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Abstract: Lightweight, fast, and accurate deep-learning algorithmsare essential for practical deployment in real-world
use-cases. Semantic segmentation and object detection arethe principal tasks of visual perception. A multi-
task network significantly reduces the number of parameterscompared to two independent networks running
simultaneously for each task. Generally, multi-task networks have shared encoders and multiple independent
task-specific decoders. Instead, we modeled our network to exploit the features from both encoder and decoder.
We propose the multi-task network that performs both segmentation and detection with only 37.9 million
parameters and inference time of 74 milliseconds on a consumer-grade GPU. This network performs two
tasks with much fewer parameters and in much less inference time compared to each single task network.

1 INTRODUCTION

Convolutional neural networks (CNNs) have been re-
markably successful in the field of computer vision
over recent years. Visual perception is a crucial part
of several upcoming breakthroughs in technologies
like self-driving, robotics, health care, automation,
and artificial intelligence. Semantic segmentation and
object detection constitute a significant part of Visual
perception. Semantic segmentation is required to un-
derstand the areal classes like road, vegetation, and
sky. Whereas object detection helps us to understand
countable classes like vehicles and humans. Enor-
mous computational complexity and high inference
times have been significant setbacks of these intensive
tasks. Most of the real-world visual perception tasks
necessitate both these tasks to be performed simulta-
neously on critical resource-constrained platforms.

It is evident that the initial layers of any encoder of
a computer vision task have similar filters [to Gabor
ones] independent of the task and decoder of a seman-
tic segmentation network have all the pixel-level con-
textual information which is very helpful for an object
detector to extract bounding boxes and class probabil-
ities from those representations. This motivates us to
build a single Multi-task learning model capable of

performing the complex tasks of semantic segmenta-
tion and object detection simultaneously. Along with
accuracy, we also concentrate on making our network
light and the fast inference on a consumer-grade GPU.

In summary, the following are our important con-
tributions:

• We present a novel MTL network that performs
both semantic segmentation and object detection
simultaneously with inference time and the num-
ber of parameters much less than a semantic seg-
mentation or an object detection single task net-
work.

• Usually, MTL networks have shared encoders and
independent task-specific decoders; instead, we
exploit the feature maps of segmentation decoder
with rich semantic information. Thus, proposing
a framework for an MTL network with intercon-
nected decoders.

• We propose a scale aware training scheme for the
trident block of a one-stage object detector with
anchor boxes.

• We propose the training procedure for a highly in-
terdependent MTL network.
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2 RELATED WORKS

In general, Multi-task learning networks are catego-
rized into hard parameter sharing and soft parameter
sharing methods. Usually in hard parameter sharing,
several task-specific decoders are used to make pre-
dictions by using a feature map generated from a sin-
gle encoder similar to (Caruana, 1993) (Teichmann
et al., 2016). This method is unlikely to overfit and
found to be very good at generalization. Hard pa-
rameter sharing is widely used in MTL because of
its computational advantages. In soft parameter shar-
ing, every task will have its task-specific model with
some degree of sharing parameters in between differ-
ent models, for example (Misra et al., 2016). The sim-
ilarity of parameters are improved by regularizing the
distance between the parameters of models, as shown
in (Duong et al., 2015).

2.1 Semantic Segmentation

Over these years, it is evident that CNNs are very
good at semantic segmentation and classification
tasks. For pixel-level prediction tasks like semantic
segmentation, fully convolutional networks (FCNs)
by (Long et al., 2015) introduced the end-to-end ap-
proach that maps the feature maps of a classification
network to a dense prediction output. FCN (Long
et al., 2015) modified VGG-16 (Simonyan and Zisser-
man, 2014) into an encoder-decoder architecture with
skip connections. Conditional random fields (CRFs)
are used on network output for better performance
around object boundaries in DeepLab (Chen et al.,
2016). For better performance across different scales
of object’s instances was initially achieved by train-
ing network at multiple rescaled versions or by fusing
features from multiple parallel branches that take dif-
ferent image resolutions as shown in (Farabet et al.,
2012) and (Long et al., 2015) respectively. These
networks use pooling layers to increase the recep-
tive field. Which are inefficient for a segmentation
network. DeepLab (Chen et al., 2016) and PSPNet
(Zhao et al., 2017) use dilated convolutions of differ-
ent rates over multiple parallel branches and concate-
nates them. This enables them to increase the field-of-
view of CNNs for multi-scale contextual information.
The major setback of these approaches is computa-
tional complexity and hence, large inference time.
Adapnet++ (Valada et al., 2019) addresses this issue
by Cascading atrous convolutions to enlarge field-of-
view efficiently. Several recent works like DANet (Fu
et al., 2019) and GFF (Li et al., 2019a) use Gating
and Attention mechanisms frequently used in recur-
rent networks like LSTM and GRU in various ways
for tasks like semantic segmentation.

