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Abstract: Electric buses offer an alternative to conventional vehicles in the public transport system due to their low
operational costs and low emissions. Therefore, the standard problems must be resolved with respect to the
nature of the electric buses, which is mainly the reduced driving range and charging time. In this paper, we
deal with the electric bus scheduling problem. We propose changes to the previously presented model, which
allowed only the continuous charging. These changes will allow the model to describe also discontinuous
charging when the electric bus can be unplugged during the charging, then let another electric bus to charge
and after that plug-in to charger again. These two formulations are tested by IP solver and the solutions
and performance of both discontinuous charging and continuous charging formulations are compared on the
datasets generated from the data provided by public transport system provider DPMŽ in the city of Žilina.

1 INTRODUCTION

In recent years the importance of electric vehicles is
increasing. The countries are trying to improve the
ecology and therefore reduce the emissions. The elec-
tric vehicles are a way that can reduce CO2 emissions.
From the point of public transport system providers,
the use of electric vehicles can reduce operational
costs.

With the application of the electric vehicles in the
public transport system, different problems must be
addressed. These problems are for example line plan-
ning, vehicle, and crew scheduling. The electric vehi-
cles have reduced driving range, based on the capac-
ity of the battery and also the charging time must be
considered, because it is much longer than the time
needed to refuel a conventional vehicle. Due to these
facts, the problems must be remodeled and new meth-
ods to solve these problems need to be proposed.

In our paper, we address the electric bus schedul-
ing problem (EBSP) which is a special case of vehi-
cle scheduling problem with the constraints of energy
and driving range. In this problem, we are assigning
electric buses to service trips, that need to be served.
In this paper, we are proposing changes to our pre-
viously presented mathematical model (Janovec and
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Koháni, 2019b; Janovec and Koháni, 2019a) which
allowed only continuous charging, that would enable
discontinuous charging. That means during the charg-
ing the unplugging is possible and then after an inter-
val of waiting the bus can be plugged in again and
continue charging. The discontinuous charging has
the potential to improve some types of objectives like
minimizing the charged energy but can worsen solu-
tions of different objectives like time spent waiting.
In this paper, we are researching the objective of min-
imizing the number of used electric buses. Due to
the complexity of the EBSP, we do not consider the
schedule of the drivers, therefore we assume that the
bus can be driven by different drivers and it is possible
to change drivers during the duty of the electric bus.

The proposed model is tested with an IP solver
on several datasets to find if discontinuous charging
changes the results obtained by the continuous charg-
ing model and the changes in the computational time.

In section 2 the state-of-the-art in the field is men-
tioned. Then in section 3 the problem of scheduling
electric buses is described and a linear mathematical
model for continuous charging is mentioned. Also,
the changes to the model that would enable discontin-
uous charging are proposed in this section. In section
4 the numerical experiments are described and the re-
sults we obtained are discussed. The last section con-
cludes the research and suggests possible future pos-
sibilities.
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2 RELATED WORK

The vehicle scheduling problem is a well-researched
problem and a lot of variants are known. Some
basic ideas on how the vehicle scheduling problem
is modeled and solved were mentioned in (Bunte
and Kliewer, 2009). There the authors present an
overview of the models for a single depot vehicle
scheduling problem as well as models for a multi-
ple depot scheduling problem. The basic ideas, how
the problem is solved, are mentioned for each model.
The authors also present different extensions of the
vehicle scheduling problem, like heterogeneous fleet,
time windows and route constraints. All these exten-
sions make the scheduling an NP-hard problem, but
for some specific cases, polynomial algorithms exist.
One example is a two depot vehicle scheduling prob-
lem, for which a specific solution method based on the
graph theory was proposed in (Czimmermann, 2006).

The scheduling of electric vehicles has two direc-
tions based on the used technology, specifically the
battery exchange system and the electric bus charg-
ing system. The scheduling with the battery exchange
system was addressed in (Kim et al., 2015) where the
authors proved the usability of the system by simula-
tion from the data gathered during an experimental
application of the electric buses in Soul. Schedul-
ing of electric buses with the battery exchange sys-
tem was researched by (Chao and Xiaohong, 2013),
where the authors present a mathematical model for
the single depot vehicle scheduling problem with two
objective functions. This problem was solved by the
Non-Dominated Sorting Genetic Algorithm.

