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In this paper, multiple variants of the Binary Moth Flame Optimization Algorithm (BMFO) based on chaotic
maps are introduced and compared as search strategies in a wrapper feature selection framework. The main
purpose of using chaotic maps is to enhance the initialization process of solutions in order to help the optimizer
alleviate the local minima and globally converge towards the optimal solution. The proposed approaches are
applied for the first time on FS problems. Dimensionality is a major problem that adversely impacts the learn-
ing process due to data-overfit and long learning time. Feature selection (FS) is a preprocessing stage in a data
mining process to reduce the dimensionality of the dataset by eliminating the redundant and irrelevant noisy
features. FS is formulated as an optimization problem. Thus, metaheuristic algorithms have been proposed
to find promising near optimal solutions for this complex problem. MFO is one of the recent metaheuristic
algorithms which has been efficiently used to solve various optimization problems in a wide range of appli-
cations. The proposed approaches have been tested on 23 medical datasets. The comparative results revealed
that the chaotic BMFO (CBMFO) significantly increased the performance of the MFO algorithm and achieved
competitive results when compared with other state-of-the-arts metaheuristic algorithms.

1 INTRODUCTION

In recent years, due to advances in data collection
methods, vast amounts of data have been stored in
data repositories. This is negatively reflected in the
size of datasets either by increasing the number of in-
stances and/or increasing the number of features.

Curse of dimensionality is a challenging prob-
lem that causes many negative consequences for
the datamining tasks (i.e classification, clustering)
(Khurma et al., 2020). It implies the existence of
some features that are unuseful for the learning pro-
cess such as the redundant and irrelevant features. Re-
dundant features do not add any new information to
the learning process because they can be inferred from
other features. On the other hand, irrelative features
are unrelated to the target class. These noisy fea-
tures may mislead the learning algorithm when they
are used in building the learning model. Furthermore,
they adversely affect the learner’s performance and
generate poor quality models due to data-overfit. In-
creasing dimensionality also consumes more learning
time and increases the demand for specialized hard-
ware resources.

Khurma, R., Aljarah, I. and Sharieh, A.

Feature selection (FS) is a primary preprocessing
stage in a datamining process that has two conflict-
ing objectives: producing a smaller version of the
dataset by minimizing it’s dimensions and simulta-
neously maximizing the learning performance (Faris
et al., 2019; Al-Madi et al., 2018). This is accom-
plished by eliminating the noisy features (redundant
or/and irrelevant) from original dataset without caus-
ing any loss of information. Formally speaking, for a
dataset of N features, FS process selects n features
from the original N features where n < N without
causing any degradation in the learner’s performance.
FS has the advantage that there is no generation of
new feature combinations so the original meaning of
the features is preserved. This is crucial for some
fields which cares about the readability of a dataset
such as bioinformatics and medicine.

The FS comprises four basic stages: subset gen-
eration, subset evaluation, checking a stopping crite-
rion and validation stage (Dash and Liu, 1997). Sub-
set generation is performed by a specific search tech-
nique (complete, heuristic) to generate candidate fea-
ture subsets. Subset evaluation determines the quality
of a generated feature subset using a particular tech-
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nique (filter or wrapper). FS is repeated until a spec-
ified condition is met (i.e maximum number of itera-
tions). The last stage is to validate the feature subset
by comparing it with the domain knowledge gathered
from experts.

With regard to the evaluation approaches. Filters
are considered rank based methods because they rely
on a predefined threshold to evaluate a feature. They
don’t involve any learning algorithm but they use the
intrinsic characteristics of the features. The absence
of the learning process makes filters more time effi-
cient. On the other hand, wrappers consider a learn-
ing algorithm to decide the quality of a feature sub-
set. This contributes to better performance results but
consumes more computational time.

FS search methods play a key role in controlling
the complexity of the FS process. Brute force meth-
ods create the feature space by generating all the pos-
sible feature subsets from the original features set.
Formally speaking, for n features, there are 2" fea-
ture subsets that can be generated. FS process that
involves a complete search procedure needs an ex-
ponential running time to exhaustively traverse all
the generated feature subsets. This is computation-
ally expensive and impractical with medium and large
datasets making the FS an NP-Hard problem.

