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Abstract: Time series forecasting is a technique that predicts future values using time as one of the dimensions. The 
learning process is strongly controlled by fine-tuning of various hyperparameters which is often resource 
extensive and requires domain knowledge. This research work focuses on automatically evolving suitable 
hyperparameters of time series for level, trend and seasonality components using Grammatical Evolution. 
The proposed Grammatical Evolution Time Series framework can accept datasets from various domains and 
select the appropriate parameter values based on the nature of dataset. The forecasted results are compared 
with a traditional grid search algorithm on the basis of error metric, efficiency and scalability. 
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1 INTRODUCTION 

1.1 Time Series 

Time Series is a series of data points recorded at 
equal intervals of time. In the context of healthcare 
(Penfold, 2013), waste management (Nagori, 2019), 
econometrics (Lütkepohl, 2004) etc. (Shumway, 
2017), the primary aim of data analysis is time series   
forecasting. Time Series forecasting is used to 
forecast future information by constructing a model 
that fits well on previous observations (Brockwell, 
2016).  

Time series data is typically decomposed into 
four components level (L), trend (T), seasonality (S) 
and residue (R). Level is the average value of 
observations defined over a period. Trend is defined 
as change in behaviour over time in observations 
which is generally a constant movement in data. A 
series of patterns which is repeated many times over 
a short-term is known as seasonality, while 
undesirable noise present in data is the residue. 
These components are merged together as shown in 
equation 1 in order to obtain actual time series 
forecast at time t. 

A(t) = L(t) + T(t) + S(t) + R(t) (1)

However, time series models are often 
challenging and resource extensive to comprehend 
and execute on real world datasets, often requiring 
much hyper parameter tuning for even implementing 
the naivest forecasting model (Gardner, 1985). 

1.2 Related Work 

In traditional approaches to time series modelling, 
the lag needs to be explicitly defined and tuned to 
minimise the forecast error. In any parameter 
estimation problem the challenge of tuning 
parameters to optimal values usually require large 
number of experimental trials and even if 
convergence is guaranteed, it still becomes difficult 
to choose among the solutions generated (Schmidt, 
2006). 

Grid Search (GS) is a traditional technique in 
machine learning which is used to calculate the 
appropriate parameters to use for any given model. 
Its approach is to build the model by making all 
possible combinations of the parameters. And hence, 
it suffers from two fold drawback of being 
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computationally expensive as well as taking large 
amount of time before getting the optimal 
configurations.  

(De Silva, 2013) produced an evolutionary 
algorithm for predicting the load of electricity by 
defining the grammar which generates better 
features to incorporate in forecasting. (Cortez, 2001) 
also provided an evolutionary technique for time 
series forecasting, but was required to explicitly 
define the time lag window. Inspired by racing 
algorithms (Birattari, 2010) designed F-Race 
algorithm, which evolves parameters among a given 
set of candidate instances through statistical 
evidence. But the approach becomes 
computationally expensive as soon as the initial 
configurations increases which is generally the case 
in time series, as forecast results vary by a 
minuscule change in parameters. 

1.3 Structure of Paper 

Section two of this paper provides an introduction to 
how programs are evolved using Grammatical 
Evolution. Section three presents the Grammatical 
Evolution Time Series (GETS) framework with 
subsections 3.1 and 3.2 defining grammar for 
Average Smoothing and Exponential Smoothing 
Forecasting where as fitness function is described in 
subsection 3.3. Section four analyses the achieved 
results and provides a comparison between GS and 
GETS models followed by an extensive discussion 
on Hourly Number of Riders, Hourly Mean 
Temperature, Daily Waste Generation and Monthly 
Car Sales datasets. Section five validates and 
justifies the reasoning behind selection of models 
and parameters through statistical test. Lastly, 
conclusions and future work are outlined in section 
six. 

