ from a number of data blocks 
taken from a system showing normal behaviour. For 
the row averages (and the column averages), we can 
then calculate a mean value (which by definition is 
equal for rows and columns) and the standard 
deviation (which is not equal).  These two values can 
be used to detect a data block that shows a value 
differing more than say 3 times the standard deviation 
from the mean value derived from normal behaviour. 

4 EXAMPLE: SUBSTATION  

4.1 Topology of the Example CPS 

To demonstrate the viability of the proposed anomaly 
detection method we chose a component from the 
distribution network for electrical energy: a 
substation. Generally, substations transform electric 
current changing its voltage. As part of the 
distribution network for electrical energy, substations 
are an eminent part of the critical infrastructure.  

 

 
Figure 1: Configuration of a substation. 

We used a testbed of a (small) substation. Figure 
1 shows the main elements of the configuration of the 
testbed resembling an automation network of a 
typical substation. The RTUs (remote terminal units) 

are connected to a switch. For the experiments, the 
testbed we used was equipped with 4 RTUs. The 
switch connects the protection zone to an engineering 
zone in the substation and further on to the outside 
world. 

In this testbed, we simulated the operation of a 
substation used in a solar plant by a software 
developed for testing purposes. The protocol used 
was IEC 60870-5-104. This protocol is TCP/IP-based 
and by definition does not provide up-to-date security 
mechanisms. For example, the protocol transmits 
messages in clear text without any form of 
authentication. Therefore, such systems are very 
susceptible for network-based attacks such as Man-
in-the-Middle and protocol-specific attacks. 

4.2 Data Collection 

We captured the network traffic from a mirror port of 
the switch. The protocol IEC 60879-5-104 is an 
asynchronous protocol and the number of messages 
defined the collection interval. For each 
measurement, we selected the following data: 
 rtt: round-trip-time of the packet 
 length: packet length 
 wsize: TCP window size  
 ioa89: information object at address 89 containing 

the voltage of the input current from the solar 
panel 
We collected 200 data blocks during normal 

operation of the substation. The data was stored in 
form of a csv-file for each block and the following 
compression algorithm worked solely on the text 
(characters) in the file (even for the numbers). Here 
we use the label “valid” for these valid data. 

Furthermore, we performed cyber-attacks against 
the system and collected the data from the system 
under attack. The following attacks have been 
performed: 
 Man-in-the-Middle Filter Attack (labelled as 

“filter”): overwrites the transmitted measurement 
data with a constant value. 

 Man-in-the-Middle Increment Attack (label: 
“incr”): changes the transmitted measurement 
data by a small amount (+ 0,1-1,0). This can result 
in unknown system states. 

 Man-in-the-Middle Drop Attack (label: “drop”): 
packets containing a certain value are dropped. 

The data collected during the attacks was the same as 
during normal operation: rtt, length, wsize, ioa89. The 
files are structurally identical with files gathered 
during normal operation.  
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In both cases (data describing valid behaviour of 
the system and data gathered from the system under 
attack), we have discarded measurements about 
packages that did not transmit a voltage, as they were 
not significant for the behaviour of the system and 
could be considered outliers. 

4.3 Anomaly Detection 

To describe the normal behaviour of the system we 
started with 𝑛 = 200  data files collected during 
normal operation of the system. Every file is a data 
block 𝑏௜  and was compressed with a Sequitur-like 
algorithm giving 200 compressed files 𝑐௜,௜  and 200 
grammars 𝑔௜. In the next step each (original) file is 
compressed by using all other grammars 𝑔௝, yielding 
40.000 compressions 𝑐௜,௝. From this, we calculate the 
divergence matrix ℒ. From this matrix we calculate 
the row and column averages. At last, we calculate 
the mean value and standard deviation of these 
averages. These values (one total average and two 
standard deviations) describe the normal behaviour of 
the system. To facilitate further comparisons, we 
consolidated the two standard deviations into one 
single number by taking the square root from the sum 
of the squares of the two standard deviations. 𝜎 ∶= ට𝜎௥௢௪ଶ + 𝜎௖௢௟ଶ  

Now we carry out the same procedure with the 
data we collected from the system during each of the 
attacks. This leads to a mean value and a consolidate 
standard deviation for each attack allowing a 
comparison of these values to check whether  
 anomalies can be detected with appropriate 

accuracy 
 an anomaly can be assigned to the right attack. 