Metaheuristic algorithms are stochastic search
methods that effectively generate promising solutions
(near optimal) in a less time effort. Metaheuris-
tic algorithms include a population based algorithms
that initialize multiple solutions during the optimiza-
tion process and update them in each iteration un-
til the global solution is best approximated. Popu-
lation based algorithms are further classified based
on the source of inspiration into Evolutionary Algo-
rithms (EA) and Swarm Intelligence algorithms (SI).
SIs are inspired from the social intelligence that can
be observed from the interactions between the groups
of creatures such as flock of wolves, swarm of fish and
colony of bee. A well known example for SI paradigm
is the Particle Swarm Optimization (PSO) (Kennedy
and Eberhart, 1997).

There are many metaheuristic algorithms that have
been adopted as search engines in a wrapper frame-
work and proved their effectiveness to limit the com-
plexity of FS problem and provide acceptable solu-
tions within a bounded time frame. These include
the well-regarded algorithms such as GA (Huang and
Wang, 2006) and PSO (Jain et al., 2018) and the
recent metaheuristic algorithms such as Whale Op-
timization Algorithm (WOA) (Sayed et al., 2018a),
Multi-Verse Optimization algorithm (MVO) (Ewees
etal., 2019) and Salp Swarm Algorithm (SSA) (Sayed
et al., 2018b).
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Moth Flame Optimization algorithm (MFO) is a
recently developed SI algorithm that mimics the navi-
gation method of moths at night. MFO proved it’s ef-
fectiveness in optimizing various complex optimiza-
tion problems in different fields (Mirjalili, 2015).
Like any population based paradigm, the MFO opti-
mizer has two conflicting milestones in the optimiza-
tion process called exploration and exploitation. In
the exploration phase, the search space is searched
to identify promising regions where the best solution
may exist while in the exploitation phase, the found
solutions are further improved. The main target in the
optimization process is to maintain a balance between
exploration and exploitation and smoothly alternates
between them. Too much exploration loses the opti-
mal solution while too much exploitation causes stag-
nation in a local minima.

The MFO algorithm has many advantages that
motivated us to select it as a search algorithm in wrap-
per frameworks: First, the search engine of the MFO
methodology relies on a spiral position update pro-
cedure that can change the positions of moths in a
manner that achieves a promising trade off between
the exploration and exploitation and adaptively con-
verges toward the optimal solution. Second, it had
been used to solve many problems with unknown and
constrained search spaces (Mirjalili, 2015). Third,
MFO algorithm is equipped with adaptive parameters
that increase exploration phase in the early stages of
the optimization process and increase the exploitation
in the final stages. Fourth, MFO always maintains the
best solutions obtained and reduces their numbers in
each iteration so that it gets one global best solution in
the final stage. Despite the promising characteristics
of the MFO algorithm, the search agents still have a
chance of being entrapped in local minima.

Chaotic maps are commonly used operators that
have been used to replace random components and
support convergence of multiple metaheuristic algo-
rithms. In 2007, Chaotic maps were hybridized with
PSO algorithm to develop a feasible approach for FS
and classification of the hyper spectral image data
(YANG et al., 2007). In 2011, a hybrid model for
FS and classification of large-dimensional microar-
ray data sets was developed by using correlation-
based FS (CFS) and the Taguchi Chaotic Binary PSO
(TCBPSO) (Chuang et al., 2011). The same author,
in the same year, designed a chaotic BPSO (CBPSO)
based on two kinds of chaotic maps called logistic
maps and tent maps that were integrated with BPSO
to determine the inertia weight of the BPSO to en-
hance the FS process. In 2017, chaotic maps were in-
tegrated with the MVO algorithm in the the context of
FS to cope with slow convergence and local minima
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problems. The used chaotic maps were Tent, Logistic,
Singer, Sinusoidal and Piecewise (Ewees et al., 2019).
An improved SSA was developed in 2018 to handle
the FS problem. Chaos theory was integrated into
the algorithm to replace the random variables with
chaotic variables. The developed approach was able
to efficiently mitigate the local minima and low con-
vergence problems (Sayed et al., 2018b). In 2018, a
new wrapper FS approach was developed based on
WOA and chaotic theory named CWOA in the medi-
cal application (Sayed et al., 2018a).

According to No-free-Lunch theorem (Wolpert
et al., 1997), there is no metaheuristic algorithm that
has the same performance with all optimization prob-
lems. Thus, the doors are still opened to propose new
modifications to enhance metaheuristic algorithms. In
in this paper, chaotic maps have been proposed for
the first time to enhance the MFO ability in the FS
binary space. The main contribution is the develop-
ment of four binary variants of the MFO algorithm
through the use of four different chaotic maps. The
main purpose is to improve the initialization strategy
of the standard MFO algorithm by replacing the uni-
form random distribution with chaotic equations. The
generated CBMFO variants are studied and compared
to analyze the influence of the adopted operators on
the BMFO performance while optimizing the feature
space in the domain of disease diagnosis.