2.2 Object Detection

Object detectors based on deep learning can be classi-
fied into two categories one-stage detectors and two-
stage detectors. It is commonly observed that two-
stage detectors are good at accuracy, whereas one-
stage detectors have faster inference times. Usually
in two-stage detectors, the first stage proposes some
regions of the image that are the potential to have
an object. R-CNN (Girshick et al., 2014) uses Se-
lective Search (Uijlings et al., 2013), SPPNet (He
et al., 2015) uses spatial pyramid pooling, Fast R-
CNN (Girshick, 2015) uses RoIPooling layers, Faster
R-CNN (Ren et al., 2015) uses region proposal net-
work (RPN) as their first stage. These proposed re-
gions are forwarded to the second stage for refining
the detected boundaries and classifying the object.
For the second stage, R-CNN (Girshick et al., 2014)
uses class-specific linear SVMs over the fixed-length
feature vector of the warped region generated using
a large convolutional neural network (CNN), Fast R-
CNN (Girshick, 2015) uses fixed-size feature map
mapped to a feature vector by fully connected lay-
ers (FCs), Faster R-CNN (Ren et al., 2015) uses Fast
R-CNN detector module. On the other hand, one-
stage methods YOLO (Redmon and Farhadi, 2017)
and SSD (Liu et al., 2016) frames object detection as
an optimized end-to-end regression problem to offsets
of the predefined anchor boxes and class probabili-
ties. Focal loss (Lin et al., 2018) addresses the issue
of class imbalance common in one-stage detectors.

Large scale variations of object instances is a vital
issue for object detectors. The following are different
methods used to handle large scale variations, SSD
(Liu et al., 2016) and MS-CNN (Cai et al., 2016) uses
feature maps at different levels for making predictions
at multiple scales. TDM (Shrivastava et al., 2016) and
FPN (Lin et al., 2017) uses top-down pathway and
lateral connections for more semantic representation
and make predictions at multiple levels of the decoder.
PANet (Liu et al., 2018) enhance the information flow
between lower layers and topmost feature by bottom-
up path augmentation. SNIP (Lee et al., 2018) se-
lectively back-propagates the gradients of object in-
stances of different sizes as a function of the image
scale. M2Det (Zhao et al., 2019) uses alternating joint
Thinned U-shape Modules and Feature Fusion Mod-
ules to extract more representative, multi-level multi-
scale features. TridentNet (Li et al., 2019b) has a par-
allel multi-branch architecture in which each branch
has dilated convolutions at different rates but with the
same transformation parameters, which enables it to
perform better over different scales.
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(a) (b) (c)
Figure 1: These are the observations when the following modifications are performed on a U-Net like semantic segmentation
network. a) Original prediction of semantic segmentation network. b) Prediction without skip connections, object boundaries
are smoothened, and small objects like poles, distant persons are lost. This shows the importance of skip connections and
feature maps from the top layers. c) Prediction with bottleneck activations and skip connections inverted. This shows the
spatial correlation of feature maps at different levels of Deep CNNs.

3 PROPOSED NETWORK

In this section, we describe the overall architecture of
the proposed network, which can perform simultane-
ous object detection and semantic segmentation. We
detail our design criteria, reasons, and advantages of
the proposed multi-tasking network. We then detail
the Trident block for one-stage detectors with anchor
boxes.

3.1 Semantic Segmentation

Our network is a fully convolutional image encoder
- segmentation decoder - object detector design, as
shown in the Figure 2. We adopt AdapNet++ (Val-
ada et al., 2019) Architecture for the semantic seg-
mentation part. AdapNet++ (Valada et al., 2019) is
a computationally efficient semantic segmentation ar-
chitecture with the Image encoder based on full pre-
activation ResNet-50 (He et al., 2016) with multiscale
residual units at varying dilation rates in the last two
blocks of the encoder. ResNet-50 (He et al., 2016) ac-
commodates the sufficient deep contextual features in
limited computational complexity. AdapNet++ (Val-
ada et al., 2019) poses an efficient atrous spatial pyra-
mid pooling (eASPP) module as the bottleneck of the
network, which reduces the number of parameters re-
quired by over 87% compared to the originally pro-
posed ASPP in DeepLabv3+ (Chen et al., 2018b).
Its decoder consists of multiple deconvolutions and
convolution layers with skip connections fusing fea-
ture maps from the encoder for the segmentation of
small objects and object boundary refinement. Two
auxiliary losses are used immediately after each up-
sampling stage to accelerate training and improve the
gradient propagation in the network. These auxiliary
losses also help us for coming forth object detector.

