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Abstract:

This paper presents an approach for retrofitting pre-trained word representations into sense level representa-

tions to improve semantic distinction of words. We use semantic relations as positive and negative examples
to refine the results of a pre-trained model instead of integrating them into the objective functions used during
training. We experimentally evaluate our approach on two word similarity tasks by retrofitting six datasets gen-
erated from three widely used techniques for word representation using two different strategies. Our approach
significantly and consistently outperforms three state-of-the-art retrofitting approaches.

1 INTRODUCTION

Distributed word representations based on word vec-
tors learned from distributional information about
words in large corpora have become a central tech-
nique in Natural Language Processing (NLP). On ba-
sis of the distributional hypothesis (Harris, 1954),
methods convert words into vectors by linguistic con-
texts as “predictive” models (Mikolov et al., 2013a,b;
Bojanowski et al., 2017; Grave et al., 2017) or by
co-occurring words as “count-based” models (Pen-
nington et al., 2014). Both of them depend on “co-
occurrence” information on words in a large unla-
beled corpus. In general, we can observe that the
larger data they use, the better such methods tend to
perform on NLP tasks.

These approaches for constructing vector spaces
predominantly focus on contextual relationships or
word morphology. They disregard the constraints ob-
tainable from lexicons which provide semantic in-
formation by identifying synonym, antonym, hyper-
nymy, hyponymy, and paraphrase relations. This im-
pedes their performance on word similarity tasks and
applications where word similarity plays a significant
role such as, e.g., text simplification.

Existing approaches for exploiting external se-
mantic knowledge to improve word vectors can
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be grouped into two categories (Vulic and Glavas,
2018): (1) joint specialization models integrate se-
mantic constraints on word similarity by modify-
ing the objective of the original word vector train-
ing in joint neural language models (Yu and Dredze,
2014; Mikolov et al., 2018) or by incorporating
relation-specific constraints like the co-occurrence
matrix (Chang et al., 2013) or word ordinal ranking
(Liu et al., 2015a) into models; (2) post-processing
models retrofit or refine the pre-trained distributional
word vectors in order to fit the semantic constraints
(Faruqui et al., 2015; Shiue and Ma, 2017; Lee et al.,
2018; Vulic and Glavas, 2018).

Compared with joint specialization models, post-
processing models are more flexible because they can
be applied to all kinds of distributional spaces. Fur-
thermore, post-processing approaches do not need to
re-train models on the large corpora typically used,
which is more convenient both for research purposes
and in applications.

Recent work on post-processing approaches,
mainly based on the graph-based learning technique
(Faruqui et al., 2015; Yu et al., 2017; Lee et al., 2018),
has had a great influence on the field of retrofitting
word vectors. Yet, these studies specifically show
the significant improvements on benchmarks of eval-
uation datasets such as MEN (Bruni et al., 2014) or
WordSim-353 (Finkelstein et al., 2002) which con-
flate relatedness or association with similarity rather
than on datasets that exclusively focus on word simi-
larity.
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In this paper, we propose a new approach that ob-
tains the new word vectors by retrofitting pre-trained
vectors by exploiting synonyms and antonyms ob-
tained from thesaurus.com' for the 100,000 most
frequently-used English words from Wiktionary.> For
evaluation purposes, we use the same standard bench-
marks as used by Vulic and Glavas (2018), i.e
SimLex-999 (Hill et al., 2015) and SimVerb-3500
(Gerz et al., 2016), and also Stanford’s Contextual
Word Similarities (Huang et al., 2012) used by Lee
et al. (2018).

We find that our model consistently provides sig-
nificant improvements in word similarity compared to
state-of-the-art retrofitting models. Specifically, we
obtain a Spearman correlation of 0.765 on SimLex-
999, improving on the score of 0.76 achieved by the
best published model (Recski et al., 2016). Our ap-
proach uses negative sampling (Mikolov et al., 2013b)
for simplifying the process of neural networks with
complicated hidden layers (Vulic and Glavas, 2018).
The contributions of this paper are twofold: (i) we
generate the vectors of a word with different def-
initions using the original pre-trained word vector,
based on the synonym and antonym sets in the dif-
ferent word senses, and (i) we enhance the perfor-
mance of word vectors on the task of semantic sim-
ilarity of words by only using superficial synonyms
and antonyms knowledge.

Figure 1 depicts the structure of our approach. We
input the synonyms of a target word with the j-th
sense into our model which are the positive samples
giving a positive influence on this target word. The
antonyms of this target word are added to adjust the
probability of this target word. Such adjustments can
also affect these synonyms such that we could update
the vectors of these synonyms first. Finally under the
influence of the updated synonyms and the antonyms,
the vector of the target word is retrofitted with the j-th
sense.

