
Lightweight Authentication and Secure Communication Suitable for
IoT Devices

Simona Buchovecká, Róbert Lórencz, Jiří Buček and Filip Kodýtek
Department of Information Security, Faculty of Information Technology,

Czech Technical University in Prague, Czech Republic

Keywords: Authentication, Secure Communication, PUF, TRNG, Key Generation, Key Management, IoT Security.

Abstract: In this paper we present the protocols for lightweight authentication and secure communication for IoT and
embedded devices. The protocols are using a PUF/TRNG combined circuit as a basic building block. The
goal is to show the possibilities of securing communication and authentication of the embedded systems,
using PUF and TRNG for secure key generation, without requirement to store secrets on the device itself, thus
allowing to significantly simplify the problem of key management on the simple hardware devices and
microcontrollers, while allowing secure communication.

1 INTRODUCTION

Implementation of proper methods for authentication
and secure communication, including secure
management of key material in lightweight devices,
is of significant importance, especially with rise of
IoT devices. The use of cryptography and
corresponding keys in proper manner is one of the
leading problems, when talking about devices with
limited computing resources and low power
consumption.

Variety of communication protocols were
proposed for secure authentication and
commuunication in IoT world, such as machine-to-
machine/Internet of Things connectivity protocol
(MQTT), Constrained Application Protocol (CoAP),
or Datagram Transport Layer Security (DTLS) that
can be integrated with CoAP. However, those are still
rather heavy-weight and computationally quite
expensive protocols when considering simple and
constrained devices and thus their variants are
constantly being present, for instance Lithe (Raza et
al., 2013) or E-Lithe (Haroon et al., 2007) as a
lightweight variant of DTLS (Tschofenig et al.,
2016). Moreover, these protocols do not deal with
secure generation and storage of cryptographic keys,
which is rather prerequisity for their usage.

Before introducing the principles of Physically
Unclonable Functions (PUFs), we shall summarize
the currently most widely used methods for key

generation and storage. Nowadays, Random Number
Generators (RNGs) are mostly used for key
generation that are further used in cryptographic
protocols for authentication and secure
communication. For lightweight and embedded
devices, the True Random Number Generators
(TRNGs) are usually implemented, utilizing non-
deterministic effects in analogue or digital circuits,
since this is resource and power efficient way.
Therefore, the quality of TRNG has a significant
influence on security of whole system. Improperly
implemented TRNG often leads to compromise of the
whole system or reduces the complexity of the attack.

Moreover, once the key is generated, it needs to
be stored securely in the device (Handschuh et al.,
2010), e.g. utilizing storage with tamper-resistance
techniques implemented. However, to implement
such measures is a complex and cost-ineffective task,

Figure 1: Interconnected systems with an Authentication
Authority.

Buchovecká, S., Lórencz, R., Buček, J. and Kodýtek, F.
Lightweight Authentication and Secure Communication Suitable for IoT Devices.
DOI: 10.5220/0008959600750083
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 75-83
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

75

therefore often neglected in practical applications.
Thus, properly defined and implemented key

management, including proper key generation, key
storage and key usage for various applications
(authentication, access control, encryption) in
interconnected IoT and embedded systems, as
depicted in Figure 1 is still a challenging task (Roman
et al., 2013, Malina et al., 2016). A consistent way of
handling various cryptographic keys, possibilities of
reusing traditional security mechanisms and ensuring
end-to-end integrity verification mechanisms is
needed (Sicari et al., 2015). All security protocols
require credentials, thus optimal key management
systems must be implemented to store and distribute
these credentials (Roman et al., 2013).

The systematic and formalized approach to key
management in IoT devices and embedded systems
with properly defined requirements, as well as
efficient light-weight modules for key generation,
storage and secure usage are missing. However, the
need for proper key management in particular
applications of embedded systems and IoT started to
be raised in some research papers with regards to
specific areas such as automotive context (Schleiffer
et al., 2013), distributed sensor networks (Chan et al.,
2005), or embedded systems in general (Sklavos et
al., 2016).

Though TRNGs are mostly used nowadays for
cryptographic key generation, in recent years,
numerous works dealing with Physical Unclonable
Functions (PUFs) for key generation had been
published, proposing PUFs as another possible
approach for key generation. The concept of PUF was
originally introduced in (Pappu, 2002), showing that
instead of relying on number theory, the mesoscopic
physics of coherent transport through a disordered
medium can be used to allocate and authenticate
unique identifiers by physically reducing the
medium’s microstructure to a fixed-length string of
binary digits. These physical one-way functions are
inexpensive to fabricate, prohibitively difficult to
duplicate, admit no compact mathematical
representation, and are intrinsically tamper-resistant.
This makes PUF as ideal candidate for providing
tamper resistant design for cryptographic key
generation and storage.