The paper is organized as follows: Section 2 gives
an overview of the standard and binary MFO algo-
rithm. Section 3 discusses the proposed approach. In
Section 4, the experimental results are analyzed. Fi-
nally, in Section 5, conclusions and future works are
outlined.

2 METHODOLOGY

2.1 Overview of MFO

Moth Flame Optimization (MFO) is one of the re-
cent SI algorithms which was developed in (Mirjalili,
2015). The MFO methodology was inspired by the
natural movements of moths at night. The moths
are enabled to move long distances in straight line
by maintaining the same angle with respect to moon
light. This navigation method is called transfer ori-
entation. However, transfer orientation has the short-
coming that nearby light sources such as candle fool
the moths and force them to follow a spiral path until
they eventually die.

Eq.1 describes mathematically the natural spiral
motion of moths around a flame where M; represents
the i;;, moth, F j represents the j;;, flame, and S is the

spiral function. Eq.2 formulates the spiral motion us-
ing a standard logarithmic function where D; is the
distance between the i;;, moth and the j;, flame as de-
scribed in Eq.3, b is a constant value for determining
the shape of the logarithmic spiral, and ¢ is a random
number in the range [-1, 1]. The parameter r = —1
indicates the closest position of a moth to a flame
where ¢+ = 1 indicates the farthest position between
a moth and a flame. To achieve more exploitation
in the search space the ¢ parameter is considered in
the range [r,1] where r is linearly decreased over the
course of iterations from -1 to -2. Eq.4 shows gradual
decrements of the number of flames over the course of
iterations where [ is the current number of iteration, N
is the maximum number of flames and T is the max-
imum number of iterations. Algorithm 1 shows the
entire pseudo code of the MFO algorithm. The steps
of the MFO optimization starts by initializing the po-
sitions of moths. Each moth updates it’s position with
respect to a flame based on a spiral equation. The
t and r parameters are linearly decreased over itera-
tions to emphasize exploitation. In each iteration, the
flames list is updated and then sorted based on the
fitness values of flames. Consequently, the moths up-
date their positions with respect to their correspond-
ing flames. To increase the chance of reaching to
the global best solution, the number of flames is de-
creased with respect to the iteration number. Thus, a
given moth updates it’s position using only one of the
flames.

Mi = S(Mi,Fj) (1)
S(Mi,F j) = Di.e” .cos(2m) + F j 2)
Di=|Mi—F|j| 3)

FlameNo = round(N — [ (N—1)/T) ()

2.2 Binary MFO (BMFO)

The original MFO algorithm was developed to solve
global optimization problems where the components
of a solution are real values. All what is required
is to check that the upper and lower bounds are not
exceeded during the initialization and update proce-
dures. In the binary optimization problems, the case
is different because the solutions have only binary el-
ements (i.e either "0" or "1"). This restriction should
be not violated while the moths change their positions
in the binary search space. For achieving this purpose,
some operators have to be integrated with MFO algo-
rithm to allow it optimize in the binary search space.
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Algorithm 1: Pseudo-code of the MFO algorithm.
Input:Max_iteration, n (number of moths), d (num-
ber of dimensions)
Output: Approximated global solution
Initialize the position of moths

while | < Max_iteration do

Update flame no using Eq.4
OM = FitnessFunction(M);
if / == 1 then

F =sort(M);

OF = sort(OM);
else

F =sort(M;_,M));
OF = sort(OM;_,,0Mj);
end if
for i=1: ndo
for j=1:ddo
Update r and #;
Calculate D using Eq.3 with respect to the
corresponding moth;
Update M(i, j) using Egs.1 and Eqgs.2 with
respect to the corresponding moth;
end for
end for
I=1+1;
end while

The most common binary operator used for convert-
ing continuous optimizers into binary is the transfer
function (TF) (Mirjalili and Lewis, 2013). The main
reason for using TFs is that they are easy to imple-
ment without impacting the merit of the algorithm. In
this paper, the used TF is the sigmoid function which
was used originally in (Kennedy and Eberhart, 1997)
to generate the binary PSO (BPSO). In the MFO algo-
rithm, the first term of Eq.2 represents the step vector
which is redefined in Eq.5. The function of the sig-
moid is to determine a probability value in the range
[0,1] for each element of the solution. Eq.6 shows the
formula of the sigmoid function. Each moth updates
it’s position based on Eq.7 which takes the output of
Eq.6 as it’s input.