This paper is structured as follows. An overview
on recent related work is provided in Section 2. In
Section 3, we introduce the principle of our model,
define the objective, and describe the steps of opti-
mization as well as how to update word embeddings
into sense embeddings. In Section 4 we describe our
experimental setup with datasets, evaluation proce-
dures, and the evaluated tasks. In Section 5 we discuss
the results of different configurations on the bench-
marks. Finally, we present conclusions and future
challenges in Section 6.

Uhttps://www.thesaurus.com/
Zhttps://gist.github.com/h3xx/1976236

Figure 1: Graphical sketch of the proposed model. s, in refers
to the n-th synonym of the target word w with the j-th sense
in the i-th step and ant(w;) indicates the antonym set of the

target word w with the j-th sense.

\\//

2 RELATED WORK

The representation of words which provide continu-
ous low-dimensional vector representations of words
plays a pivotal role and has been widely studied in
NLP domain. Vector Space Models (VSM) is the ba-
sis of many prominent methodologies for word rep-
resentation learning. The earliest VSMs considered
a vector space in document level which uses the vo-
cabulary directly as the features (Salton et al., 1975).
Subsequently many kinds of weight computation met-
rics of individual dimensions such as word frequen-
cies or normalized frequencies (Salton and McGill,
1986) have been proposed. This research has suc-
ceeded in various NLP tasks.

However, one crucial problem with the huge cor-
pus is the high dimensionality of the produced vec-
tors. A common solution is dimensionality reduc-
tion making use of the Singular Value Decomposition
(SVD). Learning low-dimensional word representa-
tions directly from text corpora is another strategy
that has been achieved by leveraging neural networks.
These models are commonly known as word embed-
dings. Some prominent word embedding architec-
tures have been constructed depending on contextual
relationships or word morphology. Beyond that, more
complex approaches have been proposed attempting
to cure some deficiencies (e.g., conflation of meaning)
by exploiting sub-word units (Wieting et al., 2016),
probability distributions (Athiwaratkun and Wilson,
2017), specialized similarity measures (Soares et al.,
2019), knowledge resources (Camacho-Collados and
Pilehvar, 2018), etc.

The process of producing word embeddings is
not able to capture different meanings of the same
word. And for downstream tasks, the meaning con-
flation can have a negative influence on accurate se-
mantic modeling, e.g., “mouse-screen” and “mouse-
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cow”. There is no relation between “screen” and
“cow”, but they can be connected by two different
senses of “mouse”, i.e., computer device and animal.

Partitioning the meanings of words into multiple
senses is not an easy task. Computational approaches
relying on text corpora or semantic knowledge (such
as a dictionary or thesaurus), generally can be cate-
gorized into unsupervised techniques and knowledge-
based techniques.

2.1 Unsupervised Techniques

Unlabeled monolingual corpora can be exploited for
word sense disambiguation by clustering-based ap-
proaches or joint models. Clustering the context
in which an ambiguous word occurs can discern
senses automatically. Context-group discrimination
(Schiitze, 1998) is an approach to compute the cen-
troid vector of the context of an ambiguous word, and
then cluster these context centroid vectors into a pre-
determined number of clusters. Context clusters for
an ambiguous word are interpreted as representations
for different senses of this word. Models applying
this strategy are also called two-stage models (Erk and
Pado, 2008; Van de Cruys et al., 2011).

Joint models (Li and Jurafsky, 2015; Qiu et al.,
2016) are proposed as various extensions of tradi-
tional word embedding models. The primary differ-
ence in contrast to clustering-based approaches is that
joint models merge the clustering and the sense rep-
resentation step. In this way, the joint model can dy-
namically select the potential sense for an ambigu-
ous word during training. Topical Word Embeddings
(TWE) (Liu et al., 2015b) are proposed for inducing
the sense representations of a word based only on its
local context, which reduces computational complex-
ity. Joint models have serious limitations, though,
which require the disambiguation of the context of
a word as well as predetermining a fixed number of
senses per word.

Another recent branch of unsupervised techniques
is to generate contextualized word embeddings. Here,
context-sensitive latent variables for each word are
inferred from a fuzzy word clustering and then inte-
grated to the sequence tagger as additional features
(Li and McCallum, 2005).

