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Abstract: In this paper we present the protocols for lightweight authentication and secure communication for IoT and 
embedded devices. The protocols are using a PUF/TRNG combined circuit as a basic building block. The 
goal is to show the possibilities of securing communication and authentication of the embedded systems, 
using PUF and TRNG for secure key generation, without requirement to store secrets on the device itself, thus 
allowing to significantly simplify the problem of key management on the simple hardware devices and 
microcontrollers, while allowing secure communication. 

1 INTRODUCTION 

Implementation of proper methods for authentication 
and secure communication, including secure 
management of key material in lightweight devices, 
is of significant importance, especially with rise of 
IoT devices. The use of cryptography and 
corresponding keys in proper manner is one of the 
leading problems, when talking about devices with 
limited computing resources and low power 
consumption. 

Variety of communication protocols were 
proposed for secure authentication and 
commuunication in IoT world, such as machine-to-
machine/Internet of Things connectivity protocol 
(MQTT), Constrained Application Protocol (CoAP), 
or Datagram Transport Layer Security (DTLS) that 
can be integrated with CoAP. However, those are still 
rather heavy-weight and computationally quite 
expensive protocols when considering simple and 
constrained devices and thus their variants are 
constantly being present, for instance Lithe (Raza et 
al., 2013) or E-Lithe (Haroon et al., 2007) as a 
lightweight variant of DTLS (Tschofenig et al., 
2016). Moreover, these protocols do not deal with 
secure generation and storage of cryptographic keys, 
which is rather  prerequisity for their usage.   

Before introducing the principles of Physically 
Unclonable Functions (PUFs), we shall summarize 
the currently most widely used methods for key 

generation and storage. Nowadays, Random Number 
Generators (RNGs) are mostly used for key 
generation that are further used in cryptographic 
protocols for authentication and secure 
communication. For lightweight and embedded 
devices, the True Random Number Generators 
(TRNGs) are usually implemented, utilizing non-
deterministic effects in analogue or digital circuits, 
since this is resource and power efficient way. 
Therefore, the quality of TRNG has a significant 
influence on security of whole system. Improperly 
implemented TRNG often leads to compromise of the 
whole system or reduces the complexity of the attack.  

Moreover, once the key is generated, it needs to 
be stored securely in the device (Handschuh et al., 
2010), e.g. utilizing storage with tamper-resistance 
techniques implemented. However, to implement 
such measures is a complex and cost-ineffective task, 

 

Figure 1: Interconnected systems with an Authentication 
Authority. 
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therefore often neglected in practical applications.  
Thus, properly defined and implemented key 

management, including proper key generation, key 
storage and key usage for various applications 
(authentication, access control, encryption) in 
interconnected IoT and embedded systems, as 
depicted in Figure 1 is still a challenging task (Roman 
et al., 2013, Malina et al., 2016). A consistent way of 
handling various cryptographic keys, possibilities of 
reusing traditional security mechanisms and ensuring 
end-to-end integrity verification mechanisms is 
needed (Sicari et al., 2015). All security protocols 
require credentials, thus optimal key management 
systems must be implemented to store and distribute 
these credentials (Roman et al., 2013). 

The systematic and formalized approach to key 
management in IoT devices and embedded systems 
with properly defined requirements, as well as 
efficient light-weight modules for key generation, 
storage and secure usage are missing. However, the 
need for proper key management in particular 
applications of embedded systems and IoT started to 
be raised in some research papers with regards to 
specific areas such as automotive context (Schleiffer 
et al., 2013), distributed sensor networks (Chan et al., 
2005), or embedded systems in general (Sklavos et 
al., 2016). 

Though TRNGs are mostly used nowadays for 
cryptographic key generation, in recent years, 
numerous works dealing with Physical Unclonable 
Functions (PUFs) for key generation had been 
published, proposing PUFs as another possible 
approach for key generation. The concept of PUF was 
originally introduced in (Pappu, 2002), showing that 
instead of relying on number theory, the mesoscopic 
physics of coherent transport through a disordered 
medium can be used to allocate and authenticate 
unique identifiers by physically reducing the 
medium’s microstructure to a fixed-length string of 
binary digits. These physical one-way functions are 
inexpensive to fabricate, prohibitively difficult to 
duplicate, admit no compact mathematical 
representation, and are intrinsically tamper-resistant. 
This makes PUF as ideal candidate for providing 
tamper resistant design for cryptographic key 
generation and storage.  