Therefore, PUFs usage is promising to solve the
issue of secure storage of cryptographic keys. Instead
of storing the key in memory, the key is generated at
the time it is needed. A combined PUF/TRNG circuit
used in our paper is therefore a suitable alternative for
the purpose of key generation and authentication in
lightweight cryptographic applications, such as IoT
devices and other embedded platforms.

The structure of this paper is as follows. In Section
2, related work is summarized. In Section 3, our
proposed approach to lightweight authentication and
secure communication is presented. Section 4
presents a case study with a specific PUF/TRNG
circuit. Section 5 concludes this paper.

2 RELATED WORK

Every protocol for authentication and secure
communication requires cryptographic keys. The
minimum common requirements for key generation
and storage are summarized by Maes et al. (Maes et
al, 2012): A source of true randomness that ensures
unpredictable and unique fresh keys; and a protected
memory which reliably stores the keys information
while shielding it completely from unauthorized
parties. As further discussed in (Fischer, 2012), the
security of cryptographic systems is mainly linked to
the protection of confidential keys. In high-end
information security systems, when used in an
uncontrolled environment, cryptographic keys should
never be generated outside the system and they
should never leave the system in clear. For the same
reason, if the security system is implemented in a
single chip (cryptographic system- on-chip), the keys
should be generated inside the same chip.

As mentioned above, for secure key generation a
source of true randomness is needed, and the
generated keys should be unpredictable. Thus, for
proper generation of cryptographic keys random bit
stream is required. Therefore, traditional methods of
generating cryptographic keys in hardware and
embedded systems are mainly based on true random
number generators (TRNGs). As stated by Schindler
(Schindler, 2009), ideal random number generators
are characterized by the property that the generated
random numbers are independent and uniformly
distributed on a finite range. Various TRNG designs
suitable for cryptographic key generation include
purely digital designs (Epstein et al. 2003, Fairfield et
al. 1984), Phase-Locked Loops in designs targeting
FPGAs (Fischer and Drutarovsky 2012, Deak et al.
2015), Random access memories (Gyorfi et al. 2009)
or multiple designs (Kohlbrenner and Gaj, 2004,
Bucci et al., 2003, Golic, 2006, Tkacik, 2003) based
on Ring Oscillators as a source of entropy.

As discussed in (Maes et al, 2012), PUF-based
key generators try to fulfill two requirements on
secure key generation and storage at once. The
randomness of the PUF response comes from the
manufacturing process variation, and it is intrinsically
present in the device. There is no need for a protected

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

76

non-volatile memory since the randomness is
measured only when needed. However, the PUF
output may slightly vary in different measurements,
and it is still challenging to get static PUF output as
required by cryptographic schemes. Existing PUF
designs proposed for cryptographic applications
include PUFKY based on a ring oscillator PUF (Maes
et al, 2012) providing low-failure rate, generation of
read-once keys (Kirkpatrick et al. 2010), single-chip
secure processor for embedded systems (Suh et al.,
2007), arbiter PUF for device authentication and
secret key generation (Suh and Devadas, 2007) and
others.

Our goal is to propose a secure communication
and authentication method using a combined
PUF/TRNG circuit that will allow secure generation
of keys using both PUF and TRNG at the same time,
maximizing benefits of each one. There have been
several similar works published recently, however,
the first attempts in using PUF for the device
authentication were rather simple. In (Suh and
Devadas, 2007) simple authentication against
authentication authority was discussed, using pre-
generated challenge-response pairs stored centrally.
At the authentication time, the challenge is sent to the
device and response then compared with the output.
Same challenge cannot be reused again due to
possible replay attacks.

More sophisticated PUF-based authentication
protocols were reviewed in (Delvaux et al., 2014).
The work of (Ozturk et al., 2008) using
reprogrammable non-volatile memory; Hammouri et
al. (Hammouri et al. , 2008) using two arbiter PUFs;
protocol based on logically reconfigurable PUFs
(Katzenbeisser et al. 2011) which allows to recycle
the challenge tokens; Reverse Fuzzy Extractor (Van
Herrewege et al., 2012) allowing mutual
authentication; Slender PUF protocol (Majzoobi et
al., 2012) that does not expose the full PUF responses,
only the random subset instead; and Converse
authentication Protocol (Kocabas et al., 2012) which
provides one-way authentication of the server.

All of the protocols discussed above deal with
authentication only, leaving the need for key
establishment and secure communication open,
which is also one of the main conclusions of the PUF
authentication usage review (Delvaux et al., 2014),
discussing the caveats of the PUF responses being not
perfectly reproducible, small output space of strong
PUFs or need of secure TRNG, that is substantial for
most of the protocols.