AM=Di.é" . cos(2m) (5)
TF(AM,)=1/(1+¢*M) (6)
if TF(AM
VI E S (AMi) )
, ifrand 2 TF(A M)
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2.3 Feature Selection based on BMFO

The FS problem must be represented correctly in or-
der to facilitate the optimizer task in the feature space.
There are two key issues to achieve this: properly rep-
resenting the solution and evaluating it using a spe-
cific fitness function. The solution to the FS problem
is represented as a binary vector where the length of
the vector is equal to the dimensions of the data set.
Thus, each element of the solution represents a fea-
ture that takes two values, either "1" if the feature
is selected or "0" if the feature is not selected. The
evaluation for the solution in the FS problem depends
on combining two main objectives of the FS problem
in one formula. These objectives are maximizing the
performance of the classifier and simultaneously min-
imizing the number of dimensions in the dataset. Eq.8
formulates the FS problem where otyg(D) is the er-
ror rate of the classification produced by a classifier,
|R| is the number of selected features in the reduced
dataset, and |C| is the number of features in the orig-
inal dataset, and o € [0, 1], B = (1 — @) are two pa-
rameters for representing the importance of classifi-
cation performance and length of feature subset based
on recommendations (Mafarja and Mirjalili, 2018).

Fitness = ovygr(D) + B|§| (3)

3 THE PROPOSED APPROACH

In this section, the proposed chaotic BMFO
(CBMFO) approaches are presented.

3.1 Chaotic Maps

Chaotic maps are mathematical systems that describe
a dynamic deterministic process which has a high sen-
sitivity to initial conditions (dos Santos Coelho and
Mariani, 2008). Even though the process is deter-
ministic but the outcomes are unpredictable. Chaotic
maps have proved their effectiveness in improving the
performance of metaheuristic algorithms when they
are integrated with them for solving a specific opti-
mization problem. They have been applied to replace
the random components of the metaheuristic algo-
rithm to provide a higher convergence capability and
alleviate the local minima problem by getting closer
to the position of the optimal solution. In this paper,
the impact of chaotic maps are studied on MFO opti-
mizer in the FS search space. Four different chaotic
maps have been selected called circle, logistic, piece-
wise and tent as formulated in equations Eq.9, Eq.10,
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Eq.11, Eq.12, respectively. Fig 1 visually presents
these chaotic maps. The developed chaotic MFO vari-
ants are called CBMFO1, CBMFO2, CBMFO3 and
CBMFO4 respectively. In these variants, the chaotic
maps are used to initiate the positions of moths in-
stead of using the uniform random distribution. The
idea is to improve the initialization process of the
MFO and reduce the uncertainty of the optimizer.
This is done by replacing the initial random positions
of moths generated by uniform random distribution
with positions generated by chaotic maps.

Circle : x;i+1 =mod(X;+b — (a2m) sin(2w x;),1)
)
where: a =0.5,b =0.2.
Logistic : x;+ 1 =ax;(1 — x;) (10)

where: a = 4.

5, if0<x<p
Xi—p ;
Xi—p if p<x;<0.5
Piecewise : xj11 = (ff;f;i p=u

if05<x;<1—p

0.5—-p
i iflep<x<p
(11)
where: p=0.4.
X if x; <7
Tent :xis1 =14 % l =
ent : Xj41 {130(1_%.), if x; > 0.7 i

4 EXPERIMENTAL RESULTS

In this paper, 23 medical datasets were downloaded
from UCI (Asuncion and Newman, 2007), Keel
(Alcala-Fdez et al., 2011) and Kaggle (Goldbloom
et al., 2017) data repositories to evaluate the proposed
wrapper approaches. Table 1 lists these datasets along
with their number of features, instances and classes.
All the datasets are characterized by balanced distri-
bution of their classes. To validate the proposed ap-
proaches, three well known metaheuristic algorithms
were used for comparison purposes: BGWO, BCS
and BBA. Their parameter settings are as follows: the
value of o parameter in GWO is in [2,0]. For BA,
the Qmin Frequency minimum value is 0, Qmax Fre-
quency maximum is 2, A Loudness value is 0.5 and r
Pulse rate is 0.5. For CS, the pa value is 0.25 and the
value of § parameter is 3/2.

All the experiments were executed on a personal
machine with AMD Athlon Dual-Core QL-60 CPU

Table 1: Description of the used datasets.