Therefore, PUFs usage is promising to solve the 
issue of secure storage of cryptographic keys. Instead 
of storing the key in memory, the key is generated at 
the time it is needed. A combined PUF/TRNG circuit 
used in our paper is therefore a suitable alternative for 
the purpose of key generation and authentication in 
lightweight cryptographic applications, such as IoT 
devices and other embedded platforms.  

The structure of this paper is as follows. In Section 
2, related work is summarized. In Section 3, our 
proposed approach to lightweight authentication and 
secure communication is presented. Section 4 
presents a case study with a specific PUF/TRNG 
circuit. Section 5 concludes this paper. 

2 RELATED WORK 

Every protocol for authentication and secure 
communication requires cryptographic keys. The 
minimum common requirements for key generation 
and storage are summarized by Maes et al. (Maes et 
al, 2012): A source of true randomness that ensures 
unpredictable and unique fresh keys; and a protected 
memory which reliably stores the keys information 
while shielding it completely from unauthorized 
parties. As further discussed in (Fischer, 2012), the 
security of cryptographic systems is mainly linked to 
the protection of confidential keys. In high-end 
information security systems, when used in an 
uncontrolled environment, cryptographic keys should 
never be generated outside the system and they 
should never leave the system in clear. For the same 
reason, if the security system is implemented in a 
single chip (cryptographic system- on-chip), the keys 
should be generated inside the same chip. 

As mentioned above, for secure key generation a 
source of true randomness is needed, and the 
generated keys should be unpredictable. Thus, for 
proper generation of cryptographic keys random bit 
stream is required. Therefore, traditional methods of 
generating cryptographic keys in hardware and 
embedded systems are mainly based on true random 
number generators (TRNGs). As stated by Schindler 
(Schindler, 2009), ideal random number generators 
are characterized by the property that the generated 
random numbers are independent and uniformly 
distributed on a finite range. Various TRNG designs 
suitable for cryptographic key generation include 
purely digital designs (Epstein et al. 2003, Fairfield et 
al. 1984), Phase-Locked Loops in designs targeting 
FPGAs (Fischer and Drutarovsky 2012, Deak et al. 
2015), Random access memories (Gyorfi et al. 2009) 
or multiple designs (Kohlbrenner and Gaj, 2004, 
Bucci et al., 2003, Golic, 2006, Tkacik, 2003) based 
on Ring Oscillators as a source of entropy. 

As discussed in (Maes et al, 2012), PUF-based 
key generators try to fulfill two requirements on 
secure key generation and storage at once. The 
randomness of the PUF response comes from the 
manufacturing process variation, and it is intrinsically 
present in the device. There is no need for a protected 
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non-volatile memory since the randomness is 
measured only when needed. However, the PUF 
output may slightly vary in different measurements, 
and it is still challenging to get static PUF output as 
required by cryptographic schemes. Existing PUF 
designs proposed for cryptographic applications 
include PUFKY based on a ring oscillator PUF (Maes 
et al, 2012) providing low-failure rate, generation of 
read-once keys (Kirkpatrick et al. 2010), single-chip 
secure processor for embedded systems (Suh et al., 
2007), arbiter PUF for device authentication and 
secret key generation (Suh and Devadas, 2007) and 
others. 

Our goal is to propose a secure communication 
and authentication method using a combined 
PUF/TRNG circuit that will allow secure generation 
of keys using both PUF and TRNG at the same time, 
maximizing benefits of each one. There have been 
several similar works published recently, however, 
the first attempts in using PUF for the device 
authentication were rather simple. In (Suh and 
Devadas, 2007) simple authentication against 
authentication authority was discussed, using pre-
generated challenge-response pairs stored centrally. 
At the authentication time, the challenge is sent to the 
device and response then compared with the output. 
Same challenge cannot be reused again due to 
possible replay attacks. 