2 GRAMMATICAL EVOLUTION 

Grammatical Evolution (GE) is a biologically 
inspired state-of-the-art algorithm that uses 
evolutionary computing techniques to automatically 
generate computer programs (Ryan, 1998). GE 
generates programs using a desired fitness function, 
which either needs to minimised or maximised, 
depending on the application (O'Neill, 2001). 
Programs are represented using a genome, a variable 
length string of codons (eight bits) and a grammar is 

used to perform genotype to phenotype mapping 
from the genome. GE uses Backus Normal Form 
(BNF) (McCracken, 2003) which can be described 
using a tuple {N, T, P, S}, with P being a set of 
production rules which are used to map terminals 
(T), that is, items which can appear in the final 
program, from non-terminals (N), intermediate 
symbols to facilitate the derivation, from the starting 
symbol (S). The framework for the production rules 
can be given as: 

<expression> ::= <definition> (2)

Where expression is a non-terminal mapped to 
definition consisting of both terminal and 
nonterminal. For example, consider the following 
production rule for generating numbers 0 to 9: 

<var> ::= 0 | 1 | 2| 3 | 4 …| 9 (3)

GE uses its eight bit codons (positive integers) to 
select from available definitions by taking modulus 
with number of definitions possible. For example, if 
we are expanding <var>, we need to take modulo of 
codon value with 10, since the number of possible 
rule definitions is 10. Whenever a choice is to be 
made during an expansion of rules, a different codon 
is to be used from chromosome. This process is 
repeated until the expression has been derived and 
no non-terminals remain. Each individual is 
evaluated on its ability to produce correct output, 
known as the fitness of an individual and fitness of 
the function is defined as fitness obtained from the 
generated optimal solution (Diosan, 2006). 

3 GETS 

Although generally used for evolving programs, GE 
can also be used to evolve parameters for a program. 
This is extremely beneficial especially in time series 
forecasting where selection of parameters can vary 
by as little as 0.00001. With a range of parameters to 
be tuned such as smoothing coefficient for level, 
trend and seasonality, period of seasonality and step 
to make forecast ahead of times, selection of these 
parameters without strong conceptual and domain 
knowledge, is often a difficult job. Fortunately, GE 
provides a powerful yet easy to implement model to 
generate optimal parameters for various time series 
forecasting models which results in more precise 
prediction.  
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Figure 1: Methodology Diagram for GETS framework (MA: Moving Average, SES, HES, HWES: {Simple, Holts’, Holts' 
Winter} Exponential Smoothing). The population size of 500 is randomly initialized and is evolved till 100 generations for 
each model of forecasting.  

The GETS framework as illustrated in Figure 1 
is designed to address these challenges by 
employing concepts of evolutionary computation 
and evolving optimal values for the hyper 
parameters through grammatical evolution. The 
framework helps in choosing the best values for 
these hyper parameters to minimize the mean 
squared error. The efficiency of the framework is 
compared with state-of-the-art algorithms in terms 
of error metric, efficiency and scalability. Promising 
results are shown for parameter estimation and lower 
error values for the metric root mean squared error. 

3.1 Average Smoothing Method 

Moving Average (MA) takes the mean of several 
historical observations to predict future values 
(Hansun, 2013). The forecaster uses data from the 
current period to previous N observation depending 
on the window width. The varying pattern in the 
time series data affects the width of the window and 

the amount of smoothing required to make 
predictions. 

forecastt+k = (Wt-1 + Wt-2 +…Wt-n) /N  (4)

When computing future time series values using 
MA, the model has to assume that there is no 
seasonality, trend and forecast will be identical to 
previous data. The width of the window in Moving 
Average is parameter that needs to be tuned 
manually to minimise the forecast error and 
therefore, selecting appropriate window width is 
essential in moving average model. 

The grammar for Moving Average is shown in 
Figure 2 where <window_var> generates the width 
of window and <lag_var> generates the lag in time 
series which is implemented using the shift function 
provided in Python’s Pandas library to forecast by 
substituting parameters in equation 4. The 
GE_RANGE: N is replaced by N production rules 
consisting of integer constants starting from 0. 
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Figure 2: MA Grammar. 

3.2 Exponential Smoothing Methods 

Exponential Smoothing Methods produces forecast 
using weighted averages of past observations, where 
the importance of each observation reduces 
exponentially as the observation gets older. There 
are three types of Exponential Smoothing Methods 
Simple Exponential Smoothing (SES), Holts’ 
Exponential Smoothing (HES) and Holts’ Winter 
Exponential Smoothing (HWES). 