NO Dataset Name No features  No instances  No classes

1 Breast Cancer Wisconsin (Diagnostic) 30 569 2
2 Breast Cancer Wisconsin (Original) 9 699 2
3 Breast Cancer Wisconsin (Prognostic) 33 194 2
4 Breast Cancer Coimbra 9 115 2
5 BreastEW 30 596 2
6 Diabetic Retinopathy Debrecen 19 1151 2
7 Dermatology 34 366 6
8 ILPD (Indian Liver Patient Dataset) 10 583 2
9 Lymphography 18 148 4
10 Parkinsons 22 194 2
11 Parkinson’s Disease Classification 753 755 2
12 SPECT 22 267 2
13 Cleveland 13 297 5
14 HeartEW 13 270 2
15 Hepatitis 18 79 2
16  South African Heart (SA Heart ) 9 461 2
17 SPECTF Heart 43 266 2
18  Thyroid Disease (thyroid 0387) 21 7200 3
19 Heart 13 302 5
20  Pima-indians-diabetes 9 768 2
21 Leukemia 7129 72 2
22 Colon 2000 62 2
23 Prostate_GE 5966 102 2

at 1.90 GHz and memory of 2 GB running Win-
dows7 Ultimate 64 bit operating system. The opti-
mization algorithms are all implemented in Python
in the EvoloPy-FS framework (Khurma et al., 2020).
The maximum number of iterations and the popula-
tion size were set to 100 and 10 respectively. In this
work, the K-NN classifier (where K = 5 (Mafarja and
Mirjalili, 2018)) is used to evaluate individuals in the
wrapper FS approach. Each dataset is randomly di-
vided in two parts; 80% for training and 20% for
testing. To obtain statistically significant results, this
division was repeated 30 independent times. There-
fore, the final statistical results were obtained over
30 independent runs. The o and § parameters in the
fitness equation is set to 0.99 and 0.01, respectively
(Emary et al., 2016). The used evaluation measures
are fitness values, classification accuracy, number of
selected features and CPU time.