More sophisticated PUF-based authentication 
protocols were reviewed in (Delvaux et al., 2014). 
The work of (Ozturk et al., 2008) using 
reprogrammable non-volatile memory; Hammouri et 
al. (Hammouri et al. , 2008) using two arbiter PUFs; 
protocol based on logically reconfigurable PUFs 
(Katzenbeisser et al. 2011) which allows to recycle 
the challenge tokens; Reverse Fuzzy Extractor (Van 
Herrewege et al., 2012) allowing mutual 
authentication; Slender PUF protocol (Majzoobi et 
al., 2012) that does not expose the full PUF responses, 
only the random subset instead; and Converse 
authentication Protocol (Kocabas et al., 2012) which 
provides one-way authentication of the server. 

All of the protocols discussed above deal with 
authentication only, leaving the need for key 
establishment and secure communication open, 
which is also one of the main conclusions of the PUF 
authentication usage review (Delvaux et al., 2014), 
discussing the caveats of the PUF responses being not 
perfectly reproducible, small output space of strong 
PUFs or need of secure TRNG, that is substantial for 
most of the protocols. 

Another concern is privacy of the authenticated 
devices. As discussed in (Bolotnyy and Robins, 
2007), an algorithm is privacy preserving if an 

adversary cannot distinguish between any pair of 
devices, and thus, the PUF must be able to generate 
long chains of unique IDs (i.e., without repetitions). 
Possible approach to privacy preserving 
authentication protocol is presented in (Aysu et al., 
2015), based on fuzzy extractor with helper-data 
construction technique based on TRNG. 

In this paper we discuss protocols for 
authentication and secure communication utilizing 
PUF and TRNG. We show, it is advantageous to have 
single module that will allow generation of both 
TRNG and PUF at the same time, since it minimizes 
implementation requirements and operational 
resource consumption. The aim is not to require 
storing secrets on the IoT or embedded system itself 
to simplify key management on the simple hardware 
devices and microcontrollers.  

3 PROPOSED APPROACH 

When designing the embedded module for secure 
authentication and communication, the main goal is 
to simplify the key management on the endpoint 
embedded device itself. Thus, we propose to utilize 
the single circuit for key generation using PUF and 
TRNG as a basic building block of the module so that  

 

Figure 2: Embedded module for secure authentication and 
communication. KDF is a Key Derivation Function, 
GENPK generates a public key from a private key and 
public parameters. Error Correction is used to obtain a 
stable key material from the PUF Response (see Section 
3.1). Functions covered in this paper are coloured in blue. 
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there is no need to store secrets on the hardware 
device.  

The overall module depicted in Figure 2 provides 
PUF authentication and PUF/TRNG based key 
generation. For the authentication, the PUF is used, 
since it provides randomness intrinsically present in 
the device and utilizes the fact that the generated 
response is unique per device. Since there is a need 
for both static key, as well as ephemeral keys, 
combination of PUF and TRNG is used in this case – 
the PUF is used for generation of static (private) key 
that never leaves the device, thus utilizing all the 
advantages of PUF, while TRNG is used for 
generation of ephemeral, one-time keys, that are 
shared with other communicating parties.  

Asymmetric schemes are suitable if the private 
key is easily generated from random sequence by a 
Key Derivation Function (KDF), such as PBKDF2 
(RSA Laboratories, 2012). For example, ElGamal 
encryption (ElGamal, 1985) and DSA/ECDSA 
signature schemes can be used, if good quality public 
parameters are chosen (generation of the public key 
from a private key si denoted as GENPK in Figure 2). 
On the contrary, an RSA key requires more complex 
processing including secure prime generation. TRNG 
output is also used to generate random nonce and 
padding data. In this paper, we will focus only on 
symmetric schemes (with the exception of 
Algorithm 1). 

The proposed protocols for authentication against 
a central authentication authority, and also mutual 
device-device authentication, are further discussed in 
detail in following sections. 

3.1 Authentication against Central 
Authentication Authority 

Before any communication is allowed the connected 
device must be properly authenticated. Since the PUF 
responses are unique per each device, and are 
intrinsically random, i makes PUF the ideal 
cryptographic primitive for device authentication. We 
propose simple and straightforward authentication 
protocol using pre-generated challenge-response 
pairs that can be easily implemented in hardware 
devices. This protocol does not require the PUF to 
have a large space of challenge-response pairs (it can 
be used even for one challenge-response pair). The 
authentication protocol consists of two phases – 
secure enrolment phase and authentication phase 
itself and is depicted in Algorithm 1. 