 

Figure 3: SES, HES and HWES Grammar: {Simple, 
Holts’ , Holts' Winter} Exponential Smoothing. 

The grammar for the same is shown in Figure 3 
where <alpha_var>, <beta_var> and 
<gamma_var> generates the value of alpha, beta 
and gamma ranging between 0 to 1 which are 
smoothing coefficients of level, trend and 
seasonality respectively. <step> generates a value 
which is essential in making multi step ahead 
forecast while <period_var> is used to generate 
period of seasonality which can be 24 for hourly, 30 
for daily and 12 for monthly forecast. 

The expression tree generated from the random 
genome sequence [6216, 507, 7160, 2794, 4065, 
5442, 2794, 4067, 5444, 2794, 6830, 2915, 691, 
8845, 685] for HWES on Daily Waste Generation 
dataset is given in Figure 4. The internal nodes 
represent the non-terminal symbol generated during 
evolution of program while leaf nodes represent the 
terminal symbols of the grammar. The edges depict 
the procedure of mapping genome to production 
rules (phenotype) using modulo function of 
randomly generated codon value with number of 
predicted rules. 

 

Figure 4:  Example tree generated through random 
genome sequence for HWES where {α:alpha, β:beta, 
γ:gamma, m:period of seasonality, k:step}. 

3.2.1 Simple Exponential Smoothing 

Simple Exponential Smoothing (SES) applies a 
weighted average to historical observations to forecast 
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values in future while assuming there is no trend and 
seasonality in time series (Hunter, 1986).  

levelt = levelt-1 + (alpha) * (observedt-1 - levelt-

1)  forecastt + k = levelt (5)

SES is more adaptable compared to MA since 
assigned weights in SES are decreasing in exponential 
manner giving higher importance to recent 
observations. The smoothing of level in a series is 
controlled by parameter alpha, which needs to be 
tuned to minimise the forecast error. The value of 
alpha and lag are substituted in equation 5 to forecast 
using SES. In SES, value of beta and gamma is 
substituted as zero, since it assumes there is no trend 
and seasonality. 

3.2.2 Holts’ Exponential Smoothing 

Holts’ Exponential Smoothing (HES) extends the 
concept of SES to capture trend along with level in 
the time series data to predict future values assuming 
there is no seasonality component in series (Holt, 
2004).  

The level is the forecast of the value in the series, 
which is controlled by the parameter alpha. While the 
trend is expected growth in the series, is controlled by 
another parameter beta, the smoothing constant for 
trend. The trend can be additive or multiplicative and 
hence the naive approach of time series forecasting 
requires not only determining appropriate values of 
alpha and beta but at the same time requires to know 
underlying variation in patterns to know the trend 
(Kalekar, 2004). 

levelt = levelt-1 + trendt-1 + (alpha) * (observedt-1 - 
levelt-1 - trendt-1 ) 

trendt = trendt-1 + beta *(levelt - levelt-1 - trendt-1)  
forecastt + k = levelt + trendt 

(6)

The generated optimal parameters for alpha, beta 
and step are then substituted in equation 6 for 
forecasting using HES. In HES, value of gamma is 
substituted as zero, since it assumes there is no 
seasonality. 

3.2.3 Holts’ Winter Exponential Smoothing 

Holts’ Winter Exponential Smoothing (HWES) is a 
more robust equation allowing the model to capture 
level and trend along with seasonality component. 
Hence, the forecasting equation is a combination of 
estimates determined using level, trend and seasonal 
components. 

As discussed in HES alpha and beta controls the 
smoothing of level and trend respectively while 
gamma is the smoothing factor for seasonality over a 
period of time. This requires evolving five 
parameters, mainly ‘alpha’, ‘beta’, ‘gamma’, ‘period 
of seasonality’ and ‘step’ which are substituted in 
equation 7 to make forecast using HWES. 

levelt = levelt-1 + trendt-1 + (alpha) * (observedt-1 - 
levelt-1 - trendt-1 - seasont-m ) 

trendt = trendt-1 + beta *(levelt - levelt-1 - trendt-1)  
seasont = seasont-m +  gamma*(observedt-1 -  

levelt-1 - seasont-m) 
forecastt + k = levelt + trendt + seasont + k - m  

(7)

3.3 Fitness Function 

Each time series forecasting models, is evolved using 
root mean squared error (RMSE), described in 
equation 8 as fitness function. This is commonly used 
when forecasting numeric values and, as it is a 
quadratic metric which also assess the mean extent of 
errors. 