2.2 Knowledge-based Techniques

Knowledge-based techniques about semantic repre-
sentations fall into three categories: (1) improv-
ing word representations, (2) using sense represen-
tations, and (3) using concept and entity repre-
sentations. Studies related to all three categories
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make use of similar knowledge resources. In par-
ticular, WordNet (Baker et al., 1998) as an ex-
ample of expert-made resources and Wikipedia as
an example of collaboratively-constructed resources
are widely applied (Camacho-Collados and Pile-
hvar, 2018). Some similar collaborative works pow-
ered by Wikipedia like Freebase (Bollacker et al.,
2008) and DBpedia (Bizer et al., 2009) also pro-
vide large structured data in the form of the knowl-
edge base. Further examples are BabelNet (Nav-
igli and Ponzetto, 2012), a combination of expert-
made resources and collaboratively-constructed re-
sources, and ParaPhrase DataBase (PPDB) (Ganitke-
vitch et al., 2013) gathering over 150 million para-
phrases and providing a graph structure. In the fol-
lowing, we shortly recap some of the relevant related
work for each of the three categories.

2.2.1 Improving Word Representations

The earlier attempts to improve word embedding us-
ing lexical resources modified the objective func-
tions of a neural network model for learning a word
representation (Yu and Dredze, 2014; Kiela et al.,
2015). Typically, they integrate the external seman-
tic constraints into the learning process directly, re-
sulting in joint specialization models. Some recent
approaches try to improve the pre-trained word vec-
tors through post-processing (Faruqui et al., 2015;
Lengerich et al., 2018), which is a more versatile
approach than the joint models. The popular term
“retrofitting” is used when implanting external lexi-
con knowledge into random pre-trained word vectors.
Given any pre-trained word vectors, generated by any
tools or techniques, the main idea of graph-based
retrofitting is to minimize the distance between syn-
onyms and maximize the distance between antonyms.
Building upon the retrofitting idea, explicit retrofitting
constructs a neural network by modeling pairwise re-
lations (Goikoetxea et al., 2015; Vulic and Glavas,
2018), which also specialize vectors of words unseen
in external lexical resources.

2.2.2 Using Sense Representations

The second category consists of sense vector repre-
sentation techniques. These generate vectors by “de-
conflating” a word (with conflated meanings) into
several individuals with different senses. Methods
based on linear models draw support by the synonym
and antonym sets of the target word with different
senses to retrofit the original word vectors (Pilehvar
and Collier, 2016; Lee et al., 2018). Chen et al. (2015)
exploit a convolutional neural network architecture
for initializing sense embedding. Neelakantan et al.
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(2015) rely on the Skip-gram model for learning sense
embeddings. The Lesk algorithm (Vasilescu et al.,
2004) has been adapted for learning word sense em-
beddings (Yang and Mao, 2016).

2.2.3 Using Concept and Entity Representations

The main idea in this branch is to construct a strong
relation between related entities. Given a knowledge
base as a set of triples {(e,ez,r)}, where e; and
e are entities and r is the relation between them,
the goal is to approach the entities by the relation r
(é1 +7 = ¢&>) for all triples in the space. Typical ap-
proaches integrating concepts and entities from ex-
ternal knowledge bases rely exclusively on knowl-
edge graphs to build an embedding space for enti-
ties and relations (Bordes et al., 2013). In addition,
some hybrid models have been proposed to exploit
text corpora and knowledge bases as well (Camacho-
Collados et al., 2016).

2.3 Summary

The approach we propose is inspired by Word2Vec
(Mikolov et al., 2013b,a) which reduces the complex-
ity of the hidden layer so that the approach is both
simple and practical. Considering the importance of
semantic relation and sense representation, we retrofit
the unitary pre-trained word vectors from the corpus
into sense level representations by external semantic
knowledge.

3 NEGATIVE-SAMPLING
RETROFITTING

An important aspect in Natural Language Processing
is the Statistical Language Model which can be used
to calculate the probability of a sentence

Pr(wiwy...wy).

We assume w) = (wiws...wy). According to Bayes’
theorem, this probability could be decomposed into
conditional probabilities

Pr(wl)vPr(W2|W1)v cee aPr(WN|W}]V_1)

which are the parameters of a Language Model. In or-
der to find the optimal model parameters, we will do
optimization on an objective function Pr(w|POS(w))
generated by a maximum likelihood estimate method,
where POS(w) is the positive sample set of the tar-
get word w. That is, under the positive condition, the
probability of w should be greater than under the neg-
ative condition. Thus, we explore a method that uses

a set of linguistic constraints from an external lexical
resource,

LC = {(wj,syn(w;),ant(w;))|w € V},

each consisting of a word w from the associated
vocabulary 9/ with the j-th sense and its syn-
onyms (syn(w;)) as positive samples and its antonyms
(ant(w;)) as negative samples to retrofit the vector of
each target word. More specifically, the synonyms
and antonyms of the corresponding senses helps us to
refine the vectors into a sense level. We employ Neg-
ative Sampling (Mikolov et al., 2013b), a simplified
version of Noise Contrastive Estimation (NCE) (Gut-
mann and Hyvirinen, 2010) which aims at improving
the quality of results and decreasing training time.