The Enrolment phase is critical for the security of 
all protocols based on PUFs, and (analogous to 
biometric authentication methods) must be performed 

in a secure environment. We assume that a suitable 
environment can be created (for example, by separate 
physical access to the devices), but specific means are 
not elaborated in this paper. 

During the Enrolment phase of Algorithm 1, the 
challenge/response pair(s) (C, R) are measured from 
the targeted device and securely stored at the central 
authenticating authority (AA), that can be either 
integrated into the gateway or be represented by 
separate device that the gateway is querying during 
authentication process. A database DBDi of the pairs 
(C, R) is created for each device Di. Furthermore, the 
public key (PKAA) of the authenticating authority is 
pre-set on the device, so as the authentication data can 
be securely transferred. For this purpose, an 
asymmetric scheme (ElGamal) can be used, as 
proposed in the section above. We assume that PKAA 
is protected against unauthorized changes (by the 
tamper-evidence property of the PUF). 

The first 4 steps of the Enrolment phase are 
common for all 3 algorithms presented in this paper. 
The database DBDi is used also in the Authentication 
phases of Algorithms 2 – 3. 

Enrolment phase (Secure environment) 
Common for Algorithms 1 – 3: 
1. AA → D1: Challenges (C1, C2, ...) 
2. D1:  R1 = PUF(C1), R2 = PUF(C2) ... 
3. D1 → AA: Responses (R1, R2, ...) 
4. AA:  Store (Ci, Ri) to DBD1 

Specific only for Algorithm 1: 
5. AA → D1: Public key PKAA 
6. D1: Store(PKAA) 
 
Authentication phase for D1  
1. AA:  Choose (C, R) from DBD1 
2. AA → D1: Challenge C, Nonce N 
3. D1:  R’ = PUF(C) 
4. D1 → AA: CR = EPK_AA(R’ || N) 
5. AA:  (R’, N’) = DSK_AA(CR) 

Compare(ܴ ≅ ܴ′), Compare(N = N’) 

Algorithm 1: Enrolment and Authentication against central 
Authentication Authority. 

 
The Authentication phase of Algorithm 1 is 

executed every time the device is connected to the 
network and needs to be authenticated. AA randomly 
chooses one of the challenges C and sends it together 
with the nonce value N to the device to be 
authenticated. The nonce value is used to prevent 
simple replay attacks and allows each challenge-
response pair to be used repeatedly. On the device 
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that is being authenticated the appropriate PUF 
response is generated, concatenated with nonce value 
and encrypted with public key of the Authenticating 
Authority. Authenticating Authority then compares 
(strictly) if the decrypted nonce value N’ = N. Since 
the PUF response may slightly vary across various 
measurements, a predetermined number of faulty bits 
in R’ is tolerated. If both match, the device is 
successfully authenticated. The disadvantage of 
Algorithm 1 is that it only performs authentication 
and does not provide a cryptographic context for 
future communication. 

Authentication of a single device (D1) to the AA 
without asymmetric cryptography is depicted in 
Algorithm 2. (The Enrolment phase is the same as in 
Algorithm 1, steps 1. – 4.) This method includes 
generating a shared symmetric key K, which requires 
a stable error-free PUF output. This is achieved by 
using an error-correcting code (ECC), denoted in the 
algorithm by its functions Encode and Decode. This 
code must have enough redundancy and structure to 
correct the maximum amount of errors assumed in the 
PUF when operated under various conditions 
(voltage, temperature etc.).  

Choosing a suitable ECC depends on the bit error 
rate and length of PUF response while meeting the 
required corrected output length. The computational 
power of the device is also a limiting factor. In the 
case of “lightweight” devices, simple codes (such as 
a repetition code) are preferable.  

 
Authentication phase – using symmetric cipher  
1. D1 → AA: Call(D1) 

2. AA: r = TRNG() 
3.   Choose (C, R) from DBD1 
4.   H = R  Encode(r) 
5.   K = KDF(r) 

6. AA → D1: Challenge C, Helper string H 

7. D1:  R’ = PUF(C) 
8.   r = Decode(R’  H) 
9.   K = KDF(r) 

10. D1 ↔ AA: Authentication + Encryption with K 

Algorithm 2: Authentication of a device D1 to the AA. 