The bus charging system is specific by charging
the buses during their operation or during the night
in the depot. The scheduling problem for this tech-
nology was addressed in (Sassi and Oulamara, 2017),
where a linear mathematical model for the schedul-
ing problem was presented. Besides the standard con-
straints of the battery, the model includes constraints
of maximal charging power that can be obtained from
the power grid. The authors also proposed two heuris-
tic algorithms to solve the problem and proved the
NP-hardness of the electric bus scheduling problem.

Next, two mathematical models were proposed by
(van Kooten Niekerk et al., 2017). The first model as-
sumed that charging is a linear process and the second
model was able to describe also a non-linear charging
process by discretization of the battery energy state.
The proposed models were solved by exact methods
and by the column generation method.

Non-linear model for the electric bus schedul-
ing problem was presented by (Rogge et al., 2018)
and was solved by grouping genetic algorithm. This

model considered only charging at one location,
specifically the depot. Also, the electric bus always
charges to the maximum capacity.

All of the above-mentioned authors who re-
searched the electric bus scheduling problem with bus
charging technology assumed the bus is charging con-
tinuously. Therefore, we focus on the discontinuous
charging, where the bus can be unplugged during the
charging and then again plugged-in after some time
of not charging. The possible advantages of this ap-
proach to charging electric vehicles were mentioned
in (Yanjin et al., 2016).

3 PROBLEM DESCRIPTION

In the problem of the electric bus scheduling prob-
lem (EBSP) we assign available electric buses to the
tasks that need to be served, which create a schedule
for each electric bus. The schedule is composed of
two different tasks (Fig. 1). The first type of task is
serving a service trip, which is a required type of task.
The second type of task is charging, when the electric
bus is plugged into a charger and it charges the bat-
tery. This type of task is voluntary and is performed
only when needed.

Figure 1: Illustration of electric bus schedules with arcs
connecting tasks of one electric bus schedule and arcs con-
necting charging events on one charger.

Each schedule of electric buses must met certain
conditions to be called feasible. The most important
condition is that each service trip is assigned to one
electric bus. Also, the electric bus can not be assigned
to more trips simultaneously. Furthermore, due to the
nature of electric buses, we add conditions that the bus
must have enough energy during the whole schedule
and that the battery capacity can not be exceeded dur-
ing the charging.
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3.1 Formal Formulation of the Problem

In the models, we use the set N of all the service trips.
Next, we add the depot, where the morning depot is
represented by the node D0 and the evening depot is
represented by the nodes Dn, where we add one pos-
sible depot node for each service trip. The set R is a
set of all chargers. At each charger r ∈ R we have T r

charging events, which are time intervals. Lastly, the
set of all electric bus types is denoted as K.

Each service trip i ∈ N is defined by the start time
si and its duration ti. The energy consumption during
the trip is denoted as constant ci. Next, the constant ti j
represents the time of transfer between the end termi-
nal of trip i and the start terminal of the trip j. The en-
ergy consumed during this transfer trip is represented
by constant ci j.

A charger r ∈ R has its charging speed qr defining
how much energy is charged during one unit of time.
The next needed information about the charger is its
location. This is represented by the travel time be-
tween the end terminal of service trip i and the charger
r denoted as tir with the energy consumption of cir.
Location is also defined by the travel time tr j between
the charger r and the starting terminal of service trip
j with the energy consumption of cr j.

At each charger r we defined a set of charging
events T r. Each charging event is derived from the
service trip. In other words, we create a charging
event on each charger for every service trip. The
charging event t at charger r is characterized by its
starting time srt , which is connected to the corre-
sponding service trip and is defined as srt = si+ti+tir,
where si is starting time of corresponding service trip,
ti is its duration and tir is the transfer time between the
trip and the charger. Also, the charging events in the
set T r at charger r ∈ R are ordered by ascending start-
ing time, which divides the whole available charging
time into intervals with different length

An available electric bus type k ∈ K is character-
ized by its battery. The battery has maximal capacity
represented by constant SoCk

max for each bus type k.
We also define a minimal battery capacitySoCk

min for
each bus type k, which can be used as the minimum
reserve of energy.