ඩ
1
݊
෍ሺ݀݁ݒݎ݁ݏܾ݋ െ ሻଶ݀݁ݐܿ݅݀݁ݎ݌
௡

௜ୀଵ

 (8)

As it is a negatively aligned metric, the 
framework is built to minimise the fitness function. 
Lower the RMSE, better the value of objective 
function. 

4 RESULTS 

4.1 Analysis of Forecasting Methods 

The essential parameters which were experimented 
with are defined in Figure 1. The convergence value 
i.e. RMSE of each model is shown in ‘GE Train Best 
Fitness’ column of Table 1. We can see that RMSE 
values of GE Best Fitness and GE Average Fitness 
are competitive, indicating the performance of 
framework is consistent and not an exceptional case. 
The GETS has better performance on generalising the 
forecasting models compared to GS which is 
overfitting to training data in most of the cases. 

From average fitness values given in Table 1, it 
can be observed that the fitness values of SES, HES 
and HWES on Hourly Mean Temperature are almost 
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identical indicating there is no trend and seasonality. 
The dataset of Hourly Number of Riders contains 
level and seasonality, as average fitness of HWES is 
low compared to both SES and HES. But it does not 
contain trend, as SES and HES have similar fitness 
values. The dataset of Daily Waste Generation does 
not contain trend as well as seasonality which are 
justified by nearly equal fitness values of SES, HES 
and HWES. On the other hand, the Monthly Car Sales 
dataset contains both the components trend and 
seasonality and therefore the fitness values of SES, 
HES, HWES are in the decreasing order. 

The GE based time series modelling has 
outperformed traditional GS algorithm in terms of 
accuracy on both training as well as testing. A 
comparison of the time required in seconds to make 
forecasts using both GETS and GS is also shown in 
Table 1. When dealing with small data sets the time 
required by each is similar, but GETS is significantly 
faster on the larger and more complex ones. When the 
number of parameters to determine increases, for 
example, with HES and HWES, GETS outperforms 
GS by a large margin. 

GE HWES forecast as shown in Figure 5 has 
taken all the three components into consideration. The 
period of seasonality obtained through GE HWES is 
24, which is analogous to the number of hours in a 
   

day, so it is not surprising that it has the smallest 
forecast error at around 27 as shown in GE Train Best 
Fitness in Table 1. The smoothing coefficients 
obtained are 0.6, 0.01 and 0.01 for alpha, beta and 
gamma respectively to make one step ahead forecast. 

 

Figure 5: GE HWES test forecast on Hourly Number of 
Riders dataset. 

Table 1: Comparison of GETS and GS approach on various datasets using RMSE as a fitness function. 

Dataset  
(Instances / Unit) 

Method 
GE Train 

Average Fitness
GE Train Best 

Fitness 
GE Test 
Fitness 

GS Train 
Fitness 

GS Test 
Fitness 

GETS 
Time 

GS 
Time 

Hourly Mean 
Temperature 

(29,734 / Degree 
Celsius) 

SES 0.174 0.17 4.92 0.15 4.9 161 1370

HES 0.072 0.072 0.052 0.06 47.90 463   8174 

HWES 0.071 0.068 0.050 0.10 20.09 675  14512 

MA 0.1572 0.15 5.68 2.61 4.1 103  146 

Hourly Number of 
Riders 

 (20,290 / Number 
of Persons) 

SES 54.71 31.31 186.39 31.27 186.37 137 27

HES 165.27 31.31 81.77 31.27 183.91 387 1011 

HWES 58.67 26.72 62.26 21.56 152.65 540 9664 

MA 56.12 31.37 189.87 67.25 235.85 109 113 

Daily Waste 
Generation 

 (1,186 / Kilograms) 