The helper string H is a distance from the raw 
PUF response R to the random codeword Encode(r). 
It is computed by the AA (step 4 of Algorithm 2). The 
device then uses it to recover the key material (step 
8), and subsequently derive the key K. 

The shared key K can be used for authentication 
and encrypted communication, as opposed to 

Algorithm 1, which covers only authentication, 
limiting its usefulness. On the other hand, Algorithm 
1 does not require the generation of a helper string, 
nor does it need any error correction codes. 

3.2 Mutual Device Authentication 

Not only the device needs to be authenticated to 
central authority when connected to the network, the 
devices must be mutually authenticated before they 
start to communicate, as well. Similarly, as in the 
previous case, central authenticating authority stores 
the pre-generated challenge-response pair(s), and acts 
as trusted 3rd party. This time though, a shared 
symmetric key is established between the two 
devices, and a conventional symmetric authenticated 
and encrypted session can follow afterwards. The 
goal is to use the PUFs in both devices D1 and D2, 
but not transmit any PUF response over the network. 
By using the one-wayness of the hash functions used, 
no device gets to know other device’s PUF response, 
even if it monitors all communication. An error 
correcting code is used to ensure stable PUF outputs. 
The codewords are selected randomly from the code 
space by the AA. The overall process is described in 
Algorithm 3. 
 
Mutual authentication of D1 and D2 using AA  
1. D1 → AA: Call(D1, D2) 

2. AA: rD1 = TRNG()  
3.   rD2 = TRNG()  
4.   Choose (CD1, RD1) from DBD1 
5.   Choose (CD2, RD2) from DBD2 
6.   HD1 = RD1  Encode(rD1)  
7.   HD2 = RD2  Encode(rD2)  
8.   r = Hash(rD1)  Hash(rD2) 

9. AA → D1: (CD1, HD1, r) 
10. AA → D2: Call(D1, D2) , (CD2, HD2, r) 

11. D1:  R’D1 = PUF(CD1)  
12.   rD1 = Decode(R’D1  HD1)  
13.   Hash(rD2) = Hash(rD1)  r 
14.   K = KDF(Hash(rD1) || Hash(rD2))  

15. D2:  R’D2 = PUF(CD2) 
16.    rD2 = Decode(R’D2  HD2)  
17.   Hash(rD1) = Hash(rD2)  r 
18.   K = KDF(Hash(rD1) || Hash(rD2))  

19. D1 ↔ D2: Authentication + Encryption with K 

Algorithm 3: Mutual device authentication and secure 
communication. 
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Let us assume that D1 wants to authenticate with 
D2 and set up a secure communication channel. D1 
initiates the process by calling the AA with the 
identification of D1 and D2 (CALL(D1, D2)). AA 
contains the complete table of challenges and 
responses (CD1, RD1 etc.). An error correcting code is 
chosen that can correct enough errors to make the 
PUF response stable, with the corresponding 
functions Encode and Decode. AA generates two 
random components rD1, rD2 from the set of 
preimages, and encodes them, thereby forming 
randomly chosen codewords. The code length should 
correspond to the PUF response length. Helper strings 
HD1 and HD2 are created by XORing the expected 
PUF response (RD1, RD2) to the corresponding 
codeword. The two random components are hashed 
and the hashes XORed to form r.  

To each of the devices, a triplet (CDi, HDi, r) with 
the challenge, helper string, and r is sent. Also, in step 
10, AA relays the request for communication from D1 
to D2. Each of the devices challenges its own PUF to 
get the response (R’D1, R’D2). By XORing the 
response with the corresponding helper string (HD1, 
HD2), resulting with a codeword with errors, which is 
then corrected by the Decode function. This way, 
each device recovers its component (rD1, rD2). D1 
recovers the value Hash(rD2) by XORing r with the 
hash of its rD1, and vice versa. Moreover, both devices 
know the hashes of rD1 and rD2, and can derive the 
shared key K by applying a key derivation function 
KDF on the concatenation of the hashes. 