3.2 Mathematical Models

In this section, we list both of the linear mathemat-
ical models for the problem of scheduling of electric
buses. The first model is specific by continuous charg-
ing and the second represents also the alternative of
the discontinuous charging.

3.2.1 Continuous Charging Model

This model was presented in our previous work
(Janovec and Koháni, 2019a; Janovec and Koháni,
2019b), and there only continuous charging is en-
abled. That means the electric bus after plugging-in
to charger can start charging, but after unplugging, the
bus must continue to serve a service trip.

In this model we use sets Fi, Bi, Fcri, Bcri for each
charger i ∈ N, which are used to reduce the number
of the decision variables. Set Fi represent all possi-
ble following service trips, to which the electric bus
can transfer after the end of the service trip i. In other
words for trip j to be in set Fi of trip i the condition
s j ≥ si + ti must hold, where s j is starting time of ser-
vice trip j, si is starting time of trip i and ti is duration
of service trip i. Similarly the set Bi is a set of all
possible previous service trips to trip i.

The set Fcri is connected to charging events and
it contains the charging events at charger r which can
be visited after finishing the service trip i. For each
charging event t ∈ T r at charger r ∈ R in the set Fcri
the condition srt ≥ si + ti + tir must hold, where srt
is starting time of charging event t at charger r, si
is starting time of trip i, ti is duration of trip i and
tir is transfer time between ending point of trip i and
charger r. Similarly the set Bcri is a set of all possible
previous charging events at charger r of service trip i,
for which the condition srt + tri ≤ si is true, where tri
is transfer time from the charger r to the starting point
of trip i.

For each charging event t at charger r the set
Fi(r, t) define the following service trips and set
Bi(r, t) define previous charging events. For trip i to
become a part of set Fi(r, t) the condition srt + tri ≤ si
must be satisfied. Similarly the condition srt ≥ si +
ti + tir must hold for trip i to be in set Bi(r, t) of charg-
ing event t at charger r.

Next, we define the decision variable xk
i j which de-

scribes the decision to serve the service trip j just af-
ter serving service trip i with the vehicle k. The next
variables yk

irt and zk
rt j are connected to the transfer to

and from charger. Variable yk
irt represents the transfer

from the end terminal of service trip i to the charger
r to charge during the charging event t with the vehi-
cle k. The transfer from the charger r after charging
during charging event t to the starting terminal of ser-
vice trip j by the vehicle k is represented by decision
variable zk

rt j.
The variable wk

rt represents the principle of contin-
uous charging. The variable represents the decision
to continue charging during the following charging
event t + 1 which begins just after the end of charg-
ing event t at charger r with the vehicle k.
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To keep track of the energy state of the battery in
each used electric bus the last two variables ek

i and
εk

rt are introduced. The variable ek
i is energy state of

bus k just before the service trip i. The variable εk
rt is

similar, but it represent the energy state of bus k just
before the start of charging event t at charger r.

Objective

minimize ∑
k∈K

∑
j∈FD0

xk
D0 j + ∑

k∈K
∑
r∈R

∑
t∈FcrD0

yk
D0rt (1)

The objective function (1) minimizes the number
of used electric buses, where the first sum is the num-
ber of electric buses that depart from depot to the ser-
vice trip and the second sum is the number of electric
buses that depart from depot to the charger.

Vehicle Scheduling Constraints

∑
k∈K

∑
i∈B j

xk
i j + ∑

k∈K
∑
r∈R

∑
t∈Bcr j

zk
rt j = 1 ∀ j ∈ N (2)

∑
k∈K

∑
j∈Birt

yk
jrt + ∑

k∈K
wk

rt−1 ≤ 1 ∀ r ∈ R, t ∈ T r (3)

∑
i∈B j

xk
i j + ∑

r∈R
∑

t∈Bcr j

zk
rt j = ∑

l∈Fj

xk
jl + ∑

r∈R
∑

t∈Fcr j

yk
jrt

∀ j ∈ N,k ∈ K (4)

∑
i∈Birt

yk
irt +wk

rt−1 = ∑
j∈Firt

zk
rt j +wk

rt

∀ r ∈ R, t ∈ T r,k ∈ K (5)

To ensure that each service trip is served the con-
ditions (2) are used. The constrains (3) are connected
with a condition that during one time interval only
one electric bus can be charged at the charger. The
constraints (4) are standard flow constraints that en-
sure the same bus which was assigned to serve the
service trip would be assigned to serve the next task.
The constraints (5) are flow constraints also, but they
are connected to the charging events. That means the
bus which arrived to charge during a charging event
also leaves to serve a service trip or continue to charge
during the next interval after the end of the charging
event.