Inspecting the results in Table 2, it seems clearly
that the usage of chaotic operators have improved
the performance of the BMFO algorithm in terms of
the classification accuracy. By comparing CBMFOI,
CBMFO2, CBMFO3 and CBMFO4 it appears that
the CBMFO2 and CBMFO4 achieved promising re-
sults. Based on the ranking results, the Tent-based
CBMFO4 achieved the highest classification perfor-
mance in five out of 23 datasets then Logistic-based
CBMFO2 which which was superior across four
datasets. On the other hand, Circle-based CBMFO1
and Piecewise-based CBMFO3 outperformed other
algorithms only across two datasets. By combining
all the chaotic variants of the BMFO algorithm and
comparing their results with the standard BMFO algo-
rithm, it can be seen that the BMFO chaotic variants
achieved an improvement over the standard BMFO
equals 70%. Moreover, the standard BMFO was
not better than any of the chaotic approaches on any
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Figure 1: Visualized chaotic maps.
Table 2: Average Classification Accuracy from 30 Runs for All Approaches.
NO Dataset Name BMFO CBMFOL1 CBMFO2 CBMFO3 CBMFO4 BGWO BCS BBA
1 Breast Cancer Wisconsin (Diagnostic) 0.909 0.906 0.909 0.907 0.910 0.901 0.890 0.870
2 Breast Cancer Wisconsin (Original) 0.963 0.970 0.955 0.967 0.966 0.871 0.812 0.698
3 Breast Cancer Wisconsin (Prognostic) 0.583 0.588 0.600 0.596 0.575 0.570 0.533 0.500
4 Breast Cancer Coimbra 0.907 0.908 0.893 0.900 0.873 0.760 0.648 0.561
5 BreastEW 0.932 0.923 0.954 0.942 0.938 0.835 0.794 0.828
6 Diabetic Retinopathy Debrecen 0.542 0.538 0.551 0.536 0.548 0.527 0.500 0.500
7 Dermatology 0.820 0.787 0.813 0.822 0.804 0.829 0.833 0.753
8 ILPD (Indian Liver Patient Dataset) 0.714 0.714 0.714 0.714 0.714 0.742 0.733 0.661
9 Lymphography 0.772 0.744 0.761 0.800 0.750 0.723 0.691 0.612
10 Parkinsons 0.754 0.750 0.754 0.754 0.750 0.667 0.719 0.676
11 Parkinsons Disease Classification 0.811 0.809 0.811 0.798 0.816 0.789 0.763 0.671
12 SPECT 0.658 0.652 0.659 0.642 0.642 0.591 0.590 0.502
13 Cleveland 0.536 0.533 0.528 0.533 0.536 0.508 0.613 0.529
14 HeartEW 0.942 0.936 0.930 0.936 0.949 0.870 0.855 0.832
15 Hepatitis 0.750 0.750 0.750 0.750 0.750 0.673 0.641 0.561
16 South African Heart (SA Heart ) 0.684 0.683 0.693 0.697 0.684 0.630 0.616 0.593
17 SPECTF Heart 0.700 0.682 0.709 0.688 0.700 0.673 0.743 0.618
18 Thyroid Disease (thyroid0387) 0.981 0.980 0.981 0.981 0.981 0.943 0.934 0.902
19 Heart 0.752 0.767 0.767 0.758 0.776 0.727 0.724 0.719
20 Pima-indians-diabetes 0.807 0.807 0.807 0.807 0.807 0.813 0.800 0.790
21 Leukemia 1.000 1.000 1.000 1.000 1.000 0.987 0.950 0.885
22 Colon 0.656 0.644 0.667 0.656 0.667 0.630 0.603 0.620
23 Prostate_GE 0.500 0.501 0.511 0.503 0.519 0.503 0.504 0.500
Ranking (W|T]L) 0[4[19 2[2]19 4[5[14 2[[T7 S[d[14 2021 3020 0[023
Table 3: Average Fitness Values from 30 Runs for All Approaches.
NO Dataset Name BMFO CBMFO1 CBMFO2 CBMFO3 CBMFO4 BGWO BCS BBA
1 Breast Cancer Wisconsin (Diagnostic) 0.095 0.098 0.095 0.096 0.094 0.102 0.112 0.107
2 Breast Cancer Wisconsin (Original) 0.043 0.036 0.051 0.040 0.041 0.130 0.188 0.190
3 Breast Cancer Wisconsin (Prognostic) 0.415 0.411 0.399 0.403 0.424 0.433 0.468 0.499
4 Breast Cancer Coimbra 0.097 0.096 0.110 0.103 0.130 0.240 0.350 0.367
5 BreastEW 0.072 0.081 0.051 0.062 0.067 0.163 0.204 0.128
6 Diabetic Retinopathy Debrecen 0.457 0.462 0.448 0.464 0.452 0.474 0.498 0.495
7 Dermatology 0.184 0.216 0.190 0.181 0.199 0.172 0.168 0.180
8 ILPD (Indian Liver Patient Dataset) 0.290 0.290 0.290 0.290 0.290 0.263 0.271 0.321
9 Lymphography 0.231 0.258 0.242 0.204 0253 0.209 0.222 0.220
10 Parkinsons 0.248 0.252 0.248 0.248 0.252 0.332 0.280 0.273
11 Parkinsons Disease Classification 0.192 0.194 0.192 0.203 0.187 0.223 0.247 0.267
12 SPECT 0.344 0.351 0.343 0.359 0.359 0.411 0.411 0.417
13 Cleveland 0.462 0.465 0.470 0.464 0.462 0.489 0.386 0427
14 HeartEW 0.063 0.068 0.075 0.069 0.057 0.082 0.080 0.079
15 Hepatitis 0.253 0.252 0.252 0.253 0.252 0.329 0.359 0.364
16 South African Heart (SA Heart) 0317 0318 0.308 0.304 0316 0.371 0.384 0.367
17 SPECTF Heart 0.302 0.319 0.293 0.314 0.302 0.326 0.257 0.340
18 Thyroid Disease (thyroid 0387) 0.019 0.020 0.019 0.019 0.019 0.059 0.066 0.048
19 Heart 0.251 0.236 0.236 0.245 0.227 0.273 0.276 0.264
20 Pima-indians-diabetes 0.200 0.200 0.200 0.200 0.200 0.195 0.206 0.199
21 Leukemia 0.005 0.005 0.005 0.005 0.005 0.033 0.066 0.042
22 Colon 0.344 0.356 0.333 0.344 0.333 0.352 0.377 0.329
23 Prostate_GE 0.450 0.499 0.489 0.498 0.481 0.497 0.496 0.500
Ranking (W[T]L) 113[19 22[19 4[4[15 2[3[18 43]16 2[021 3[0[20 10122

dataset. By comparing all BMFO-based approaches
with other metaheuristic wrapper approaches, the
BMFO approach was superior in 78% of the data
sets. The improvement in the classification results of
the CBMFO can be explained that the chaotic opera-
tors have effectively improved the initialization pro-
cedure by replacing the uniform random distribution
with chaotic functions that have a greater sensitivity
to initial conditions. This led to a greater exploration
for the search space and better alleviating for the lo-
cal minima problem. Furthermore, the optimizer was
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able to achieve a better trade-off between the two con-
flicting milestones: exploration and exploitation. This
was realized by an improvement in the convergence
behaviour of the MFO in the binary feature space.