Our approach consists of two major components:
(1) updating the synonym set of the target word in the
Jj-th sense, and (2) generating the corresponding new
sense embedding of this word.

3.1 Objective Functions

Let X = {x,|w<€ ¥}, x,, € R? be the pre-trained
d-dimensional distributed vector space and let ¥ =
Dulwe V3 y, = {3,100, y,,, € RY be the cor-
responding retrofitted sense vector space. Recall that
syn(w) is the positive sample set and ant(w) is the
negative sample set of target word w, respectively.
Therefore, for any word u in the pre-trained word vec-
tor space, we first define Equation (1) to denote the
label of word u. That means if the word u is the target
word, the corresponding optimization process for the
objective function will be activated.

u—=w

L*(u) = {1’ )

0, otherwise

According to the given positive sample set syn(w),
the objective is to maximize the conditional probabil-
ity of a word under a condition of its synonyms. Cer-
tainly, each synonym can affect this condition, either
on its own or with other related synonyms. On the
basis of the above, we propose two strategies for this
goal. One would be to maximize a series of probabil-
ity functions if we set each synonym as an individual
(NS-sv):

L= H H g(xw,0)

we wesyn(w)

=11 1T 1l

we ) wesyn(w) ue{w}Uant(w)

)

Pr(x, |x;;)

where 0 is the parameter matrix of the hidden layer,
and g is the objective conditional probability function.
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An alternative strategy is to maximize the con-
ditional probability under the integration of the syn-
onyms (NS-sv-sum):

L= H g(x,0)

weV

=11 1II

weV ue{w}Uant(w)

3)

Pr(x, |x7)

where w is composed of all synonyms instead of each
single word. In our approach, we integrate them by:

Xy = Z Xy 4)

sesyn(w)
3.2 Optimization

No matter which strategy we use to produce the ob-
jective, the goal is to maximize the probability of the
positive sample and, simultaneously, to minimize the
probability of the negative sample. We use a sigmoid
function as the activation function:

1
=—— 5
o) 1 +exp(x) )
such that the derivative of sigmoid function is:
o' (x) = o(x) [1 —o(x)] (6)
Thence, Pr(x,|x5) could be denoted as:
o(x10Y),  L*(u) =1
Pr(x,|x;) = w 7
r( u| W) {1-6()’,‘%9“), Lw(u):O ( )
Putting the pieces together, g(w, 0) would become:
L"(u) 1—-L"(u)
g(x,,0)= J] ofx;6" (1-o(xLe"
ue{W}Uant(w)( ) ( < )> 3

The purpose of training by negative sampling is to
maximize the objective with respect to the model pa-
rameters by the commonly used log-likelihood func-
tion:

logg(x,,,0) = L"(u) -log [o (x8")] +
ue{w}Uant(w)
L) -log[1 -0 (xi)] ] ©)
To explain the procedure in detail, we let Fi’ represent

the log-likelihood function of the target word w in the
i-th step with the j-th sense:

Fil = L (u) -log [ (x56})] +
1 —L?/(u)] log[l—o (vaveftj)]

We choose gradient ascent for optimization. The pa-
rameters 9:-3 and x;; are updated by the learning rate o

(10)
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as follows:
OF/
. 11
api U
Xp=X5;+0Q .
uc{w}Uant;(w) Xy
The gradients above are calculated as follows:
OF y Y
o =[5/ =0 (x;00)) ] xs
v (12)
o~ [ - o (aley) o

Consequently, we obtain the updating function for the
parameter matrix and the synonym embeddings.

3.3 Generating Sense Vectors

In this part, we collect the updated synonym vectors
of the target word in the j-th sense to generate the tar-
get word vector with the j-th sense:

Y 7= X+ Z X (13)

sesyn(w;)

Moreover, to ensure that each synonym could con-
tribute to the new word vector even if it has no pre-
trained vector, we give such a synonym an initial vec-
tor randomly, and revise it by the target word vector:

X5, == Axg + (1 = A)x,, (14)

where A is a weight for unknown neighbor vectors to
keep balance of the whole vector space.