The hashing of rD1, rD2 is done to hide the PUF 
responses from the other device. If D1 monitors the 
communication, it will know (CD1, CD2, HD1, HD2, r). 
It can recover rD1, and if the hashing were not done, 
and r would be equal to rD1 rD2 directly, D1 would 
compute rD2, and using the helper string HD2, it could 
discover the PUF response RD2. We would have to 
either trust all devices in the network or use all 
challenges only once and discard them. In our case, 
because we do use hashing of rD1, rD2, D1 only gets 
Hash(rD2), and the one-wayness of the hash function 
prevents it from discovering RD2. Thus, we can reuse 
the challenges for future authentications. 

PUF response correction code choice depends on 
the number of bit flips inherent in the PUF operation. 
The code length and codeword distance determine the 
number of information bits, thus the length of rD1, rD2, 
and limit the entropy contained in r. By using the 
same challenge with multiple random rDi, we can 
extract more bits of entropy from the PUF. The 
entropy of the resulting shared key K is determined 
by the properties of used hash functions and KDF, 
and the inputs. If chosen correctly, it is as high as the 

entropies of rD1, rD2. The key K is always derived from 
randomly chosen codewords, and therefore for the 
same PUF challenges (CD1, CD2), a different K is 
obtained. 

3.3 Secure Communication 

After the authentication process described in the 
previous section, a shared key is established. At this 
point, a conventional symmetric authentication and 
session key derivation process can be performed 
using block ciphers such as AES. Several lightweight 
block ciphers suitable for embedded systems or 
sensor networks has been proposed, such as 
PRESENT (Bogdanov et al., 2007, McKay, 2017) 
with an 80-bit key. This allows generating the key in 
a single run of PUF circuit for most of the PUF 
designs and implementations, with no further 
stretching needed. 

All presented algorithms in this Section utilized 
only PUF on the side of the devices and TRNG was 
used on AA. TRNG functionality on the devices is 
used after the secure channel establishment (steps 10 
and 19) in dependence on the communication 
protocols. Random numbers are needed in many 
classical authentication protocols (Menezes et al., 
1996, chapter 12), as well as modern internet 
standards such as DTLS (Tschofenig et al., 2016). 

4 CASE STUDY 

As arises from previous section, both TRNGs and 
PUFs have different characteristics that are 
advantageous in different applications. Thus, various 
implementations of cryptographic systems can take 
an advantage from a universal circuit for generation 
of PUF and TRNG at the same time, that allows 
secure generation of symmetric (session) keys (and 
potentially also asymmetric (private) keys). Such  
 

 

Figure 3: PUF/TRNG circuit based on Ring Oscillators, 
serving as basic building block for proposed authentication 
and secure communication scheme (Kodýtek et al., 2015, 
Buchovecká et al., 2017). 
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PUF/TRNG based on Ring Oscillators – ROPUF 
circuit was presented in our previous work (Kodýtek 
et al., 2015, Kodýtek et al., 2016, Buchovecká et al.  
2016, Buchovecká et al., 2017), so the idea of the 
single RO circuit can be used both for PUF and 
TRNG generation was validated. This circuit is 
depicted in Figure 3. 

In order to validate the proposed authentication 
process outlined in Section 3, we performed an 
experiment on one device containing the ROPUF 
design (Kodýtek et al., 2015, Buchovecká et al., 
2017). For this purpose, we used a ROPUF design 
that consisted of 2 groups of ring oscillators (ROs), 
each group contained 150 ROs. Only ROs from 
different groups were selected to form a pair, which 
was then used to generate part of the PUF response. 
We extracted 3 bits from each RO pair and enhanced 
the stability of the PUF output by applying Gray code 
on these bits (Kodýtek et al., 2016). Finally, to create 
the PUF response, the selected bits from all of the RO 
pairs are concatenated. 

In the first case, we generated the PUF responses 
from 150 pairs of ROs (each RO from each group was 
used only once), in the other, each RO was used five 
times (one RO from the first group is paired with 5 
ROs from the other group) resulting in 750 RO pairs. 
These two setups achieved 450 and 2250 bits of PUF 
response respectively. In both cases, we performed 
1000 measurements, from which we obtained a 
majority PUF response - RDi (we determined the 
majority for each position of the PUF output).  