Another concern is privacy of the authenticated
devices. As discussed in (Bolotnyy and Robins,
2007), an algorithm is privacy preserving if an

adversary cannot distinguish between any pair of
devices, and thus, the PUF must be able to generate
long chains of unique IDs (i.e., without repetitions).
Possible approach to privacy preserving
authentication protocol is presented in (Aysu et al.,
2015), based on fuzzy extractor with helper-data
construction technique based on TRNG.

In this paper we discuss protocols for
authentication and secure communication utilizing
PUF and TRNG. We show, it is advantageous to have
single module that will allow generation of both
TRNG and PUF at the same time, since it minimizes
implementation requirements and operational
resource consumption. The aim is not to require
storing secrets on the IoT or embedded system itself
to simplify key management on the simple hardware
devices and microcontrollers.

3 PROPOSED APPROACH

When designing the embedded module for secure
authentication and communication, the main goal is
to simplify the key management on the endpoint
embedded device itself. Thus, we propose to utilize
the single circuit for key generation using PUF and
TRNG as a basic building block of the module so that

Figure 2: Embedded module for secure authentication and
communication. KDF is a Key Derivation Function,
GENPK generates a public key from a private key and
public parameters. Error Correction is used to obtain a
stable key material from the PUF Response (see Section
3.1). Functions covered in this paper are coloured in blue.

Lightweight Authentication and Secure Communication Suitable for IoT Devices

77

there is no need to store secrets on the hardware
device.

The overall module depicted in Figure 2 provides
PUF authentication and PUF/TRNG based key
generation. For the authentication, the PUF is used,
since it provides randomness intrinsically present in
the device and utilizes the fact that the generated
response is unique per device. Since there is a need
for both static key, as well as ephemeral keys,
combination of PUF and TRNG is used in this case –
the PUF is used for generation of static (private) key
that never leaves the device, thus utilizing all the
advantages of PUF, while TRNG is used for
generation of ephemeral, one-time keys, that are
shared with other communicating parties.

Asymmetric schemes are suitable if the private
key is easily generated from random sequence by a
Key Derivation Function (KDF), such as PBKDF2
(RSA Laboratories, 2012). For example, ElGamal
encryption (ElGamal, 1985) and DSA/ECDSA
signature schemes can be used, if good quality public
parameters are chosen (generation of the public key
from a private key si denoted as GENPK in Figure 2).
On the contrary, an RSA key requires more complex
processing including secure prime generation. TRNG
output is also used to generate random nonce and
padding data. In this paper, we will focus only on
symmetric schemes (with the exception of
Algorithm 1).

The proposed protocols for authentication against
a central authentication authority, and also mutual
device-device authentication, are further discussed in
detail in following sections.

3.1 Authentication against Central
Authentication Authority

Before any communication is allowed the connected
device must be properly authenticated. Since the PUF
responses are unique per each device, and are
intrinsically random, i makes PUF the ideal
cryptographic primitive for device authentication. We
propose simple and straightforward authentication
protocol using pre-generated challenge-response
pairs that can be easily implemented in hardware
devices. This protocol does not require the PUF to
have a large space of challenge-response pairs (it can
be used even for one challenge-response pair). The
authentication protocol consists of two phases –
secure enrolment phase and authentication phase
itself and is depicted in Algorithm 1.

The Enrolment phase is critical for the security of
all protocols based on PUFs, and (analogous to
biometric authentication methods) must be performed

in a secure environment. We assume that a suitable
environment can be created (for example, by separate
physical access to the devices), but specific means are
not elaborated in this paper.

During the Enrolment phase of Algorithm 1, the
challenge/response pair(s) (C, R) are measured from
the targeted device and securely stored at the central
authenticating authority (AA), that can be either
integrated into the gateway or be represented by
separate device that the gateway is querying during
authentication process. A database DBDi of the pairs
(C, R) is created for each device Di. Furthermore, the
public key (PKAA) of the authenticating authority is
pre-set on the device, so as the authentication data can
be securely transferred. For this purpose, an
asymmetric scheme (ElGamal) can be used, as
proposed in the section above. We assume that PKAA
is protected against unauthorized changes (by the
tamper-evidence property of the PUF).

The first 4 steps of the Enrolment phase are
common for all 3 algorithms presented in this paper.
The database DBDi is used also in the Authentication
phases of Algorithms 2 – 3.

Enrolment phase (Secure environment)
Common for Algorithms 1 – 3:
1. AA → D1: Challenges (C1, C2, ...)
2. D1: R1 = PUF(C1), R2 = PUF(C2) ...
3. D1 → AA: Responses (R1, R2, ...)
4. AA: Store (Ci, Ri) to DBD1

Specific only for Algorithm 1:
5. AA → D1: Public key PKAA
6. D1: Store(PKAA)

Authentication phase for D1
1. AA: Choose (C, R) from DBD1
2. AA → D1: Challenge C, Nonce N
3. D1: R’ = PUF(C)
4. D1 → AA: CR = EPK_AA(R’ || N)
5. AA: (R’, N’) = DSK_AA(CR)

Compare(ܴ ≅ ܴ′), Compare(N = N’)

Algorithm 1: Enrolment and Authentication against central
Authentication Authority.