3.4 Result

As a result of the procedure, we have sense embed-
dings
yi = {y, 1o

of each word w in the vocabulary /. For each word w,
we update the embeddings of the synonyms of w with
the j-th sense by the pre-trained word vector of w.
Likewise, the antonyms of w are utilized for negative
sampling. After traversing of all synonyms, we ag-
gregate these updated synonym embeddings with the
pre-trained word embedding x,, to produce the new
Jj-th sense embedding of word w.

Experimental experience tells that initializing the
parameter matrix to be the same as the pre-trained
vector matrix can generate effective sense retrofitted
vectors with only a few iterations.



Improving Semantic Similarity of Words by Retrofitting Word Vectors in Sense Level

4 EXPERIMENTAL SETUP

We evaluate our approach on two aspects: semantic
relatedness and contextual word similarity. We use
the average of all sense vectors to represent the miss-
ing word. For all models reported in this paper, the
same processing method and the same computation
method are applied to compare their performance.

4.1 Datasets

We first experiment with three widely used and pub-
licly available pre-trained word vectors for English
corpora.

1. Word2Vec (Mikolov et al., 2013b,a): Word2Vec
is fast and widely used. In practice, we use the
python module® (Sujono, 2015) (which imple-
ments the core of Word2Vec as the gensim im-
plementation (Rehiitek and Sojka, 2010)) to train
enwik9* by CBOW model and Skip-gram model
with Negative Sampling separately in 300 dimen-
sions, where we use context windows of size 5 and
5 negative examples.

2. GloVe Vectors® (Pennington et al., 2014): The
GloVe word vector approach integrates the global
co-occurrence matrix of word pairs. We use
the pre-trained word vectors directly. 6B.50d,
6B.100d, 6B.200d and 6B.300d are trained on
Wikipedia 2014 with English Gigaword in vec-
tor length of the range 50 to 300 respectively, and
42B.300d is trained on Common Crawl in 300 di-
mensions.

3. FastText Vectors® (Bojanowski et al., 2017):
FastText is an extension of the continuous skip-
gram model by summing the n-gram vectors. We
use their pre-trained word vector files directly.
crawl-300d-2M is trained on Common Crawl in-
cluding 2 million word vectors, and wiki-300d-
IM is trained on Wikipedia 2017, UMBC web-
base corpus and statmt.org dataset including 1
million word vectors.

As we mentioned above, we generated the syn-
onym sets and antonym sets of the 100,000 most-
frequently used words from Wiktionary via the API
of thesaurus.com’. Each word is a leader of its syn-
onym and antonym sets corresponding to its defini-
tions. After inputting them into our program, we are
going to mark the leading word as w#j, denoting the

3https://github.com/deborausujono/word2vecpy
“http://mattmahoney.net/dc/textdata.htm]
Shttps://nlp.stanford.edu/projects/glove/
Ohttps://fasttext.cc/docs/en/english-vectors.html
7https://github.com/Manwholikespie/thesaurus

word w with the j-th sense. It is worth mentioning
that we choose thesaurus.com as our knowledge base
rather than WordNet which considers both semantic
relations and lexicon relations. That is because the
primary but superficial semantic knowledge is a cost
effective way during training in practice.

4.2 Evaluation Measure

For semantic relatedness task, we evaluate the quality
of the retrofitted embedding spaces on two word sim-
ilarity benchmarks: SimLex-999 (Hill et al., 2015),
which comprises 666 noun pairs, 222 verb pairs and
111 adjective pairs; and SimVerb-3500 (Gerz et al.,
2016), which consists of 3500 verb pairs covering all
normed verb types of 827 distinct verbs.

For contextual word similarity task, we conduct
experiments with the Stanford’s Contextual Word
Similarities (SCWS) (Huang et al., 2012) which in-
cludes 2003 word pairs together with human-rated
scores. Higher scores indicate higher semantic sim-
ilarity.

Our experiments are all based on intrinsic evalu-
ation for the quality and coherence of vector space.
We use Spearman’s p rank correlation coefficient
(Well and Myers, 2003) between the cosine similar-
ity scores calculated by the retrofitted vectors and the
human-provided ratings for assessment.

