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The majority amount of information available on the Web remains unstructured, i.e., text documents from ar-
ticles, news, blog posts, product reviews, forums discussions, among others. Given the huge amount of textual
content continuously produced on the Web, it has been challenging for users to read and consume every doc-
ument. Text summarization refers to the technique of shortening long pieces of text. The intention is to create
a coherent and fluent summary having only the main points outlined in the document. Sentence compression
can improve text summarization by removing redundant information, preserving the grammaticality and the
important content of the original sentences. In this paper, we propose a sentence compression neural network
model that achieved promising results compared to other neural network-based models, even when trained
with smaller amounts of data. Rather than training the model only with the words from the training set, the
proposed model was trained with different features extracted from the texts. This improves the ability of the

model to decide whether or not to retain each word in the compressed sentence.

1 INTRODUCTION

With the internet popularization, there has been a
massive growth in the amount of unstructured data
available to users. The majority of data is textual, i.e.,
documents as articles, news, blog posts, product re-
views, forums discussions, among others. Given the
vast amount of textual content produced continuously
on the Web, it has been a challenge for users to read
and consume all documents. Thus, text summariza-
tion systems play an essential role in this domain.
Automatic text summarization systems often pro-
duce summaries by extracting the most relevant sen-
tences from the original documents. Usually, they
rank the sentences by rating each one and then select
the top-ranked to create the summary, trying to ensure
the maximum amount of information with minimum
redundancy (Gupta and Lehal, 2010; Nallapati et al.,
2016). However, the sentences of the original texts
could not be appropriate to compose a summary, since
when previously written, they do not necessarily have
the same size and conciseness constraints that a sum-
mary usually has (Finegan-Dollak and Radeyv, 2016).
Sentence compression can improve text summa-
rization by removing redundant information, preserv-
ing the grammaticality, and the important content of
the original sentences (Jing, 2000; Knight and Marcu,
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2000; Rush et al., 2015). Many methods to automat-
ically perform sentence compression have been pro-
posed over the years (Jing, 2000; Knight and Marcu,
2000; Knight and Marcu, 2002; McDonald, 2006;
Clarke and Lapata, 2008; Cohn and Lapata, 2008;
Filippova and Altun, 2013). With the recent growth
of computational power availability and the popular-
ization of neural networks, methods that use different
variations of neural networks have pushed the state-
of-the-art of sentence compression one step further
(Filippova et al., 2015; Rush et al., 2015; Chopra
et al., 2016; Wang et al., 2017; Févry and Phang,
2018). However, these models still present some lim-
itations.

First, a large amount of labeled data, often mil-
lions of sentences, is required to train these models
(Filippova et al., 2015; Rush et al., 2015; Chopra
et al., 2016), whereas acquiring this amount of data
may be an arduous or even impossible task for some
text domains or languages. Moreover, when one of
these models is trained in a specific domain, it tends
to absorb certain aspects of it that ultimately prevent
it from achieving the same performance if used with
sentences from other domains (Wang et al., 2017).

This paper aims to present a novel neural network-
based model capable of generalizing the sentence
compression task even when trained with smaller
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amounts of data (thousands of sentences instead of
millions).

Also, we developed a sentence processing pipeline
to minimize the occurrence of rare words that have
few contributions to the model’s learning by re-
placing them by common words. This maximizes
the occurrence of similar sentences and, conse-
quently, improves the model’s ability to extract rel-
evant information from the data. Moreover, in
our experiments, we also show that approaches like
Sumy (Sumy, 2015) (or Alyien (Aylien, 2011),
Tools4Noobs (Tools4Noobs, ), among others), that
is a widely used platform for automatic text summa-
rization can not compress short sentences as our ap-
proach.

The paper is organized as follows: Section 2 for-
mally defines the problem of sentence compression.
Section 3 presents some details of the sentence pro-
cessing pipeline used to train our proposed model.
Section 4 presents the proposed model novel archi-
tecture to perform sentence compression by word re-
moval. Section 5 presents some related works. Sec-
tion 6 describes the experiments and discusses their
results. Finally, Section 7 draws the conclusion and
future works.