The Authentication phase of Algorithm 1 is

executed every time the device is connected to the
network and needs to be authenticated. AA randomly
chooses one of the challenges C and sends it together
with the nonce value N to the device to be
authenticated. The nonce value is used to prevent
simple replay attacks and allows each challenge-
response pair to be used repeatedly. On the device

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

78

that is being authenticated the appropriate PUF
response is generated, concatenated with nonce value
and encrypted with public key of the Authenticating
Authority. Authenticating Authority then compares
(strictly) if the decrypted nonce value N’ = N. Since
the PUF response may slightly vary across various
measurements, a predetermined number of faulty bits
in R’ is tolerated. If both match, the device is
successfully authenticated. The disadvantage of
Algorithm 1 is that it only performs authentication
and does not provide a cryptographic context for
future communication.

Authentication of a single device (D1) to the AA
without asymmetric cryptography is depicted in
Algorithm 2. (The Enrolment phase is the same as in
Algorithm 1, steps 1. – 4.) This method includes
generating a shared symmetric key K, which requires
a stable error-free PUF output. This is achieved by
using an error-correcting code (ECC), denoted in the
algorithm by its functions Encode and Decode. This
code must have enough redundancy and structure to
correct the maximum amount of errors assumed in the
PUF when operated under various conditions
(voltage, temperature etc.).

Choosing a suitable ECC depends on the bit error
rate and length of PUF response while meeting the
required corrected output length. The computational
power of the device is also a limiting factor. In the
case of “lightweight” devices, simple codes (such as
a repetition code) are preferable.

Authentication phase – using symmetric cipher
1. D1 → AA: Call(D1)

2. AA: r = TRNG()
3. Choose (C, R) from DBD1
4. H = R Encode(r)
5. K = KDF(r)

6. AA → D1: Challenge C, Helper string H

7. D1: R’ = PUF(C)
8. r = Decode(R’ H)
9. K = KDF(r)

10. D1 ↔ AA: Authentication + Encryption with K

Algorithm 2: Authentication of a device D1 to the AA.

The helper string H is a distance from the raw
PUF response R to the random codeword Encode(r).
It is computed by the AA (step 4 of Algorithm 2). The
device then uses it to recover the key material (step
8), and subsequently derive the key K.

The shared key K can be used for authentication
and encrypted communication, as opposed to

Algorithm 1, which covers only authentication,
limiting its usefulness. On the other hand, Algorithm
1 does not require the generation of a helper string,
nor does it need any error correction codes.

3.2 Mutual Device Authentication

Not only the device needs to be authenticated to
central authority when connected to the network, the
devices must be mutually authenticated before they
start to communicate, as well. Similarly, as in the
previous case, central authenticating authority stores
the pre-generated challenge-response pair(s), and acts
as trusted 3rd party. This time though, a shared
symmetric key is established between the two
devices, and a conventional symmetric authenticated
and encrypted session can follow afterwards. The
goal is to use the PUFs in both devices D1 and D2,
but not transmit any PUF response over the network.
By using the one-wayness of the hash functions used,
no device gets to know other device’s PUF response,
even if it monitors all communication. An error
correcting code is used to ensure stable PUF outputs.
The codewords are selected randomly from the code
space by the AA. The overall process is described in
Algorithm 3.

Mutual authentication of D1 and D2 using AA
1. D1 → AA: Call(D1, D2)

2. AA: rD1 = TRNG()
3. rD2 = TRNG()
4. Choose (CD1, RD1) from DBD1
5. Choose (CD2, RD2) from DBD2
6. HD1 = RD1 Encode(rD1)
7. HD2 = RD2 Encode(rD2)
8. r = Hash(rD1) Hash(rD2)

9. AA → D1: (CD1, HD1, r)
10. AA → D2: Call(D1, D2) , (CD2, HD2, r)

11. D1: R’D1 = PUF(CD1)
12. rD1 = Decode(R’D1 HD1)
13. Hash(rD2) = Hash(rD1) r
14. K = KDF(Hash(rD1) || Hash(rD2))

15. D2: R’D2 = PUF(CD2)
16. rD2 = Decode(R’D2 HD2)
17. Hash(rD1) = Hash(rD2) r
18. K = KDF(Hash(rD1) || Hash(rD2))

19. D1 ↔ D2: Authentication + Encryption with K

Algorithm 3: Mutual device authentication and secure
communication.