On the other hand, according to Faruqui et al.
(2016) and Rastogi et al. (2015), it is necessary to per-
form statistical significance tests to the difference be-
tween the Spearman’s Correlations even for compar-
isons on small evaluation sets. Rastogi et al. (2015)
introduce of, as the Minimum Required Difference
for Significance (MRDS) which satisfies the the fol-
lowing:

(PaB <p)A(lpar — pir| <ob, ) = p-value>po (15)

where A and B are the lists of ratings over the same
items, produced by the competitive models and T
denotes the gold ratings T. par, ppr, and pap de-
note the Spearman’s correlations between A : 7', B :
T, and A : B, respectively. Then let par, ppr, and
pap be their empirical estimates. This proposition
indicates that differences in correlations, if below
the MRDS threshold, are not statistically significant.
Rastogi et al. (2015) also provide the MRDS values
for SimLex-999 word similarity dataset and here we
provide the threshold® for SimVerb-3500 and Stan-
ford’s Contextual Word Similarities in Table 1.

8https://github.com/se4u/mvlsa provides the way to as-
sign a minimum threshold to a testset.
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Table 1: The Minimum Required Difference for Significance (MRDS) values for SimLex-999 (SL), SimVerb-3500 (SV) and

Stanford’s Contextual Word Similarities (SCWS).

Dataset | Size | 003, O,  Ohni  Soos  Snos  Soos

SL 999 | 0.073 0.057 0.032 0.052 0.040 0.023
SV 3500 | 0.039 0.030 0.017 0.027 0.021 0.012
SCWS | 2003 | 0.051 0.04 0.023 0.036 0.028 0.016

Table 2: Spearman’s correlation for three word distributed representations (300 dimensions), Word2Vec (w2v), GloVe (glove)
and FastText (FT) on SimLex-999, and the performance comparison with two strategies of retrofitting models, NS-sv and

NS-sv-sum (MaxSim / AveSim) using 60 o5 as the threshold.

w2v.cb w2v.sg glove.42B glove.6B FT.wiki FT.crawl
baseline 0.230 0.293 0.374 0.371 0.450 0.503
NS-sv 0.642/0.650 | 0.640/0.637 | 0.688/0.698 | 0.706/0.725 | 0.678/0.688 | 0.723/0.765
NS-sv-Sum | 0.609/0.571 | 0.596/0.487 | 0.674/0.62 | 0.693/0.675 | 0.667/0.633 | 0.733/0.698

4.3 Task 1: Semantic Relatedness

This task is to model the semantic similarity. A higher
score indicates the higher semantic similarity. The
sense evaluation metrics learned from Reisinger and
Mooney (2010) compute two kinds of scores, maxi-
mum score for the evaluation of sense representations
and average score for the evaluation of word repre-
sentations:

MaxSim = max cos (x X ) (16)
Wi -EDwm Wny €Dy, Winjo =Wy
Y X cos(xu,xm,)
. W j €Dy, W EDW,,
AveSim = a7

|Dwm‘ : |DWn‘
where D, is the definition set of the word w,, and
D,,, is the definition set of the word w,. Compared
with the original metrics based on unsupervised tech-
niques, we do not need to predetermine the number of
sense clusters which should differ from word to word.
Thus, instead of the uniform number of clusters, we
use the number of senses of each word to average the
word similarity.

4.4 Task 2: Contextual Word Similarity

The goal of this task is to measure the semantic relat-
edness with contextual information which covers the
shortage in semantic relatedness task. We also adopt
MaxSimC / AvgSimC metrics to compute scores for
each word pair (Reisinger and Mooney, 2010). A
higher score indicates the higher semantic similarity.

MaxSimC = d(&(x,,,),ft(xy,)) (18)

Z Z ey Aet oy, (xwm ,ank)

) eDM eDM
AveSim(C = 2=

|DWm| ' |Dwn|
(19)
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where de,, = cos(v(c),x,,,) is the likelihood of
context ¢ belonging to the j-th sense group of the
word wy,, and ft(w,,) = arg maxwm; cp,, dc‘,wmf We
select 5 words before and after the target word in the
word pairs respectively. Stopwords are removed from
the context. There are total 10 word involved in as
the context of the target word under the perfect con-
dition. And the context vector of the target word as
v(c) are integrated with all context word embeddings.
Note that based on our word vector space, the context
is not disambiguation, so the solution is the sum of all
sense vectors of each context word.

4.5 Model Configuration

For our model, we set a learning rate varying with the
number of the synonyms of the target word and the
initialized iteration as 1.0. Moreover, the parameter
A to revise the undefined word vector is set 0.5. In
all experiments except the iteration part, we choose
iter = 100 for NS-sv and iter = 10 for NS-sv-sum.
And for statistical significance, we choose 68:(9)5, the
small threshold value in Table 1.