Energy Consumption Constraints

ek
D0

= SoCk
max ∀ k ∈ K (6)

ek
i ≥ SoCk

min + ci + ∑
j∈Fi

xk
i jci j + ∑

r∈R
∑

t∈Fcri

yk
irtcir

∀ i ∈ N,k ∈ K (7)

ek
j + cr j +Mqr(1− zk

rt j)≥ SoCk
min + zk

rt jcr j

∀ r ∈ R, t ∈ T r,k ∈ K, j ∈ Firt (8)

ek
j ≤ ek

i − xk
i j(ci + ci j)+SoCk

max(1− xk
i j)

∀ j ∈ N, i ∈ B j,k ∈ K (9)

ek
j ≥ ek

i − xk
i j(ci + ci j)−SoCk

max(1− xk
i j)

∀ j ∈ N, i ∈ B j,k ∈ K (10)

ε
k
rt ≤ ek

i − yk
irt(ci + cir)+SoCk

max(1− yk
irt)

∀ r ∈ R, t ∈ T r,k ∈ K, i ∈ Birt (11)

ε
k
rt ≥ ek

i − yk
irt(ci + cir)−SoCk

max(1− yk
irt)

∀ r ∈ R, t ∈ T r,k ∈ K, i ∈ Birt (12)

The constraints (6) initialize the battery capacity
to the maximum before the start of the working day
for each electric bus. To ensure the bus has enough
energy to drive the service trip and the following
transfer the constraints (7) are used. In these con-
straints, the constant SoCk

min is used as a lower limit of
the battery energy state, which can be understood as
the energy reserve of the battery. A similar condition
is represented by the constraints (8), which ensures
the bus has enough energy to transfer to the following
service trip after the charging.

One of the conditions which must be satisfied is
the energy preservation. To ensure this condition the
constraints (9) - (12) are introduced. The preservation
of energy between two consecutive service trips is de-
fined by a pair of constraints (9) and (10). The next
pair of constraints (11) and (12) preserve the energy
between the service trip and the following charging
event.

Charging Constraints

ek
j + cr j− ε

k
rt +SoCk

max(1− zk
rt j)≥ 0

∀ r ∈ R, t ∈ T r,k ∈ K, j ∈ Firt (13)

ε
k
rt+1− ε

k
rt +SoCk

max(1−wk
rt)≥ 0

∀ r ∈ R, t ∈ T r,k ∈ K (14)

ek
j + cr j−Mqr(1− zk

rt j)≤ SoCk
max

∀ r ∈ R, t ∈ T r,k ∈ K, j ∈ Firt (15)

ε
k
rt+1−Mqr(1−wk

rt)≤ SoCk
max

∀ r ∈ R, t ∈ T r,k ∈ K (16)
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ek
j ≤ ε

k
rt + zk

rt j((s j− tr j− srt)qr− cr j)

+SoCk
max(1− zk

rt j)

∀ j ∈ N,r ∈ R, t ∈ Bcr j,k ∈ K (17)

ε
k
rt+1 ≤ ε

k
rt +wk

rt(srt+1− srt)qr +SoCk
max(1−wk

rt)

∀ r ∈ R, t ∈ T r,k ∈ K (18)

ek
j + cr j− ε

k
rt −SoCk

max(1− zk
rt j)≤ (srt+1− srt)qr

∀r ∈ R, t ∈ T r,k ∈ K, j ∈ Firt (19)

The constraints (13) and (14) serves as a limitation
that the charged energy must be non-negative. Simi-
larly, the constraints (15) and (16) define the upper
bound of the battery energy state, which means the
maximal capacity of the battery is not exceeded dur-
ing the charging. Specifically, constraints (13) and
(15) are connected to a charging event which is fol-
lowed by the service trip and the constraints (14) and
(16) are connected to charging event followed by the
next charging.