SES 4798 4364 2633 4369.31 2633.47 19  10 

HES 4620 4368 2633 4369.31 2633.47 41 68 

HWES 4676 4314 2656 4665 3258 44 1300 

MA 4503 4402 2581 4505.32 2568.89 59 10 

Monthly Car Sales 
(136 / Number of 

Cars) 

SES 4534.19 3290 3677 3239.65 3790.72 8 10 

HES 4397 3289.8372 3856 3243.81 4461.61 13 54 

HWES 1987 1451 2816 1425 2633 14  529 

MA 3988.2549 3140.52 3815 3272.28 5681.35 35 10 
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4.2 Exploration vs Exploitation 

The effect of changes in Mutation (Exploration) and 
Crossover (Exploitation) probabilities on evolution 
is shown in Figure 6-7.  

 
Figure 6: Fitness of Daily Waste Generation Dataset on 
varying crossover probability. 

 
Figure 7: Fitness of Daily Waste Generation Dataset on 
varying mutation probability. 

The mutation used is one int flap codon (O'neill, 
2003) which works by replacing the integer value of 
codon with new random integer with a probability of 
0.01, 0.05, 0.1 and 0.5 were taken for 
experimentation. Single point crossover with a 

varying probability of 0.40, 0.60, 0.80 and 0.95 in 
which, the production of two offspring takes place 
by randomly selecting the crossover point and 
swapping the tail of two parents. It can be seen that 
with an increase in crossover probability, the 
population evolves faster for all values of mutation 
probability except for 0.5. The most promising 
results were obtained at mutation probability equal 
to 0.05 and cross over probability equal to 0.95, with 
the population converging to more than 95% in less 
than 40 generations. Most of the configurations 
evolved to similar fitness after 100 generations, 
except the individuals with mutation and crossover 
probabilities as (0.50, 0.95) respectively which has 
produced relatively high error. 

5 DISCUSSION 

Table 2 presents a summary of the statistical test 
performed on configurations with and without trend 
and then, with and without seasonality component at 
a significance level of 5%. The null hypothesis for 
the above test is formulated as: 

Null Hypothesis H0: Difference Between mean of 
two sample size is not statistically different. 

Table 2: Statistical t-test for forecast with trend, and with 
seasonality at a significance level of 5%, where L, T, S 
denotes Level, Trend and Seasonality component 
respectively and provides justification for selection of 
forecasting model highlighted in Table 1. 

Dataset L + T L + S Selected Model

Hourly Mean 
Temperature 

No No SES 

Hourly Number of 
Riders 

No Yes HWES 

Daily Waste Generation No No SES 

Monthly Car Sales Yes Yes HWES 

As seen from Table 2, there is no significant 
difference with forecast including trend and 
seasonality on dataset of Hourly Number of Riders 
as well as Daily Waste Generation, which is justified 
by selection of SES model in Table 2. On the 
contrary, for Hourly Number of Riders dataset, there 
is significant difference between forecast with and 
without including seasonality component, justifying 
the selection of HWES model. While for Monthly 
Car Sales, we can observe significant difference by 
including both trend as well as seasonality, validated 
by decreasing error in HES as well as in HWES. 
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6 CONCLUSIONS 

In this work, we describe a grammatical evolution 
based approach to time series modelling. The study 
covers various Averaging and Smoothing time series 
approaches for univariate forecasting. An important 
feature of our framework concerns the optimisation 
of the smoothing parameters for level, trend and 
seasonality components which can increase the 
accuracy of the forecast without explicitly defining 
them. The individual solutions obtained through 
large number of trials are validated using statistical 
t-test. 

The results indicate that the aggregated forecast 
error calculated using root mean squared error and 
time required for computation was marginally less or 
similar to traditional machine learning approach for 
smaller datasets, but significant difference was 
observed for big datasets, making it scalable. 
Moreover, grammar-based time series modelling 
does not require the fine tuning of parameters as 
required with Grid Search. 

This approach can be extended to incorporate 
other time series models like AutoRegression (AR) 
and Autoregressive Integrated Moving Average 
(ARIMA). This work was only tested for Univariate 
time series analysis and research for multivariate 
time series forecasting is being carried out by the 
authors and is in its testing phase.  
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