The overall performance of the proposed ap-
proaches can be better realized when analyzing the
fitness values results that combine both classification
accuracy and the selection ratio. From the results in
Table 3, it can be seen that CBMFO approaches got
better results than other methods in twelve out of 23
datasets that are close to half of the datasets.
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Table 4: Average Number of Selected Features from 30 Runs for All Approaches.

NO Dataset Name BMFO CBMFOL1 CBMFO2 CBMFO3 CBMFO4 BGWO BCS BBA
1 Breast Cancer Wisconsin (Diagnostic) 14.233 14.867 14.233 13.500 14.500 14.010 16.177 14.010
2 Breast Cancer Wisconsin (Original) 5.500 5.800 5.967 5.867 5.867 7.533 7.000 6.467
3 Breast Cancer Wisconsin (Prognostic) 15.967 15.867 16.033 16.100 16.367 18.233 16.400 15.400
4 Breast Cancer Coimbra 3.667 3.367 3.633 3.467 3.833 6.077 6.844 4.810
5 BreastEW 13.833 14.100 14.900 14.300 14.433 17.338 13.505 11.505
6 Diabetic Retinopathy Debrecen 7.567 7.667 7.267 7.467 7.533 10.563 8.290 6.763
7 Dermatology 18.300 17.733 17.567 18.233 18.200 21.000 18.699 14.401
8 ILPD (Indian Liver Patient Dataset) 4.000 4.000 4.000 4.000 4.000 6.567 7.333 5.300
9 Lymphography 9.433 9.733 10.167 10.133 9.233 10.230 9.300 7.330
10 Parkinsons 10.633 9.700 10.733 10.167 10.000 11.258 10.687 7.854
11 Parkinsons Disease Classification 373.733 345.967 346.600 225.833 347.000 421.211 383.508 363.711
12 SPECT 11.433 12.167 11.700 11.500 11.367 13.106 10.779 8.210
13 Cleveland 6.200 6.400 5.967 5.633 5.833 8.900 7.632 6.346
14 HeartEW 7.400 7.067 7.633 7.567 7.400 6.700 5.867 4.700
15 Hepatitis 9.100 8.167 8.667 9.400 8.233 13.496 11.123 9.511
16 South African Heart (SA Heart) 3.700 3.467 3.400 3.067 3333 6333 4221 5.100
17 SPECTF Heart 20.600 19.000 20.400 20.567 20.033 26.355 18.941 14.891
18 Thyroid Disease (thyroid 0387) 8.523 8.022 8.100 9.1061 8.087 11.490 9.990 6.990
19 Heart 6.367 6.100 6.200 6.167 6.033 8.600 7.367 6.067
20 Pima-indians-diabetes 6.500 6.333 6.400 6.367 6.700 6.946 8.059 6.067
21 Leukemia 3562.692 3536.442 3822.169 3671.113 3652.963 4052.986 3944.353 3249.220
22 Colon 994.157 989.529 1000.569 998.457 992.417 1147.978 1101.712 933.378
23 Prostate_GE 2988.113 2960.663 2998.510 2991.336 2958.447 2994.691 2986.400 2985.631
Ranking (W[T]L) 171721 2[1]20 0[122 41718 2[1]20 0[0[23 0[0[23 13[0[10
Table 5: Average Computational Time from 30 Runs for All Approaches.
NO Dataset Name BMFO CBMFOL1 CBMFO2 CBMFO3 CBMFO4 BGWO BCS BBA
1 Breast Cancer Wisconsin (Diagnostic) 123.147 159.580 161.999 162.096 114.157 98.772 68.757 52.269
2 Breast Cancer Wisconsin (Original) 121.202 108.772 122.246 117.109 112.431 83.596 52.370 45.798
3 Breast Cancer Wisconsin (Prognostic) 85.989 87.877 85.364 95.580 55.849 49.632 27.458 15.896
4 Breast Cancer Coimbra 62.392 43.926 39.175 46.251 64.872 31715 25.790 18.896
5 BreastEW 165.641 161.151 150.501 163.598 153.825 103.559 45.789 46.796
6 Diabetic Retinopathy Debrecen 268.268 291.092 241.833 280.222 271.357 211.789 169.524 144.891
7 Dermatology 86.433 70.400 66.805 111.632 107.998 80.632 53.969 41.598
8 ILPD (Indian Liver Patient Dataset) 103.550 76.286 58.309 80.301 59.457 84.633 62.753 55.789
9 Lymphography 68.208 40.978 47.599 53.355 41.869 65.890 34.529 32.741
10 Parkinsons 82.594 65.517 50.102 50.137 47.086 81.522 43.960 41.875
11 Parkinsons Disease Classification 956.432 734.329 768.159 946.304 914.159 884.631 436.590 420.637
12 SPECT 99.688 57.469 68.748 74.292 58.382 75.457 28.693 27.551
13 Cleveland 55.173 66.702 54.722 54.976 75.738 61.896 22.963 31.893
14 HeartEW 87.035 85.627 78.856 83.678 83.966 88.460 33.569 37.560
15 Hepatitis 34.603 48.176 36.794 38.536 50.800 39.772 26.896 13.598
16 South African Heart (SA Heart ) 82.592 76.325 86.452 88.409 81.023 95.569 37.510 39.632
17 SPECTF Heart 93.671 97.836 84.029 91.410 104.362 91.559 38.569 49.110
18 Thyroid Disease (thyroid 0387) 5021.887 4335.116 4896.563 5781.663 4891.263 3789.224 1598.789 1269.633
19 Heart 56.492 51.446 67.667 73.856 59.964 71.583 35.094 43.669
20 Pima-indians-diabetes 179.240 118.969 137.138 166.997 141.529 145225 33.789 31.115
21 Leukemia 1416.448 1458.963 1215.662 1589.445 1460.781 1490.236 849.740 800.559
22 Colon 583.960 5689.021 561.896 5981.024 5713.693 371.777 220.631 197.855
23 Prostate_GE 1257.102 1236.896 1234.112 1456.932 1008.963 1149.115 988.763 950.111
Ranking (W|T]L) 0[0)23 0[0123 0[0123 0[0123 0[0123 0[0123 5[0[18 8)0[5