3.2 Object Detection

In object detection tasks, we need to do both localiza-
tion and classification. The primary issue is the spatial
information required for the localization is abundant
at the top layers of the Deep CNNs, where bottom lay-
ers have rich contextual information, which is crucial
for the classification of objects. On the other hand, we
have large scale variations of object instances where
smaller and simple instances are only found in top
layers, and large and complex instances are found in
the bottom layers, see Figure 1. Our proposed net-
work addresses these issues by ensuring that feature
maps from both the top and bottom layers are readily
available for the object detection module.

We have two auxiliary softmax losses each af-
ter the first two up-convolutions in the segmenta-
tion decoder, which enforces the feature maps at
that intermediate level to be more spatially similar to
the ground truth labels. This feature maps concate-
nated with the feature maps from the skip refinement
stage is forwarded to the object detection network,
as shown in the Figure 2. We model our object de-
tection network as a one-stage object detector simi-
lar to YOLO (Redmon and Farhadi, 2017) because
of its simplicity and fast inference time compared to
two-stage object detectors. In the object detection net-
work, these feature maps are rapidly downsampled to
the bottleneck resolution and concatenated with the
feature maps from the bottleneck. We use only 3
X 3 and 1 X 1 convolutions in this rapid downsam-
pling to preserve smaller and simple instance’s in-
formation present in the top layers and also we use
3 X 3/2 convolution instead of Maxpool to preserve
the spatial relativity. This rapid downsampling short-
ens the information path between lower layers and
the topmost feature maps. Several Multi-Task Learn-
ing (MTL networks) (Teichmann et al., 2016), (Sistu
et al., 2019) have shared encoders and multiple in-
dependent task-specific decoders. Instead, we try to
exploit the rich semantic information in the segmen-
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(a) Image (b) Semantic Segmentation (c) Bounding Boxes

Figure 2: Overview of our proposed MTL network. Encoder based on ResNet 50 (He et al., 2016) is depicted in blue,
the bottleneck efficient atrous spatial pyramid pooling (eASPP ) is depicted in green, The orange color part denotes the
segmentation decoder, grey color blocks are the skip refinement stages and the plum color part represents the object detector.

tation decoder, which is highly useful for object de-
tection. As we discussed before, high-resolution top
layers are essential for object localization, but top lay-
ers of the encoder are low-level, fine-grained, shal-
low feature maps whereas top layers of the segmenta-
tion decoder are semantic, coarse-grained, deep fea-
ture maps which are more helpful for object detec-
tion. We boost the information flow similar to Path
Aggregation Network (PANet) (Liu et al., 2018), as
shown in the Figure 2 the dashed green line indicates
the shortcut for low-level feature maps from top layers
that are effective for accurate localization of instances
whereas, the dashed red line goes through the whole
encoder carries the deep-level feature maps that are
valuable for classifying instances. Also, we are for-
warding Multi-Level Features to the object detector
by concatenating feature maps from both segmenta-
tion decoder and skip refinement stage.

Datasets like Cityscapes (Cordts et al., 2016) have
large scale variations of classes like Cars and Per-
son varies largely by the distance between the object

and the camera. It is observed that some vehicle in-
stances occupy a great part of the image. We use
trident block originally proposed in TridentNet (Li
et al., 2019b) for two-stage object detectors to han-
dle this scale variation. It consists of multiple parallel
branches each a stack of residual blocks with three
convolutions of kernel size 1 X 1, 3 X 3 and 1 X 1
but each branch of trident block has different dilation
rates for the 3 X 3 convolution as shown in the Fig-
ure 3. Weights are shared among these branches as it
reduces the number of parameters, and it intends that
the same transformation is applied at different spa-
tial scales. In our experiments for Each branch of
Trident block, we have 3 anchor boxes so the ten-
sor is of shape 24 X 48 X [ 3 * (4 + 1 + number of
classes ) ] for 4 bounding box offsets and 1 for ob-
ject confidence prediction similar to YOLO (Redmon
and Farhadi, 2017). 24 X 48 is the resolution of the
bottleneck feature map. We use leaky rectified linear
activation function in the object detection part.
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Figure 3: Illustration of the Trident block depicted in Figure 2. Trident block was initially proposed in TridentNet (Liet al.,
2019b).