2 PROBLEM DEFINITION

Let ¥ be the word vocabulary and W = (wy,...,w,)
a sentence composed by a sequence of words w; € V,
Vi € {0,...,n}. We aim to compress W in order to
generate a new sentence 9 = (yg,...,yn) such that
n>mand Vj € {0,...,m},3i € {0,...,n}, such that
yj=w; and j <1, ie., 9 is a compression of M.
Moreover, 9" must retain as much information as pos-
sible from %/ and must be grammatically correct. It
is possible to interpret this problem as a sequence la-
beling problem in which we aim at training a model
M such that Vw; € W, M (w;) is 1, if w; € ¥, i.e., if
the word w; belongs to the compressed sentence, and
0 otherwise.

3 SENTENCES PROCESSING
PIPELINE

Neural network-based sentence compression models
commonly rely on large amounts of labeled data to
be trained. The reason is textual information entails
a high burden of dependencies and relationships that
are often difficult to be learned by these models if no
information beyond the words is provided. Typically,

these models try to learn the co-occurrence of words
and phrases to attempt to extract some meaningful in-
formation. However, if the neural network models are
trained with a small textual data set, these models may
end up learning very well the relationship between the
words that occur in that data. But they are unable to
infer anything about words that are out of the training
set, which makes them biased.

As an attempt to minimize the impact of a small
set of labeled data that some domains may have, we
propose a sentence processing pipeline to decrease the
influence of words with few occurrences by replacing
them by words of similar meaning. For instance, the
words John and Mary are both names of persons, and
they can be simply replaced by the word name. So in-
stead of two words that occur rarely in the training set,
we sum up the occurrence of both into a single word.
This processing provides more examples with simi-
lar structures to be used in the training phase. Note
that these replacements do not change the order or the
number of words in a sentence. Figure 1 illustrates the
pipeline steps described below, and they are briefly
discussed as follows.

e Contraction Removal: The first step consists of
removing possible contractions that occur in sen-
tences. Contracted expressions like don’t are re-
placed by their non-contracted version (do not).
This step is important to ensure that all words are
explicitly described for future steps.

e Tokenization: is an essential step of any natural
language processing task that operates at the word
level. In this step, the sentences are segmented
into tokens, which usually represent each word of
a text. For instance, after tokenization the sen-
tence Attorney General Eric Holder has been hos-
pitalized, the list of tokens is: (Attorney, General,
Eric, Holder, has, been, hospitalized).

e Part-of-Speech (POS) Tagging: To extract gram-
matical information from the tokens, we perform
a part-of-speech tagging step. Part-of-speech tag-
ging is a common task in natural language pro-
cessing, and it identifies the part-of-speech tags
of each token within the sentence. The outputted
tags of each sentence are later used as input to our
proposed sentence compression model.

e Dependency Parse: To comprehend how words
or tokens within the sentence are related to each
other, our approach does the dependency parse
step. At this step, for each word or token, our ap-
proach extracts: 1) the parent word, 2) the depen-
dency relationship with its parent, and 3) the num-
ber of nodes on the dependency subtrees. Figure 2
shows an example of a syntactic dependency tree
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Figure 1: Sentence processing pipeline steps.

for a sentence with POS tags for each word. For
instance, in the sentence Atforney General Eric
Holder has been hospitalized, the word Holder
is the parent of the word hospitalized. The word
hospitalized has a relation with Holder named as
nsubjpass which means that Holder is a nominal
subject passive relative to hospitalized. Beside
that, the number of nodes on the dependency sub-
tree of hospitalized is one.

e Named Entities Recognition (NER): Named enti-
ties are frequently found in any text, and they tend
to be words that present low frequency of occur-
rence. Commonly, the text vocabulary becomes
large with many words that rarely occur (no more
than two or three times), and thus it’s difficult for
the model to learn how these words are related.
To avoid this problem, named entities are iden-
tified and later replaced by common and seman-
tic values. For instance, the names of buildings,
roads, countries, and cities are essentially loca-
tions. Consequently, they are all replaced by the
word “location”. The same happens for person
names, objects, organizations, groups, numbers,
etc. To a more detailed inspection of substitu-
tions, the Table 1 maps each used named entity
type with its substitute word.