The next constraints (17), (18) and (19) limit the
available charging time based on the decisions. It is
defined that the ending time of the charging event is
variable. But the time is limited by the start of the fol-
lowing service trip if the bus continues to the service
trip after charging, which is represented by the con-
straints (17). The charging time is also limited by the
start of the next charging event. This is represented by
the constraints (18) and (19). The constraints (18) are
applied when the charging event is followed by a next
charging event and constraints (19) are used when the
charging event is followed by a service trip.

Integrality and Non-negativity Constraints

xk
i j ∈ {0,1} ∀ k ∈ K, i ∈ N∪D0∪Dn, j ∈ Fi (20)

yk
irt ∈ {0,1} ∀ k ∈ K, i ∈ N,r ∈ R, t ∈ Fcri (21)

zk
rt j ∈ {0,1} ∀ k ∈ K,r ∈ R, t ∈ Tr, j ∈ Firt (22)

wk
rt ∈ {0,1} ∀ k ∈ K,r ∈ R, t ∈ Tr (23)

ek
j ≥ 0 ∀ k ∈ K, i ∈ N (24)

ε
k
rt ≥ 0 ∀ k ∈ K,r ∈ R, t ∈ Tr (25)

The constraints (20), (21), (22) and (23) define the
decision variables xk

i j, yk
irt , zk

rt j and wk
rt are binary. Fi-

nally, the non-negativity of the variables ek
j and εk

rt ,
that keep track of the energy state, is defined in the
constraints (24) and (25).

3.2.2 Discontinuous Charging Model

In this section, we propose changes to the model,
which would enable discontinuous charging. That
means the electric bus can be unplugged after charg-
ing during one time interval at charger, then wait
during the following time interval and at last can be
plugged again during the next time interval without
the need to continue by serving a service trip. The
change is shown in figure 2.

Figure 2: Difference between the continuous (a) and dis-
continuous (b) charging.

To define the connection between different charg-
ing events we introduce new decision variable uk

rts,
which represent decision that the electric bus k will
continue charging at charger r during the charging
event s after the charging during the charging event t.
To reduce the number of decision variables and also to
define only variables which are feasible from the time
point of view the set is introduced. The charging event
s to become a part of a set set C frt defined for charger
r and charging event t the charging event is s must
be on the same charger as event t and the condition
srt <= srs must hold. In our case we have the charg-
ing events sorted by the starting time at each charger,
that means in the set C frt are all the events that follow
the charging event t, or we can write s ∈ t +1, ...|T r|.
Similarly, the set of previous charging events Cbrt is
defined. It includes all the charging events that have
a start time before the start of the charging event t at
charger r.

With variable uk
rts we replace the variable wk

rt from
the continuous model and also adjust some of the con-
straints of the continuous charge model to consider
not only the following, respectively previous charg-
ing event, but all the following, respectively previous
charging events. The adjustments are shown and de-
scribed below.

∑
k∈K

∑
j∈Birt

yk
jrt + ∑

k∈K
∑

s∈C frt

uk
rts ≤ 1 ∀ r ∈ R, t ∈ T r

(26)
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∑
i∈Birt

yk
irt + ∑

s∈Cbrt

uk
rst = ∑

j∈Firt

zk
rt j + ∑

p∈C frt

uk
rt p

∀ r ∈ R, t ∈ T r,k ∈ K (27)

The constraints (26) replace the constraints (3),
which ensures that during one time interval only one
electric bus can be charged. The adjustment lies in the
fact we need to consider not only the previous charg-
ing event but all of the previous charging events. With
this idea we adjusted also the flow constraints (5) into
constraints (27), where we added into the constraints
all the connections between the current charging event
and previous, respectively following charging events.

We have not changed the energy consumption
constraints, because they do not depend on the con-
nections between the charging events.