According to Table 4, it seems clear that the
BBA algorithm outperformed other wrapper ap-
proaches across 57% of datasets. By comparing the
CBMFO approaches to each other in terms of selec-
tion ratio, the Circle-based CBMFO1 outperformed
other chaotic approaches across 52% of datasets and
then came the Piecewise-based CBMFO3 and Tent-
based CBMFO4 that outperformed other chaotic vari-
ants evenly over 17% of datasets and finally came
Logistic-based CBMFO2 that outperformed other
chaotic variants on 1% of datasets.

By looking at Table 5, it seems clear from the
ranking results that the BBA algorithm outperformed
other wrapper approaches across 78% of datasets
while the BCS algorithm outperformed others across
22% of the datasets. It is seen that the BMFO
approaches were not able to outperform these ap-
proaches on any of the datasets. By comparing the
CBMFO approaches to each other in terms of running
time, the Logistic-based CBMFO2 and Circle-based
CBMFOL achieved better results compared with other
chaotic variants. The CBMFO2 consumed the short-
est optimization time to find the near optimal fea-

ture subset across ten datasets and the CBMFOI1 con-
sumed the shortest optimization time across eight
datasets. However, the BBA algorithm had much su-
perior performance in general. On the other hand,
CBMFO4 based on Tent map achieved the shortest
CPU time for optimization across four datasets. For
the CBMFO3, it is clear that this approach didn’t out-
perform any other approaches in terms of running
time.

S CONCLUSIONS AND FUTURE
WORK

In this paper, multiple binary versions based on MFO
algorithm have been proposed to address the FS prob-
lem. The chaotic maps have been adopted to enhance
the BMFO performance in the feature space. Specifi-
cally, the chaotic maps were used to enhance the ini-
tialization of moths and promote the convergence be-
haviour of the MFO algorithm. Therefore, the MFO
can alleviate stagnation in local minima and reach to
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a closer place near the global optima. To evaluate the
proposed approaches, 23 medical datasets were used
from well regarded data repositories including UCI,
Keel and Kaggle. The comparative results showed
that the chaotic operators have enhanced the perfor-
mance of the standard BMFO when used to optimize
the feature search space. For the future, the research
line of metaheuristic based wrapper methods can be
continued by proposing new modification strategies
and adopting other metahueristic algorithms to exam-
ine feature space.
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