Lightweight Authentication and Secure Communication Suitable for IoT Devices

79

Let us assume that D1 wants to authenticate with
D2 and set up a secure communication channel. D1
initiates the process by calling the AA with the
identification of D1 and D2 (CALL(D1, D2)). AA
contains the complete table of challenges and
responses (CD1, RD1 etc.). An error correcting code is
chosen that can correct enough errors to make the
PUF response stable, with the corresponding
functions Encode and Decode. AA generates two
random components rD1, rD2 from the set of
preimages, and encodes them, thereby forming
randomly chosen codewords. The code length should
correspond to the PUF response length. Helper strings
HD1 and HD2 are created by XORing the expected
PUF response (RD1, RD2) to the corresponding
codeword. The two random components are hashed
and the hashes XORed to form r.

To each of the devices, a triplet (CDi, HDi, r) with
the challenge, helper string, and r is sent. Also, in step
10, AA relays the request for communication from D1
to D2. Each of the devices challenges its own PUF to
get the response (R’D1, R’D2). By XORing the
response with the corresponding helper string (HD1,
HD2), resulting with a codeword with errors, which is
then corrected by the Decode function. This way,
each device recovers its component (rD1, rD2). D1
recovers the value Hash(rD2) by XORing r with the
hash of its rD1, and vice versa. Moreover, both devices
know the hashes of rD1 and rD2, and can derive the
shared key K by applying a key derivation function
KDF on the concatenation of the hashes.

The hashing of rD1, rD2 is done to hide the PUF
responses from the other device. If D1 monitors the
communication, it will know (CD1, CD2, HD1, HD2, r).
It can recover rD1, and if the hashing were not done,
and r would be equal to rD1 rD2 directly, D1 would
compute rD2, and using the helper string HD2, it could
discover the PUF response RD2. We would have to
either trust all devices in the network or use all
challenges only once and discard them. In our case,
because we do use hashing of rD1, rD2, D1 only gets
Hash(rD2), and the one-wayness of the hash function
prevents it from discovering RD2. Thus, we can reuse
the challenges for future authentications.

PUF response correction code choice depends on
the number of bit flips inherent in the PUF operation.
The code length and codeword distance determine the
number of information bits, thus the length of rD1, rD2,
and limit the entropy contained in r. By using the
same challenge with multiple random rDi, we can
extract more bits of entropy from the PUF. The
entropy of the resulting shared key K is determined
by the properties of used hash functions and KDF,
and the inputs. If chosen correctly, it is as high as the

entropies of rD1, rD2. The key K is always derived from
randomly chosen codewords, and therefore for the
same PUF challenges (CD1, CD2), a different K is
obtained.

3.3 Secure Communication

After the authentication process described in the
previous section, a shared key is established. At this
point, a conventional symmetric authentication and
session key derivation process can be performed
using block ciphers such as AES. Several lightweight
block ciphers suitable for embedded systems or
sensor networks has been proposed, such as
PRESENT (Bogdanov et al., 2007, McKay, 2017)
with an 80-bit key. This allows generating the key in
a single run of PUF circuit for most of the PUF
designs and implementations, with no further
stretching needed.

All presented algorithms in this Section utilized
only PUF on the side of the devices and TRNG was
used on AA. TRNG functionality on the devices is
used after the secure channel establishment (steps 10
and 19) in dependence on the communication
protocols. Random numbers are needed in many
classical authentication protocols (Menezes et al.,
1996, chapter 12), as well as modern internet
standards such as DTLS (Tschofenig et al., 2016).

4 CASE STUDY

As arises from previous section, both TRNGs and
PUFs have different characteristics that are
advantageous in different applications. Thus, various
implementations of cryptographic systems can take
an advantage from a universal circuit for generation
of PUF and TRNG at the same time, that allows
secure generation of symmetric (session) keys (and
potentially also asymmetric (private) keys). Such

Figure 3: PUF/TRNG circuit based on Ring Oscillators,
serving as basic building block for proposed authentication
and secure communication scheme (Kodýtek et al., 2015,
Buchovecká et al., 2017).

Counter 1

Counter 2

RS Flip-flop

RS Flip-flop

CE

CE

C

C

OF

OF

S

S

Q

Q

enable

multiplexer

Q

Q

result

s0 s1

res0
res1

RO 1
RO 2

RO n

.

.

.

.

.

m
ultiplexer

RO 1
RO 2

RO n

.

.

.

.

.

m
ultiplexer

sel0

sel1

CLR

CLR

R

R

Q

Q

fRO j

fRO i

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

80

PUF/TRNG based on Ring Oscillators – ROPUF
circuit was presented in our previous work (Kodýtek
et al., 2015, Kodýtek et al., 2016, Buchovecká et al.
2016, Buchovecká et al., 2017), so the idea of the
single RO circuit can be used both for PUF and
TRNG generation was validated. This circuit is
depicted in Figure 3.