S RESULTS AND DISCUSSION

In this part, we show experiment results from our
retrofitting method.

5.1 Baseline Methods

Tables 2 and 3 show the results of retrofitting the three
standard vectors on each benchmark dataset. The
second row in each table shows the performance of
the baseline vectors. If there is only one sense of
a word, its maximum score (MaxSim) and average
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Table 3: Spearman’s correlation for three word distributed representations (300 dimensions), Word2Vec (w2v), GloVe (glove)
and FastText (FT) on SimVerb-3500, and the performance comparison with two strategies of retrofitting models, NS-sv and

NS-sv-sum (MaxSim / AveSim), using 08:(9)5 as the threshold.

w2v.cb w2v.sg glove.42B glove.6B FT.wiki FT.crawl
baseline 0.160 0.184 0.226 0.227 0.357 0.426
NS-sv 0.592/0.569 | 0.594/0.568 | 0.604/0.591 | 0.614/0.609 | 0.623/0.615 | 0.639/0.659
NS-sv-Sum | 0.524/0.477 | 0.502/0.412 | 0.584/0.558 | 0.597/0.578 | 0.562/0.532 | 0.632/0.611

Table 4: Spearman’s correlation for two word distributed representations (100 dimensions) on SimLex-999 (SL) and SimVerb-

3500 (SV) , prior works and our approach, using 08:35 as the threshold.

Corpus Dataset | GloVe | re-Faruqui | GenSense ER-Specialized | NS-sv NS-sv-sum
Wikipedia | SL 0.265 | 0.421 0.446/0.417 | 0.445 0.683/0.684 | 0.648/0.600
SV 0.154 | 0.240 0.289/0.259 | 0.281 0.609/0.594 | 0.557/0.526
Twitter SL 0.122 | 0.295 0.290/0.244 | 0.365 0.651/0.631 | 0.589/0.495
SV 0.052 | 0.145 0.160/0.127 | 0.225 0.583/0.558 | 0.529/0.473

Table 5: Spearman’s correlation using GloVe vectors (100 dimensions) on the Stanford’s Contextual Word Similarities
(SCWS) task, prior work and our approach (MaxSimC / AvgSimC), computing with the sum of context word embeddings
(SCWS-sum) and with the average of context word embeddings (SCWS-avg), using 68:35 as the threshold.

SCWS-sum | SCWS-avg
glove.twitter | 0.428 0.428
GenSense 0.428/0.322 | 0.428/0.272
NS-sv 0.467 /0.313 | 0.467/0.313
NS-sv-sum | 0.444/0.264 | 0.444/0.264

score (AveSim) will be the same. From Tables 2 and
3, the MaxSim and AveSim both prove the proposed
model is robust and useful. The largest improvement
is an increase of more than 0.3 on two word similarity
tasks and FastText Crawl retrofitted vectors produce
the top correlation score of 0.765. The average cor-
relation between a human rater and the average of all
other raters is 0.78 and the latest top record by Recski
et al. (2016) is 0.76, which implies that our method
does promote the measuring of semantic similarity of
words. In contrast with NS-sv-sum, in general, NS-
sv yields the better results because the connections
among the synonyms are weak. That means the syn-
onyms are the condition of the word sense during our
study rather than the constraints of hierarchical se-
mantic relations. But the experiment of vector length
later also indicates that the gap of performance of NS-
sv and NS-sv-sum reduces with increasing word vec-
tor length. We conjecture that this is the case as the
vectors with higher dimensions have higher expres-
sivity regarding the difference and, consequently, are
less easily offset during integration.

5.2 Comparison with Prior Works

A comparison to prior works is shown in Table 4.
The three previous models are: re-Faruqui® (Faruqui

https://github.com/mfaruqui/retrofitting

et al., 2015), GenSense'” (Lee et al., 2018), and ER-
Specialized'! (Vulic and Glavas, 2018), trained on
Wikipedia and Twitter using the GloVe tool. We run
their published code to obtain word vectors. Except
for GenSense which needs the weights for their se-
mantic lexicons to discriminate senses of the target
word, we applied these models with our new lexicons
to decrease the difference. In addition, we kept their
default parameter values without any change. Surpris-
ingly, although the prior models still keep their supe-
riority compared with baseline vectors, they become
somewhat weak when the models only rely on the pri-
mary semantic relations. From Table 4, the outcome
of this experiment suggests that the quality of our
vectors significantly improves compared to each of
the three models. The Spearman’s correlation scores
of both NS-sv and NS-sv-sum exceed GenSense by
more than 0.2, which also shows a great performance
under word vectors from Wikipedia corpus. And un-
der the word vector from Twitter, NS-sv and NS-sv-
sum surpass ER-Specialized by more than 0.2.