e [emmatization: The lemmatization step identifies
the lemma of each word or token. The lemma of
a word is its base, canonical or dictionary form,
usually in nominative singular for adjectives and
nouns and infinitive, without ro, for verbs. For
instance, the lemma of the words play, played or
playing is simply the word play. As in named en-
tities recognition step, the lemma of each word is
later used in replace of the word to reduce the oc-
currence of words that have the same semantics
and different spellings.

e Word Replacing: This step is responsible for de-
creasing the occurrence of rare words. As a word
is identified as a named entity, it is immediately
replaced by another word that carries part of its
named entity type semantics, as indicated in Ta-
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ble 1. While the words’ lemmas simply replace
the words not identified as named entities.

At the end of the sentence processing pipeline, the
sentence ”Attorney General Eric Holder has been hos-
pitalized”, is written as the following sequence of to-
kens: (attorney, general, name, name, have, be, hos-
pitalize). Note that, although that sequence of words
does not produce a grammatical sentence, it provides
to the model a better understanding of relationships
between the words.

4 MODEL ARCHITECTURE

In this section, we explain the proposed model archi-
tecture to perform sentence compression.

4.1 Feature Selection

Since we extracted some important word features dur-
ing the sentence processing pipeline (explained in the
previous section), now we need to present their rep-
resentations as inputs to our model. This section ex-
plains which features were used, the reasons why we
chose to use them, and their representations as input
to the model. We sought three main goals while deter-
mining which features to use. First, to retain original
information of each word. Second, to obtain a struc-
tural representation of the sentence that shows the im-
portance of each word and the role it plays in the sen-
tence. And finally, to show the dependencies between
words explicit, since the information that a word has
been retained or removed in the compressed sentence
may be important for deciding the next word. Thus,
three feature groups were used. Following, we list all
used features and describe their representations:

e Semantic Feature: The word itself is the main in-
put feature of the model. It contains all relevant
information that has not been manually extracted
from other features, and, of course, it is still useful
for classifying whether or not it should be retained
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Figure 2: Example of dependency tree with the part-of-speech tag for each word.
Table 1: Table with the replacement words for each named entity type.

Named Entity Type | Description Substitute Word
PERSON Person name
NORP Nationalities or religions or political groups group
FAC Buildings, airports, roads, bridges, etc. location
ORG Companies, agencies, institutions, etc. organization
GPE Countries, cities, states, etc. location
LOC Non-GPE Locations location
PRODUCT Objects, vehicles, food, etc. object
EVENT Names of hurricanes, battles, wars, etc. name
WORK_OF_ART Book titles, songs, etc. name
LAW Named documents made by law. law
LANGUAGE Name of any language. language
DATE Absolute or relative dates or periods. date
TIME Moments less than a day. moment
PERCENT Percentage, including ”%”. number
MONEY Currency values including unit. number
QUANTITY Measures such as distance or weight. measurement
ORDINAL Ordinal numbers. number
CARDINAL Numerals that do not fall into any another type | number

in the compressed sentence. It is represented by
a pre-trained embedding vector using some word
embedding model like GloVe (Pennington et al.,
2014) or Skipgram (Mikolov et al., 2013);

Structural Features: During sentence preprocess-
ing, we perform a Part-of-Speech (POS) tagger
over the sentences. The POS tags are used as a
feature to characterize a word structurally. Em-
bedding vector also represents the POS tags, and
they are trained throughout the training phase of
the model. Moreover, in the preprocessing phase,
the sentence dependency parse is performed, and
the syntactic dependency tree is constructed, as
shown in Figure 2. By using the dependency tree,
our approach counts the number of nodes in the
subtrees of each word. This amount is used as a
feature to our proposed model. It roughly means
the importance of each word in the sentence infor-
mation.

Dependency Features: We intend to explicitly
provide the dependencies between the words in a
given sentence. Thus, we use the position of each
word and the position of its parent word, both rep-

resented by a one-hot vector. We also capture as
a feature, the dependency relationship between a
word and its parent which is represented as an em-
bedding vector trained along with the model.