ε
k
rs− ε

k
rt +SoCk

max(1−uk
rts)≥ 0

∀ r ∈ R, t ∈ T r,s ∈C frt ,k ∈ K (28)

ε
k
rs−Mqr(1−uk

rts)≤ SoCk
max

∀ r ∈ R, t ∈ T r,s ∈C frt ,k ∈ K (29)

ε
k
rs ≤ ε

k
rt +uk

rts(srt+1− srt)qr +SoCk
max(1−uk

rts)

∀ r ∈ R, t ∈ T r,s ∈C frt ,k ∈ K (30)

Constraints (14) were changed into constraints
(28), where we need to consider all combinations of
following charging events to set the charged energy
is non-negative. Similarly, the constraints (16) were
changed into constraints (29) and define the battery
does not exceed its maximal capacity during charg-
ing. The constraints (16) are added for each possi-
ble combination of charging events. Lastly the con-
straints (18) is changed into constraints (30) for each
possible combination of charging events. These con-
straints limit the charging time by the start of the im-
mediately following charging event. In this case, the
way we count the charged energy is changed.

uk
rts ∈ {0,1} ∀ k ∈ K,r ∈ R, t ∈ Tr,s ∈C frt (31)

The integrality constraints (31) define that the de-
cision variable uk

rts is binary and also replace the
obligatory constraints (23) of variable wk

rt .

4 NUMERICAL EXPERIMENTS

To test the adjustments of the model we performed a
number of experiments. Also to compare the perfor-
mance of both models we compared the computation
time of the exact solution made by the standard IP
solver Xpress IVE. The experiments were performed
on the machine with Intel Core i5-7200U 2,5Ghz,
16GB of RAM.

4.1 Data Description

For the experiments, we used data provided by the
public transport system provider DPMŽ in the city of
Žilina. This data contains information about the ser-
vice trips of diesel buses performed during one day
of operation. To test the models we generated six
datasets that cover different bus lines and contain a
different number of service trips.

The first dataset, denoted as DS1, contains 49 ser-
vice trips performed on line 26. The second dataset
(DS2) contains 77 trips served on line 27. The third
dataset (DS3) is a union of trips served on lines 26
and 29 and contains 83 trips. The fourth dataset (DS4)
covers lines 20, 29, 30 and 31 with 105 trips. The fifth
dataset (DS5) covers lines 20, 26, 29 and 30 with 133
trips and the last dataset (DS6) is a union of 160 trips
served at lines 26, 27 and 29.

Figure 3: Locations of charger in the city of Žilina.

The second needed part of the experiments is the
location of the chargers. In our experiments, we use
the current locations of chargers. There are two charg-
ers at the trolleybus depot and one charger at the cen-
ter of the city. These locations can be seen in figure 3
as blue dots.

Table 1: Energy consumption and battery capacity scenar-
ios.

Scenario Energy
consumption

Battery
capacity

Spring 0,8 kWh/km 140 kWh
Summer 1,08 kWh/km 140 kWh
Winter 1,08 kWh/km 105 kWh

The last part of the experiments were different sce-
narios based on the time of the year, which represent
different maximal energy states and different energy
consumption. The scenarios are summed up in the ta-
ble 1. The first scenario represents the basic setup. It
is connected to the spring and autumn season. The
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battery capacity was set to 140kWh based on the lit-
erature (ZeEUS project, 2016). The second scenario
is a summer scenario with increased energy consump-
tion per km by 35%, which is caused by the running
of air condition. In the last scenario, the energy con-
sumption is increased by 35% and the capacity is de-
creased by 25%. This scenario represents the win-
ter season, where the energy is also consumed on the
heating and the battery has lower capacity due to the
low temperature (Wood et al., 2012; Millner, 2010).

4.2 Results

In the tables 2, 3 and 4 we can see results of the ex-
periments performed on all the datasets with each sce-
nario. In each table, we have two columns - Continu-
ous and Discontinuous. The column Continuous rep-
resents the results of continuous charging model and
column Discontinuous shows the results of the dis-
continuous charging model. For each model we have
the solution (Sol) obtained by the IP solver, then col-
umn BB represents best bound of the solution and col-
umn Time is the computational time in seconds. Also,
the results obtained by the continuous model were the
same as the solution of the classic VSP problem.

Table 2: Results of experiments with spring scenario.

Data-
set

Continuous Discontinuous
Sol BB Time Sol BB Time

DS1 4 4 3 4 4 4,4
DS2 4 4 12,2 4 4 36,6
DS3 5 5 35,6 5 5 49,9
DS4 6 6 29,7 6 6 64,3
DS5 8 8 169,2 8 8 222,6
DS6 9 9 281,6 9 9 507,7

Table 3: Results of experiments with summer scenario.