5.3 Contextual Word Similarity

Table 5 shows the Spearman’s correlation of SCWS
dataset.  With the contextual information, sense

10https://github.com/y95847frank/GenSense
Uhttps://github.com/codogogo/explirefit
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Figure 3: The influence of iteration on word similarity tasks using GloVe vectors (50 dimensions).

embedding models outperform the word embedding
model GloVe and retrofittig model GenSense. GloVe
as the baseline method is based on word level so its
score is only the similarity between two words in the
dataset. The metrics MaxSimC and AveSimC take the
context of the target word into account which are gen-
erally used. However, for the trained sense vectors, it
is hard to manage the polysemous context word em-
beddings of a target word. We inexactly use the av-
erage sense vectors of each context word. This limits
the accuracy of our models. Furthermore, from Ta-
ble 5, we find that MaxSimC is superior to AveSimC.
And for context word vectors, the sum and the average
of the vectors have little difference on discriminating
the distinct senses.
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5.4 Comparison of Word Vector Length

We tested our model and prior works with different di-
mensions, using GloVe word vectors involving 400K
vocabularies. Figure 2 illustrates the different upward
trend. The correlation p of each model rises con-
tinuously and stably from 50 to 300 on Simlex-999
task. On SimVerb-3500 task, the correlation p also in-
creases with increasing word vector length, but nearly
keeps steady after 100 dimensions. NS-sv performs
well in all experimental word vector lengths and the
gap with NS-sv-sum decreases constantly. We have
reason to believe that with the word vectors of which
the length is long enough, the performance of SV-
sv and SV-sv-sum should tend to be constant. How-
ever, 300-dimensional vectors are the most common
used because of their high accuracy and acceptable
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data size, so we did not try the vectors with more
than 300 dimensions which is barely used in prac-
tice. It is worth mentioning that even with 50 dimen-
sions the sense vector generated by our model can still
be highly accurate, suggesting to use the low dimen-
sional vectors for applications instead of training the
large word vectors with much resource consumption.

5.5 The Influence of Iteration

Figure 3 shows the Spearman’s correlation score gen-
erated by our model for different number of iteration.
Convergence is the only standard in our experiments
to stop iteration. And according to the experiment of
iteration, we finally decided to select iter = 100 as the
default iteration for NS-sv model and iter = 10 for the
default setup of NS-sv-sum model. From Figure 3, we
can see both NS-sv and NS-sv-sum have obvious im-
provements from 1 to 10 iterations. And compared
with NS-sv, NS-sv-sum approaches convergence al-
ready after only few iterations. However, its perfor-
mance is not as good as the one of NS-sv in this case,
mainly due to the use of only 50-dimensional vectors.
The experiment of vector length revealed that NS-sv
and NS-sv-sum will perform probably both great on
the vectors with higher dimension, while with low
dimension the integration among the synonyms may
lose features, negatively affecting the final outcome.
When all synonyms contribute together, it approaches
convergence faster, which is the reason why NS-sv-
sum converges faster while NS-sv needs more time.

6 CONCLUSION

In this paper, we presented a technique to retrofit word
vectors from the word level to the more fine-grained
level of word sense by two strategies named NS-sv
and NS-sv-sum in this paper. This technique only
employs primary semantic knowledge to improve the
performance of the pre-trained word vectors and par-
titions the meaning of words into multiple senses.
This is a post-processing approach, which avoids re-
training on a large corpus, and can be applied on any
pre-trained word vectors. The retrofitting procedure
does not have many hyperparameters, yielding steady
and efficient results in a multitude of application sce-
narios without costly hyperparameter optimization.
Our model is proposed for semantic similarity of
words. It consists of four parts: (1) We provide the
synonym and antonym sets of the most commonly
used words in Wiktionary and use them as training
examples for our negative-sampling-based neural net-
work model; (2) we take advantage of the semantic

knowledge from external resources (the synonym and
antonym sets) to refine the word representations and
construct sense representations; (3) our model signif-
icantly reduces the number of hyperparameters and,
based on experiments, the default parameters do typ-
ically not have to be modified even if the input and
the environment change; (4) the retrofitted word vec-
tors can achieve the highest score 0.765 on SimLex-
999. Our experiments have provided evidence for the
effectiveness of our model on word similarity tasks.
It outperforms the baseline methods and the previous
work on three popular types of pre-trained word vec-
tors of commonly used dimensions.
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