In order to validate the proposed authentication
process outlined in Section 3, we performed an
experiment on one device containing the ROPUF
design (Kodýtek et al., 2015, Buchovecká et al.,
2017). For this purpose, we used a ROPUF design
that consisted of 2 groups of ring oscillators (ROs),
each group contained 150 ROs. Only ROs from
different groups were selected to form a pair, which
was then used to generate part of the PUF response.
We extracted 3 bits from each RO pair and enhanced
the stability of the PUF output by applying Gray code
on these bits (Kodýtek et al., 2016). Finally, to create
the PUF response, the selected bits from all of the RO
pairs are concatenated.

In the first case, we generated the PUF responses
from 150 pairs of ROs (each RO from each group was
used only once), in the other, each RO was used five
times (one RO from the first group is paired with 5
ROs from the other group) resulting in 750 RO pairs.
These two setups achieved 450 and 2250 bits of PUF
response respectively. In both cases, we performed
1000 measurements, from which we obtained a
majority PUF response - RDi (we determined the
majority for each position of the PUF output).

In our experiment, the block length of 9 bits
proved to be sufficient for the repetition code. In
order to create the helper string HDi, we need to
generate 50 or 250 random bits (rDi) that are then
encoded by the repetition code and XORed with the
major PUF output, forming the helper string HDi. This
process is related to steps 2 and 4 in Algorithm 2.

 The example using a simple repetition code with
5-bit block length is depicted on Figure 4. On the
device, the PUF generates a response R’Di that is
corrected by the helper string HDi, corresponding to
steps 7 and 8 in Algorithm 2. After correction, we
obtained 50 and 250 bits respectively. These bits can
be used to create a cryptographic key. For
Algorithm 2, we can simply represent KDF as the
selection of the first 128 bits (from rDi) for symmetric
cipher AES.

The same can be applied for Algorithm 3, where
two devices are authenticating each other. However,
this algorithm is more complex, since it requires
implementation of suitable hash function. In case of
Algorithm 1, no KDF is needed, since the AA’s

Figure 4: Example of a simple repetition code with 5-bit
groups.

public key is stored on the device and PUF is not used
to derive any cryptographic key.

To increase the number of bits after correction, we
can either use a more efficient error correcting code
or we can reuse the same challenge multiple times
with a new random codeword each time. The
experiment showed and confirmed that it is possible
to generate key material for the proposed protocols,
using the state of the art PUF/TRNG designs, in
sufficient length and quality.

5 CONCLUSIONS

In the paper, we discussed the need for the proper key
management of cryptographic keys on the embedded
devices and further proposed the design of the module
for secure authentication and communication that
fulfills the requirements for the secure generation and
storage of the cryptographic keys, including proposal
of basic authentication and secure communication
protocols.

For the authentication, several protocols based on
pre-generated PUF challenge/response values are
proposed. Since the PUF responses are unique per
each device and are intrinsically random, PUF is ideal
cryptographic primitive for this purpose. Three
variants of the protocol are discussed – authentication
against central authority using PUF challenge and
encrypted response, and two variants of
authentication that use the PUF for key generation –
single device authentication, and mutual device
authentication.

After the authentication process, a shared key
between the devices is established. At this point, a
conventional symmetric authentication and session
key derivation process can be performed using
conventional or lightweight block ciphers as needed.

Further, we discussed the case study and
suggested possible implementation of the module for
secure communication and authentication, using

Major PUF output R Di: 10110|01100|…|01011

Encoded random (rDi = 10...1): 11111|00000|…|11111
HDi = RDi Encode(RDi): 01001|01100|…|10100

Correcting string
creation HDi

PUF output R‘Di: 11110|00000|…|01010

Correcting string HDi: 01001|01100|…|10100
Result of (R‘Di HDi): 10111|01100|…|11110

PUF output
correction and
key generation

1 0 1Key: rDi = Decode (R‘Di HDi):

majority majoritymajority

…

Lightweight Authentication and Secure Communication Suitable for IoT Devices

81

ROPUF/TRNG circuit. As it was presented and
validated in previous work (Kodýtek et al., 2015,
Kodýtek et al., 2016, Buchovecká et al., 2016,
Buchovecká et al., 2017) a pair of RO circuits can be
used both for PUF and TRNG generation, thus serve
as basic building block for the module. Moreover, it
is possible to generate the sequence long enough for
the key generation in one run of ROPUF/TRNG
circuit.

In the paper we have shown the possibilities of
securing communication and authentication of the
embedded systems, using PUF and TRNG for secure
key generation, without requirement to store secrets
on the device itself, thus allowing to significantly
simplify the problem of key management on the
simple hardware devices and microcontrollers.

Future work will be devoted to secure
communication with a suitable asymmetric
encryption scheme, using both PUF for generation of
private key, as well as TRNG for generation of
ephemeral keys, making use of the randomness
already intrinsically present in the device. Thanks to
PUF, the private key is generated when needed, thus
there is no need for storing secrets on the device itself.