4.4 Example Calculation 

The numbers in the following example are taken from 
the data collected from the testbed (during normal 
operation and under attack). 

 
Figure 2: Excerpt of the complete divergence matrix. 

There is the divergence matrix ℒ (showing a 
small section of the large 271x271 matrix). The 6 
rows and columns with valid data define the normal 
behaviour of our system. The values in the row and 
the column labelled “filter” come from an attack. We 
want to find out, if those values are sufficiently 
different from valid data. So considering valid data 
only, we calculate the average of the non-diagonal 
values for each row and each column. This leads to 
the following table: 

 

 
Figure 3: Averages for valid data. 

Next we calculate the total average, which is 
122.5, and the standard deviations which are 44.79 for 
the column “avg row” and 45.30 for the row “avg 
col”. The consolidated standard deviation is 𝜎 =63.70. 

Then we calculate the average of the values in the 
row “filter” and the column “filter” shown in the first 
matrix. This average value is 871.2. From this value 
we subtract the average value for the block of valid 
values (122.5) and we get: 871.2 –  122.5 =  748.6 

Dividing this number by 𝜎 gives: 748.663.70 = 11.75 

We now know that the values from the file “filter” 
are 11.75 times 𝜎 away from the average of the valid 
data. As this is much more than the usually used limit 
in statistics of 3𝜎, we can conclude, that the data in 
the row and column “filter” are anomalous. 

4.5 Results 

Calculations were carried out on the 200 files 
collected during normal (valid) operation, and on 71 
additional files collected from the system under 
attack. There were three different attack classes (34 
“filter”, 17 “drop” and 20 “incr”). Figure 4 shows a 
colour-encoded picture of the complete 271x271 
divergence matrix ℒ as. The 0’s in the diagonal are 
shown as white pixels.  
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Bright green stands for low divergence (i.e. high 
similarity), bright yellow and medium bright brown 
depict medium values and dark violet stands for high 
values of 𝑑௜,௝. 

 
Figure 4: Colour-encoded 271x271 div-matrix. 

We see from this picture, that the filter attacks are 
all very homogenous (bright green square in the upper 
left corner), but they differ strongly from the rest. The 
highest divergence exists between the attack types 
“filter” and “drop”. The divergence of “drop” and 
“valid” can be separated by sight, but “incr” is hard 
to distinguish from “valid”. 

By visual inspection one can find four quadrants 
(green and yellow) within the block of valid data. The 
reason for this is that the data was collected from two 
different RTUs (remote terminal units), and hence 
contain slightly different voltages. 

To distinguish between “incr” and “valid” using 
cross-over data compression we have to take a closer 
look at the numbers: 

The method used above to determine whether the 
data from a specific file corresponds to normal 
operation (is valid) or not can also be applied to test 
the membership of the data to the attack types “filter”, 
“drop” or “incr” (or any other class). 

To do so, we compare the differences between the 
file of interest and the classes, measured in units of 𝜎. 
We allocate each file to the class that produces the 
lowest 𝜎- distance for this file. 

Using cross-over data compression 268 files are 
allocated to the correct class. Only three files 
belonging to the attack class “incr” were 
misrecognized. They were classified as “valid” by the 
algorithm. However, attacks from the class “incr” 
have proven to be hard to detect by other methods, 
too. Some of these attacks changed the voltage value 

only insignificantly, making the distinction from 
valid data tricky. 

 

 
Figure 5: Summary of assignments. 

5 CONCLUSIONS 

This paper presents a novel way of anomaly detection, 
which we call Cross-over Data Compression (CDC). 
The key characteristic of the method is the calculation 
of differences between the lengths of compressed files 
where different grammars were used for compression. 
In an information theoretic sense one could summarize 
the method by saying that we use the divergence of 
redundancies between data blocks to define similarities 
of the blocks. By observing a reasonable number of 
data blocks collected during normal operation of the 
system we can find a mean value and standard 
deviation of the compressions – be it in terms of the 
data blocks compressed with the grammars of the all 
the other blocks or be it in terms of the grammars 
applied to all blocks. Which of these two versions 
yields better results seems to depend on the application 
where the original data was collected. In case of the 
data from the substation network, it did not show big 
differences. But this is not necessarily the case in any 
situation, as we have observed. This question sure 
needs further investigation. 

The results of the experiments we conducted on 
data from substations show that the method of cross-
over data compression is a suitable possibility for 
anomaly detection in network data from industrial 
communication networks. 
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