Given a sentence W = (wg,wy,...,w,), let e; be
the embedding vector representing a word w;, t; the
embedding vector representing the POS tag of w;, d;
the embedding vector representing the dependency re-
lation between w; and its parent word, o; the one-hot
vector of 7, p; the one-hot vector of the position of w;’s
parent and s; the total nodes in w; dependency subtree
for i < n, our model combines all these features, by
concatenating them, into a single vector to be used as
1nput:

Xi=e;®t;®di®o;PpiDsi, (D

where & means the concatenation of vectors.
4.2 Model Architecture

As in (Filippova et al., 2015), the trained model is ca-
pable of, given a sentence W = (wg, w1, ...,w,) where
each w; represents a word of the sentence, classify a
word w; in retained or removed in the compressed
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sentence. To this end, our proposed model was de-
signed inspired by the encoder-decoder architecture
proposed in (Cho et al., 2014) and (Sutskever Google
et al., 2014). This architecture has two main modules:
an encoder, responsible for learning a vector repre-
sentation for a sequence of tokens and a decoder, re-
sponsible for generating a sequence of tokens from a
vector that represents an encoded sequence.

In general, this architecture is used to build mod-
els that can learn how to transform a sequence of to-
kens into another one. Our model gets inspired by
encoder-decoder architecture, however its modules do
not necessarily have the same roles. In this paper,
the encoder is responsible for generating a vector rep-
resentation of an entire sentence, and then provides
more information about the whole sentence as input
for the classifier. This is similar to the original en-
coder purpose. But, instead of a decoder, we have
a classifier that receives as input a sequence of words
(represented by its features), and the vector that repre-
sents the full sentence encoded, as we can see in Fig-
ure 3. Both encoder and classifier will be explained in
the next sections.

.

classifier

encoder

Figure 3: Overview of proposed model.

4.2.1 Sentence Encoder

The encoder was implemented using a bidirectional
LSTM stack architecture (Graves et al., 2005). Com-
pared to an ordinary LSTM architecture, bidirectional
LSTM has a greater ability to capture contextual in-
formation from a sentence, such as dependencies be-
tween successive or non-successive words. As you
can see in Figure 4, the architecture has two stacks
of LSTM networks, interleaved with dropout layers,
which help the model to minimize overfitting (Srivas-
tava et al., 2014). The forward stack encodes a sen-
tence X = (xo,X1,...,xy) in a vector hf. While the
backward encodes the same sentence, in reverse or-
der, in h? vector. The vectors A and h? are then con-
catenated to compose a new /, vector that represents
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the vector in both directions:

hY = Forward(X) 2)
h8 = Encoder(X) 3)
he =hl @ nb 4)

Forward

([ stw |

T

| Dropout |
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[ LSTM ] [ LsT™M |

Figure 4: Overview of sentence encoder.
4.2.2 Classifier

Our classifier is similar to the model proposed in
(Wang et al., 2017). The main difference is in the
input data. Rather than receiving only word-related
attributes, the proposed model also receives a vector
representing the entire sentence concatenated to each
word input. Thus, it is expected that at the moment
of each word classification, the model has more infor-
mation as input than just the word itself, improving its
ability to decide whether or not to retain that word in
the compressed sentence:

hf = Forward (h, © x;) 6)
hf? = Backward(h, @ x;) 6)
hi =ht o n? @)
yi=hi-W+b ®

Figure 5 illustrates this architecture in details along a
sequence of predictions.
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backward —

forward —

Figure 5: Detailed classifier unrolled along a sentence. The dropout layers were intentionally omitted for readability.

S RELATED WORKS

In the beginning, sentence compression aimed to im-
prove the quality of summaries generated by extrac-
tive text summarization systems. However, differ-
ent names and definitions can be associated with text
summarization. In the literature, we find this task with
three different names: sentence compression (Knight
and Marcu, 2000; McDonald, 2006; Cohn and Lap-
ata, 2008; Filippova et al., 2015), sentence summa-
rization (Rush et al., 2015; Chopra et al., 2016) and
sentence reduction (Jing, 2000). Sentence reduction
refers to the task of removing extraneous phrases from
a sentence (Jing, 2000), while sentence compression
and sentence summarization both can be defined as
the task of, given a sentence, obtain a shorter, but still
informative and grammatical sentence. However, it
is common to find in the literature some distinction
between these two. Sentence compression is often
used as synonymous of sentence reduction, i.e., de-
scribe methods that focus on removing unessential ex-
pressions from the sentences only. The term sentence
summarization is used to describe methods that seek
to reduce the length of sentences, i.e., generating sen-
tences from scratch based on the original.