In our experiment, the block length of 9 bits 
proved to be sufficient for the repetition code. In 
order to create the helper string HDi, we need to 
generate 50 or 250 random bits (rDi) that are then 
encoded by the repetition code and XORed with the 
major PUF output, forming the helper string HDi. This 
process is related to steps 2 and 4 in Algorithm 2. 

 The example using a simple repetition code with 
5-bit block length is depicted on Figure 4. On the 
device, the PUF generates a response R’Di that is 
corrected by the helper string HDi, corresponding to 
steps 7 and 8 in Algorithm 2. After correction, we 
obtained 50 and 250 bits respectively. These bits can 
be used to create a cryptographic key. For 
Algorithm 2, we can simply represent KDF as the 
selection of the first 128 bits (from rDi) for symmetric 
cipher AES.  

The same can be applied for Algorithm 3, where 
two devices are authenticating each other. However, 
this algorithm is more complex, since it requires 
implementation of suitable hash function. In case of 
Algorithm 1, no KDF is needed, since the AA’s  

 

Figure 4: Example of a simple repetition code with 5-bit 
groups. 

public key is stored on the device and PUF is not used 
to derive any cryptographic key. 

To increase the number of bits after correction, we 
can either use a more efficient error correcting code 
or we can reuse the same challenge multiple times 
with a new random codeword each time. The 
experiment showed and confirmed that it is possible 
to generate key material for the proposed protocols, 
using the state of the art PUF/TRNG designs, in 
sufficient length and quality. 

5 CONCLUSIONS 

In the paper, we discussed the need for the proper key 
management of cryptographic keys on the embedded 
devices and further proposed the design of the module 
for secure authentication and communication that 
fulfills the requirements for the secure generation and 
storage of the cryptographic keys, including proposal 
of basic authentication and secure communication 
protocols. 

For the authentication, several protocols based on 
pre-generated PUF challenge/response values are 
proposed. Since the PUF responses are unique per 
each device and are intrinsically random, PUF is ideal 
cryptographic primitive for this purpose. Three 
variants of the protocol are discussed – authentication 
against central authority using PUF challenge and 
encrypted response, and two variants of 
authentication that use the PUF for key generation – 
single device authentication, and mutual device 
authentication. 

After the authentication process, a shared key 
between the devices is established. At this point, a 
conventional symmetric authentication and session 
key derivation process can be performed using 
conventional or lightweight block ciphers as needed. 

Further, we discussed the case study and 
suggested possible implementation of the module for 
secure communication and authentication, using 

Major PUF output R Di:  10110|01100|…|01011

Encoded random (rDi = 10...1):  11111|00000|…|11111
HDi = RDi Encode(RDi):  01001|01100|…|10100

Correcting string 
creation  HDi

PUF output R‘Di:  11110|00000|…|01010

Correcting string HDi:  01001|01100|…|10100
Result of (R‘Di HDi):  10111|01100|…|11110

PUF output 
correction and
key generation

1 0 1Key: rDi = Decode (R‘Di HDi):

majority majoritymajority

…
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ROPUF/TRNG circuit. As it was presented and 
validated in previous work (Kodýtek et al., 2015, 
Kodýtek et al., 2016, Buchovecká et al., 2016, 
Buchovecká et al., 2017) a pair of RO circuits can be 
used both for PUF and TRNG generation, thus serve 
as basic building block for the module. Moreover, it 
is possible to generate the sequence long enough for 
the key generation in one run of ROPUF/TRNG 
circuit. 

In the paper we have shown the possibilities of 
securing communication and authentication of the 
embedded systems, using PUF and TRNG for secure 
key generation, without requirement to store secrets 
on the device itself, thus allowing to significantly 
simplify the problem of key management on the 
simple hardware devices and microcontrollers. 

Future work will be devoted to secure 
communication with a suitable asymmetric 
encryption scheme, using both PUF for generation of 
private key, as well as TRNG for generation of 
ephemeral keys, making use of the randomness 
already intrinsically present in the device. Thanks to 
PUF, the private key is generated when needed, thus 
there is no need for storing secrets on the device itself. 
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