ACKNOWLEDGEMENTS

The authors acknowledge the support of the OP VVV
MEYS funded project CZ.02.1.01/0.0/0.0/16_019/
0000765 “Research Center for Informatics”.

REFERENCES

Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., &
Yung, M. (2015). End-to-end design of a PUF-based
privacy preserving authentication protocol.
International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, Berlin, Heidelberg.

Bogdanov, A., Knudsen, L. R., Leander, G., Paar, C.,
Poschmann, A., Robshaw, M. J., Seurin, Y., &
Vikkelsoe, C. (2007). PRESENT: An ultra-lightweight
block cipher. International workshop on cryptographic
hardware and embedded systems (pp. 450-466).
Springer, Berlin, Heidelberg.

Bolotnyy L., Robins G. (2007). Physically unclonable
function-based security and privacy in RFID systems.
Pervasive Computing and Communications, 2007.
PerCom'07. Fifth Annual IEEE International
Conference on. IEEE.

Bucci, M., Germani, L., Luzzi, R., Trifiletti, A., &
Varanonuovo, M. (2003). A high-speed oscillator-
based truly random number source for cryptographic

applications on a smart card IC. Computers, IEEE
Transactions on 52.4 (2003): 403-409.

Buchovecká, S., Kodýtek, F., Lórencz, R., Buček J. (2016)
True Random Number Generator Based on ROPUF
Circuit. Digital System Design (DSD), 2016 Euromicro
Conference on. IEEE.

Buchovecká, S., Kodýtek, F., Lórencz, R., Buček J. (2017).
True random number generator based on ring oscillator
PUF circuit. Microprocessors and Microsystems 53
(2017): 33-41.

Chan H., Gligor V. D., Perrig A., Muralidharan G. (2005).
On the distribution and revocation of cryptographic
keys in sensor networks. IEEE Transactions on
Dependable and Secure Computing, 2(3):233–247.

Deak N., Gyorfi T., Marton K., Vacariu L., Cret O. (2015).
Highly efficcient true random number generator in
FPGA devices using phase-locked loops. 20th
International Conference on Control Systems and
Computer Science, pages 453–458. IEEE.

Delvaux, J., Gu, D., Schellekens, D., & Verbauwhede, I.
(2014). Secure lightweight entity authentication with
strong PUFs: Mission impossible? In: International
Workshop on Cryptographic Hardware and Embedded
Systems. Springer, Berlin, Heidelberg. p. 451-475.

ElGamal T. (1985). A public-key cryptosystem and a
signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, IT-31(4):469–
472.

Epstein M., Hars L., Krasinski R., Rosner M., and Zheng
H. (2003). Design and implementation of a true random
number generator based on digital circuit artifacts. In
International Workshop on Cryptographic Hardware
and Embedded Systems, pages 152–165. Springer.

Fairfield R. C., Mortenson R. L., and Coulthart K. B.
(1984). An LSI random number generator (rng).
Workshop on the Theory and Application of
Cryptographic Techniques, pages 203–230. Springer.

Fischer V. (2012). A closer look at security in random
number generators design. International Workshop on
Constructive Side-Channel Analysis and Secure
Design, pages 167–182. Springer.

Fischer V., Drutarovský M. (2002). True random number
generator embedded in reconfigurable hardware.
International Workshop on Cryptographic Hardware
and Embedded Systems, pages 415–430. Springer.

Golic J. D. J. (2006), New Methods for Digital Generation
and Postprocessing of Random Data, IEEE
Transactions on Computers, vol. 55, no. 10, pp. 1217-
1229.

Gyorfi T., Cret O., and Suciu A. (2009). High performance
true random number generator based on fpga block
rams. Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on, pages 1–8.
IEEE.

Hammouri, G., Öztürk, E., Sunar, B. (2008). A tamper-
proof and lightweight authentication scheme. Journal
Pervasive and Mobile Computing 6(4).

Handschuh H., Schrijen G.-J., and Tuyls P. (2010).
Hardware intrinsic security from physically unclonable

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

82

functions. Towards Hardware-Intrinsic Security, pages
39–53. Springer.

Haroon, A., Akram, S., Shah, M. A., & Wahid, A. (2017).
E-lithe: A lightweight secure dtls for iot. In 2017 IEEE
86th Vehicular Technology Conference (VTC-Fall) (pp.
1-5). IEEE.

Katzenbeisser, S., Kocabaş, Ü., Van Der Leest, V., Sadeghi,
A. R., Schrijen, G. J., & Wachsmann, C. (2011).
Recyclable PUFs: Logically reconfigurable PUFs.
Journal of Cryptographic Engineering, 1(3), pp. 177–
186.

Kirkpatrick M. S., Bertino E., and Kerr S. (2010). PUF
ROKs: generating read-once keys from physically
unclonable functions. Proceedings of the Sixth Annual
Workshop on Cyber Security and Information
Intelligence Research. ACM.