For homogenization purposes, the task of obtain-
ing a shorter sentence from another sentence will be
termed as sentence compression, once that is the most
frequently used term in the literature.

The work in (Jing, 2000) is the first one that tried

to develop a method to compress sentences automat-
ically. (Jing, 2000) focused on removing extraneous
phrases of the sentences. So, (Jing, 2000) proposed a
system that used multiple sources of knowledge, con-
textual information, and statistics calculated over a
human-written corpus to decide which phrases should
be removed from the original sentence. (Knight and
Marcu, 2000) proposes two different models to sen-
tence compression: a probabilistic noisy-channel and
a decision-tree based model. In the experimenta-
tion study, (Jing, 2000) was more conservative, while
(Knight and Marcu, 2000) was more aggressive in its
compression, retaining fewer important words than
the noisy-channel model. In (McDonald, 2006), a
large margin-learning algorithm is proposed to model
the task as attempting to classify if two words are
adjacent or not in the compressed sentence using a
large number of features extracted from the words.
The work of (Clarke and Lapata, 2008) models sen-
tence compression as an integer linear programming
(ILP) problem whose goal is to seek and find an opti-
mal compression given some constraints over the lan-
guage.

(Cohn and Lapata, 2008) is the first work to ex-
plore other rewrite operations, besides deletion, to
perform sentence compression. It analyzed the pro-
portion of each common rewrite operation on human-
made sentence compression. It found out that word
substitution and sentence reordering were also com-
mon operations on compressions made by humans.
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Given the small amount of parallel data corpus,
i.e., corpus with pairs of sentences and its compres-
sions, to train neural networks-based models, (Filip-
pova and Altun, 2013) developed a method for auto-
matically generating a corpus by matching the com-
pressed sentence dependency tree to a sub-tree of the
original sentence dependency tree. (Filippova et al.,
2015) used the method proposed in (Filippova and
Altun, 2013) to create a corpus of millions of pairs
of sentences to make feasible the training of a neural
network-based model inspired by the advancements
in neural machine translation (NMT). The model of
(Filippova et al., 2015) implemented a stack of Long
Short-Term Memory (LSTM) networks to classify
each word in a sentence as retained or removed and
evaluated the impact of some syntactic features over
the model performance.

After (Cohn and Lapata, 2008), (Rush et al., 2015)
was the first work to make a new attempt on do-
ing sentence compression in a non-deletion based ap-
proach. Inspired by the attention model of (Bahdanau
et al., 2014), widely used in NMT, (Rush et al., 2015)
is also the first that named the task as sentence sum-
marization. It proposes an attention-based encoder to
learn a vectorial representation for a sentence and uses
a neural language model to decode this sentence en-
coded vector into a new sentence, shorter but with the
same meaning of the original. (Chopra et al., 2016)
extends the model from (Rush et al., 2015) and re-
places the neural language model by a recurrent neu-
ral network to create the compressed sentence.

The works of (Jing, 2000), (Knight and Marcu,
2000) and (McDonald, 2006), as first supervised
methods, had a concern about the quality of their
models when applied to sentences outside the do-
mains they were trained on. However, with the
advancement of neural networks-based models, this
concern was gradually being neglected. Since so,
(Wang et al., 2017) work is the first to investigate
how to ensure that a model trained on some domain
can generalize the sentence compression task prop-
erly into domains under which it has not been trained.
To do so, it extends the (Filippova et al., 2015) model
using a bidirectional LSTM instead of an ordinary
LSTM to capture contextual information better and
using a set of specific syntactic features instead of
merely using words as performed in (Filippova et al.,
2015). Additionally, the work of (Wang et al., 2017),
inspired by the work of (Clarke and Lapata, 2008),
uses integer linear programming to find the optimal
combination of labels.