Data-
set

Continuous Discontinuous
Sol BB Time Sol BB Time

DS1 4 4 2,9 4 4 5,4
DS2 4 4 12 4 4 36
DS3 5 5 36,5 5 5 50,2
DS4 6 6 31,3 6 6 65,1
DS5 8 8 170,7 8 8 211,8
DS6 9 9 282,8 9 9 544,9

The table 2 represent the results of the spring sce-
nario. We can see that the results obtained by both
models are the same. However, the solution time is
different. The computational time needed for the dis-
continuous charging model is always higher than for
the continuous charging model. This is caused by the
fact, that the discontinuous charging model is more

Table 4: Results of experiments with winter scenario.

Data-
set

Continuous Discontinuous
Sol BB Time Sol BB Time

DS1 4 4 3,3 4 4 10,6
DS2 4 4 33,8 4 4 131,8
DS3 5 5 42,9 5 5 286,8
DS4 6 6 773,5 6 6 920
DS5 10 8 57600 11 8 57600
DS6 11 9 57600 13 9 57600

complex, therefore more time is needed to solve this
model.

The results of the summer scenario are listed in
table 3. Similar to spring scenario the results of both
models are the same and the computational time is
also higher for discontinuous charging model. If we
compare the computation time between the spring and
summer scenario, the times are not much different.
Therefore we can conclude that the energy consump-
tion does not have a high impact on the computation
time.

The last scenario is the winter scenario, which
results are listed in table 4. There, for the smaller
datasets, the optimal solutions were obtained for both
models. In the case of datasets DS5 and DS6, the op-
timal solution was not found in the time limit, which
was set to 16 hours. There we can see that the so-
lution obtained by the continuous charging model is

Table 5: Number of used charging intervals (UCI), multi-
ple interval charging events (MIC) and interrupted charging
events (IC) for continuous and discontinuous charging in
spring (Sp), summer (Su) and winter(Wi) scenario (SC).

Data-
set SC Continuous Discontinuous

UCI MIC UCI MIC IC

DS1
Sp 3 0 6 1 0
Su 3 0 6 1 0
Wi 9 0 13 0 0

DS2
Sp 22 1 31 0 0
Su 22 1 31 1 0
Wi 36 4 51 13 0

DS3
Sp 42 3 32 1 0
Su 42 3 32 1 0
Wi 41 5 60 13 1

DS4
Sp 43 5 59 9 4
Su 43 5 59 9 4
Wi 84 17 70 14 0

DS5
Sp 62 4 65 10 2
Su 62 4 66 14 2
Wi 113 23 122 32 9

DS6
Sp 77 5 88 15 7
Su 77 5 88 15 7
Wi 157 36 146 35 16
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better. As we mentioned before this is caused by the
increased complexity of the discontinuous charging
model. From the point of comparison of the solution
time between different scenarios, the winter scenario
has increased computation time for both models. This
is caused by the decreased capacity of the battery.

In the table 5, there is a comparison of the count
of the charging intervals that were used for charg-
ing (UCI) during a specific scenario for each dataset.
From the results, we cannot say which type of charg-
ing uses less charging intervals. However, a change
can be seen in the number of charging events that
took multiple intervals (MIC). There the continuous
charging uses usually less number of multiple inter-
val charging events than the discontinuous charging,
but the count of the used interval during a multiple in-
terval charging was less in the case of discontinuous
charging. The last column IC shows the number of in-
terrupted charging events for discontinuous charging.
We can see that the number of interrupted charging
events is higher with the winter scenario.

5 CONCLUSION

In this paper we propose changes to the linear math-
ematical model, that would enable the discontinu-
ous charging. The new model was tested by IP
solver Xpress IVE and the results of the discontinuous
charging model were compared to the results of the
continuous charging model. From the results, we can
conclude, that in the case of minimizing the number
of the used electric vehicles on the selected datasets
the discontinuous charging model does not give bet-
ter results, moreover the computational time is higher.

Despite the obtained results, we see a potential
of the discontinuous charging model with the use of
different objective functions, for example minimizing
the length of deadheading trips between the service
trips respectively service trips and chargers. There-
fore, more experiments need to be conducted with the
presented model in the future, but with different ob-
jective functions. On the other hand, the proposed
models are complex and the solution time indicates
that the use of these models is not possible on large
scale problems. Therefore, the use of heuristics is ad-
vised on the larger-scale problems.
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