Kocabaş, Ü., Peter, A., Katzenbeisser, S., Sadeghi, A.-R.
(2012). Converse PUF-Based Authentication. In:
Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer,
M., Reiter, M., Zhang, X. (eds.) Trust 2012. LNCS, vol.
7344, pp. 142–158. Springer, Heidelberg.

Kodýtek, F., Lórencz, R. (2015). A design of ring oscillator
based PUF on FPGA. In Design and Diagnostics of
Electronic Circuits & Systems (DDECS), 2015 IEEE
18th International Symposium on. IEEE.

Kodýtek, F., Lórencz, R., Buček J. (2016) Improved ring
oscillator PUF on FPGA and its properties.
Microprocessors and Microsystems.

Kohlbrenner P., Gaj K. (2004). An embedded true random
number generator for FPGAs. Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field
programmable gate arrays. ACM.

McKay K. A. (2017). Report on Lightweight Cryptography
– NIST publication, available online https://doi.org/
10.6028/NIST.IR.8114

Maes R., Van Herrewege A., and Verbauwhede I. (2012).
PUFKY: a fully functional PUF-based cryptographic
key generator. In International Workshop on
Cryptographic Hardware and Embedded Systems,
pages 302–319. Springer.

Majzoobi, M., Rostami, M., Koushanfar, F., Wallach, D.S.,
Devadas, S. (2012). Slender PUF Protocol: A
Lightweight, Robust, and Secure Authentication by
Substring Matching. In: IEEE Symposium on Security
and Privacy (SP), pp. 33–44.

Malina L., Hajny J., Fujdiak R., and Hosek J. (2016). On
perspective of security and privacy-preserving
solutions in the internet of things. Computer Networks,
102:83– 95.

Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A.
(1996). Handbook of applied cryptography. CRC press.

Öztürk, E., Hammouri, G., Sunar, B. (2008). Towards
Robust Low-Cost Authentication for Pervasive
Devices. In: IEEE Conference on Pervasive Computing
and Communications, PerCom.

Pappu, R., Recht, B., Taylor, J., and Gershenfeld, N.
(2002). Physical one-way functions. Science,
297(5589):2026–2030.

Raza, S., Shafagh, H., Hewage, K., Hummen, R., & Voigt,
T. (2013). Lithe: Lightweight secure CoAP for the

internet of things. IEEE Sensors Journal, 13(10), 3711-
3720.

Roman R., Zhou J., and Lopez J. (2013). On the features
and challenges of security and privacy in distributed
internet of things. Computer Networks, 57(10):2266–
2279.

RSA Laboratories: PKCS #5 V2.1: Password Based
Cryptography Standard (2012)

Schindler W. (2009). Random number generators for
cryptographic applications. In Cryptographic
Engineering, pages 5–23. Springer.

Schleiffer Ch., Wolf M., Weimerskirch A., and
Wolleschensky L. (2013). Secure key management-a
key feature for modern vehicle electronics. Technical
report, SAE Technical Paper.

Sicari S., Rizzardi A., Grieco L. A., Coen-Porisini A.
(2015). Security, privacy and trust in internet of things:
The road ahead. Computer Networks, 76:146–164.

Sklavos, N, Zaharakis I. D. (2016). Cryptography and
Security in Internet of Things (IoTs): Models, Schemes,
and Implementations, In IEEE proceedings of the 8th
IFIP International Conference on New Technologies,
Mobility and Security (NTMS’16), Larnaca, Cyprus

Suh E. G., Devadas S. (2007). Physical unclonable
functions for device authentication and secret key
generation. In Proceedings of the 44th annual Design
Automation Conference, pages 9–14. ACM.

Suh E. G., O'Donnell Ch. W., and Devadas S. (2007).
Aegis: A single-chip secure processor. IEEE Design &
Test of Computers 24.6.

Tkacik T. E. (2003), A hardware random number generator,
in Proceedings of the Cryptographic Hardware and
Embedded Systems (CHES '02), B. S. Kaliski Jr., Ç. K.
Koç, and C. Paar, Eds., vol. 2523 of Lecture Notes in
Computer Science, pp. 450–453, Springer, Redwood
Shores, Calif, USA.

Tschofenig, H. and T. Fossati," Transport Layer Security
(TLS)/Datagram Transport Layer Security (DTLS)
Profiles for the Internet of Things. RFC 7925, July
2016.

Van Herrewege, A., Katzenbeisser, S., Maes, R., Peeters,
R., Sadeghi, A.-R., Verbauwhede, I., Wachsmann, C.
(2012). Reverse Fuzzy Extractors: Enabling
Lightweight Mutual Authentication for PUF-Enabled
RFIDs. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 374–389. Springer, Heidelberg.

Lightweight Authentication and Secure Communication Suitable for IoT Devices

83