The problem of sentence compression has been
addressed differently over the years. So, it is hard
to compare the proposed models and algorithms. The
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advancement of neural networks brought significant
improvement for the field, but also brought the al-
ready known problems of data acquisition. Except
for the model of (Wang et al., 2017), all presented
neural network-based models require large amounts
of labeled data to achieve good performances. These
models take advantage of these massive amounts of
data to extract important features from the words, by
themselves, without using any syntactic information.
Nevertheless, these massive amounts of data are not
always open and publicly available. So, with small
amounts of data, these models can not extract, by
themselves, the features they need to achieve better
performances.

We propose a model that aims to overcome this
problem by previously extracting some important fea-
tures and applying some pre-processing steps. Our
model is an extension of (Wang et al., 2017). So, the
model proposed in (Wang et al., 2017) is our baseline.

6 EXPERIMENTS

In this section, we discuss the experimental evalua-
tion.

6.1 Dataset

The dataset used in these experiments is a set of
10,000 pairs of sentences (original and compressed)
publicly released in (Filippova et al., 2015), both for
training and for model evaluation. These sentences
were automatically extracted from Google News us-
ing a method developed in (Filippova and Altun,
2013). The 10,000 sentences were split into a train-
ing set consisting of approximately 8,000 sentences,
around 1,000 sentences for the validation set, and fi-
nally, the test set with 1,000 sentences. We study how
our model and the baseline perform with a small train-
ing set. So, we consider three different samples of
training set: one with the full 8,000 sentences, an-
other with the first 5,000 sentences, and the last one
with the first 2,000 sentences.

6.2 Experimental Setup

In the experiments, we trained all models using Adam
(Kingma and Ba, 2014) as the optimizer with the
learning rate starting at 0.001 and using cross-entropy
as the loss function. The hidden layers of the LSTM
for all models were set to 100. The word embedding
vectors were set to 100. They were initialized using
pre-trained GloVe vectors of the same dimension and
were not updated during training. The embedding
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vectors of part-of-speech tags and dependency rela-
tions were both set to 40 dimensions and, unlike the
embedding vectors of the words, were updated dur-
ing the model training. The dropout layers that in-
terleaved the LSTM layers were set to drop 50% of
neurons during weight update steps randomly, and fi-
nally, all models were trained with a batch size of 30
for 20 epochs each.

We analyzed four variations of sentence compres-
sion neural network-based model architectures. Table
2 summarizes the relationship between models and
their characteristics described below:

BiLSTM: is the baseline. This model is the one
proposed in (Wang et al., 2017). It uses a bidirectional
LSTM stack and the combination of embedding vec-
tors of each word, its part-of-speech tag, and its de-
pendency relationship with the word’s parent as input
features. As in its original work, this model does not
use the proposed sentence processing pipeline.

EncBiLLSTM: This architecture uses an encod-
ing module to get a vector representation of the full
sentence and combines that representation with the
same input features of the BILSTM. The classifier, as
in BiLSTM, is a bidirectional LSTM stack, and the
model does not use the proposed sentence processing
pipeline.

BiLSTM+: This configuration uses the same ar-
chitecture as the BiLSTM, without using an encoder
to get the vector representation of the sentence. How-
ever, in addition to the BiLSTM input features, BiL.-
STM+ uses the word position in the sentence, the
word parent position, and the number of nodes in each
word’s dependency subtree. Besides that, the configu-
ration uses the proposed sentence processing pipeline.

EncBiLSTM+: Finally, EncBiLSTM+ uses the
same architecture as the EncBiLSTM. However, in
addition to its input features, EncBiLSTM+ also uses
the word position in the sentence, the position of the
word parent and the number of nodes in the depen-
dency subtree of each word (as BILSTM+). More-
over, this configuration also uses the proposed sen-
tence processing pipeline.

6.3 Evaluation Metrics

The test set consists of 1,000 pairs of sentences pre-
viously picked up. To evaluate the models, we cal-
culated word-level accuracy, F1 score, and the aver-
age compression rate of the sentences from the test
set against the ground truth. The word-level accuracy
measures how many words the model classified cor-
rectly. The F1 score is a metric derived from the other
two metrics, precision and recall. Precision measures
how many retained words were correctly classified

and recall measures how many words that must be re-
tained were classified as so. The average compression
rate is the average between the compression rate, i.e.,
the ratio of retained words over the total words count
of the sentence, of all sentences from the test set.

In order to compare the quality of compression,
we used BLEU (Papineni et al., 2001) and ROUGE
(Lin, 2004) for automatic evaluation. BLEU is a met-
ric originally proposed for neural machine translation
that claims to be highly correlated with human assess-
ment. ROUGE is a metric widely used in literature to
evaluate the quality of text summarization by overlap-
ping parts of the generated compression or summary
against a reference or set of references. The most
common variations of ROUGE are for overlapping
unigrams, bigrams, and longer common subsequence,
respectively ROUGE-1, ROUGE-2, and ROUGE-L.

6.4 Experimental Result

The results reported in Table 3 refer to the experiment
using 8,000 sentences in the training set, and Figure
6 illustrates the comparative performance of the mod-
els, in terms of accuracy and F1 score, with different
amounts of training data.

Given a large amount of data (8,000 sentences),
the EncBiLSTM+ model performs slightly better than
the others, as can be seen in Table 3. Fl-score
and accuracy show that EncBiLSTM+ performs better
than its competitors by predicting whether each word
should be retained or removed from the sentences.
ROUGE values, especially ROUGE-1, were signifi-
cantly higher for all models, and slightly higher for
EncBiLSTM+ since compressions are naturally sub-
sets of original sentences. As ROUGE measures the
overlapping n-grams between compressed and origi-
nal sentences, so it is expected that ROUGE scores
would be high.

The advantage of the EncBiLSTM+ model is
probably because the model has two modules, a sen-
tence encoder, and a word classifier. This makes
it more robust, but also requires a more substantial
amount of data to train. Combining this with the
processing pipeline, which somehow facilitates the
model training, we understand why the models that
used our proposed pipeline performed better.

When the amount of training data decreases, the
performance of the proposed model drops as well
since its architecture has more weights to train than
the baseline’s for the same amount of data. The BiL-
STM+ model uses the same set of features and sen-
tence processing pipeline as the EncBiLSTM+. Re-
member the difference between them is the encoder
phase. For smaller amounts of data the difference be-
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Table 2: Relationship between evaluated models and their characteristics.

Word | Part-of-Speech Tag D?;ng)?y Encoded Sentence | Word Position W;Z)dgil;fzm Subtéeoeulr\lltodes Senten;;:;efl’irrcl):essing
BiLSTM X X X
EncBiLSTM X X X X
BiLSTM+ X X X X X X X
EncBIiLSTM+ X X X X X X X X
Table 3: Results from models trained with 8,000 sentences.
F1 Accuracy Compression Rate | BLEU ROUGE-1 ROUGE-2 ROUGE-L
BiLSTM 0.7922 0.8141 0.4211 0.5445 0.7687 0.6330 0.7329
EncBiLSTM 0.7971 0.8187 0.4343 0.5578 0.7748 0.6499 0.7415
BiLSTM+ 0.8045 0.8204 0.4451 0.5707 0.7882 0.6672 0.7552
EncBiLSTM+ | 0.8149 0.8317 0.4397 0.5849 0.7955 0.6802 0.7625
Accuracy x Training Sentences F1 Score x Training Sentences
0.85 T 0.85 \
>

5 2

I 5]

5 08%F 8 » 08 |
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Figure 6: Accuracy and F1 score of models with different amounts of training sentences.

tween the two models decreases considerably to the
point that the first has a value of F1 score better than
the second for 2,000 training sentences, as you can
see in Figure 6.

Notice that BILSTM+, EncBiLSTM, and EncBiL-
STM+ outperform the state-of-the-art model (BiL-
STM). This proves that our proposed neural network
model and the proposed sentence processing pipeline
offer promising results compared to the baseline, even
when trained with smaller amounts of data.

6.5 Compressed Sentence Analysis

We show a comparison between EncBiLSTM+ and
BiLSTM in Table 4. In the first example, both mod-
els outputted quality compression sentences. EncBiL-
STM+ generated a compressed sentence shorter than
BiLSTM. The second example shows that BiILSTM
generated a sentence that is grammatically correct,
however, the compressed sentence does not keep the
same meaning of the original sentence. While Enc-
BiLSTM+ achieved exactly the same compression of
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the ground truth. The third example shows an inter-
esting case. EncBiLSTM+ generated a compressed
sentence much longer than the ground truth, but more
coherent. Since the sentences were automatically ex-
tracted, it is possible that some ground truth com-
pressed sentences are not the best compression. Fi-
nally, the fourth example shows a case in which both
models EncBiLSTM+ and BiLSTM generated qual-
ity compressed sentences, yet different, compressions
for the original sentence. In Table 4, we also show
the compressed sentences outputted using Sumy that
is a widely used tool for text summarization. Notice
that Sumy can not compress small sentences differ-
ent from our approach. This is another benefit of our
approach.

7 CONCLUSION

We present a more robust neural network-based
model to automatically compress sentences by us-
ing a handful set of syntactic features and a sen-
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Table 4: Comparison between the compressed sentences outputted from the models and the ground truth.

Original: German Chancellor Angela Merkel early on Wednesday agreed to form a coalition
government with the Social Democrats, negotiation sources told AFP, two months after her
conservatives won elections but fell short of a full majority.

Ground Truth: Angela Merkel agreed to form a coalition government with the Social Democrats.
BiLSTM: Chancellor Angela Merkel agreed to form a coalition government Social Democrats.
EncBiLSTM+: Angela Merkel agreed to form a coalition government.

Sumy: German Chancellor Angela Merkel early on Wednesday agreed to form a coalition
government with the Social Democrats, negotiation sources told AFP, two months after her
conservatives won elections but fell short of a full majority.

Original: Manufacturing strengthened from China to South Korea last month in a sign that growth
risks are abating in Asia and expansion may pick up this quarter.
Ground Truth: Manufacturing strengthened from China to South Korea.

BiLSTM: Manufacturing strengthened China.

EncBiLSTM+: Manufacturing strengthened from China to South Korea.
Sumy: Manufacturing strengthened from China to South Korea last month in a sign that growth
risks are abating in Asia and expansion may pick up this quarter.

Original: I am Chelsea Manning, I am a female,” Manning said in a statement released on Thursday,
before going on to say that “given the way I feel and have felt since childhood, I want to begin

hormone therapy as soon as possible”.
Ground Truth: I am Chelsea Manning, I am.
BiLSTM: I am Chelsea Manning.

EncBiLSTM+: Chelsea Manning want to begin hormone therapy.
Sumy: T am Chelsea Manning, I am a female,” Manning said in a statement released on Thursday,
before going on to say that ’given the way I feel and have felt since childhood, I want to begin

hormone therapy as soon as possible”.

Original: Emma Thompson fears young actresses are under terrible” pressure to look like skinny

fashion models.

Ground Truth: Emma Thompson fears young actresses are under pressure to look like models.
BiLSTM: Emma Thompson fears young actresses are under terrible pressure to look like models.
EncBiLSTM+: Emma Thompson fears actresses are under terrible pressure to look like skinny models.
Sumy: Emma Thompson fears young actresses are under “terrible” pressure to look like skinny

fashion models.

tence processing strategy to minimize the occurrence
of rare words. We experimented with 8,000 sentences
as training data, which is considerably less than the
number of sentences usually used by neural network-
based sentence compression models in the literature.
Our results indicate that, although a neural network-
based model can perform feature extraction by itself
when exposed to a huge amount of training data, it
can also benefit from explicitly extracted features to
counterbalance the lack of that data. That is the in-
tuition behind the idea of our proposal. We also no-
ticed that our approach performs better to compress
small sentences, different from state-of-the-art tech-
niques for summarization. In the future, we expect
to evaluate our model against other criteria such as
sentence readability, informativeness, and grammati-
cality as well as try to reduce the number of trainable
weights for the model without losing its robustness.
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