4 EXPERIMENTS AND RESULTS

In this section, we first give details about the dataset
selection and dataset generation. Then, we describe
our proposed scale-aware training of trident blocks
for one-stage networks, and we also describe our pro-
posed training procedure for an interdependent multi-
tasking network like this. Finally, we detail the eval-
uation procedure and results.

4.1 Dataset

We need a dataset with both segmentation labels and
bounding boxes for object detection. So, we trained
and evaluated on publicly available Cityscapes dataset
(Cordts et al., 2016). It is a very popular and highly
challenging dataset containing images of complex ur-
ban scenes. We used only the provided 2875 finely
annotated images for training, 500 are for valida-
tion. Bounding boxes are not directly provided in the
original Cityscapes (Cordts et al., 2016) dataset, but
instance-level annotations are provided. We modified
the scripts given by Cityscapes (Cordts et al., 2016)
dataset to extract bounding boxes from instance-
level annotations for the classes Car/Truck/Bus, Per-
son/Rider,Bicycle/Motorcycle bicycle. In our work,
we first resized the images in the dataset to resolu-
tion 768 x 384. Then, we do data argumentation by
randomly scaling ( 1 to 1.5 ), and we take random
crops of resolution 768 x 384 followed by random
horizontal flipping of the cropped image. We use Bi-
linear Interpolation and Nearest Neighbour Interpola-
tion for rescaling images and segmentation labels, re-
spectively. We ignored the bounding box if its center
falls out of the randomly cropped image.

4.2 Training

For calculating segmentation loss(Lseg), we use the
cross-entropy loss function for both main loss(Lmain)
and auxiliary losses(Laux1,Laux2). We use bilinear
upsampling for the feature maps at each auxiliary
loss branch to match the resolution with segmentation
ground truth labels. We set the weights toλ1 = 0.6
andλ2 = 0.5.

Lseg= Lmain+λ1∗Laux1+λ2∗Laux2. (1)

In our work, We use three branches in the Tri-
dent block at dilation rates 1, 2, 3 for small instances,
medium instances, large instances, respectively. We
use three anchor boxes for each branch. Here, we
propose a scale-aware training scheme for one-stage
detectors to enhance scale awareness of every branch.
We use k-means clustering on the training data set to
determine the required nine anchor boxes similar to
YOLO (Redmon and Farhadi, 2017). We sort those
anchor boxes according to their area. Then we allot
the three largest anchor boxes for the branch special-
ized for large instances with dilation rate 3. Similarly,
we allot the three smallest anchor boxes for the branch
specialized for smaller instances with dilation rate 1.
Remaining three anchor boxes in the middle are al-
lotted for the branch specialized for medium scale in-
stances with dilation rate 2. We use focal loss (Lin
et al., 2018) to calculate object detection loss(Ldet).
We use a weighted sum of individual losses for the
two tasks to train this multi-tasking network.

L =Wseg∗Lseg+Wdet∗Ldet (2)

(Wseg= 30−50,Wdet= 1) (3)
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Table 1: Semantic segmentation and object detection results of the proposed network trained on the Cityscapes dataset (Cordts
et al., 2016).

Metrics Train Validation
Road IoU 99.26 97.84

Traffic Sign IoU 84.07 69.84
Pedestrians IoU 87.87 74.25
Building IoU 96.36 90.91

Sky IoU 96.18 93.28
Vegetation IoU 95.73 91.66

Pole IoU 72.65 56.86
SideWalk IoU 95.34 83.91

Fence IoU 91.89 54.48
Rider/Cycle IoU 87.29 71.77

Car/Truck/bus IoU 96.60 93.07
Mean IoU (mIoU) 91.20 79.81

AP Car/Truck/Bus 71.92 64.17
AP Person/Rider 60.27 50.00

AP Bicycle/Motorcycle 57.86 37.10
Mean AP (mAP) 63.35 50.42

Table 2: Comparisons of semantic segmentation and object detection results with other MTL network evaluated on the
Cityscapes dataset (Cordts et al., 2016).

Network
Segmentation
(mIoU)

Detection
(mAP)

Real-time Joint Object Detection and Semantic Segmentation
Network for Automated Driving (Sistu et al., 2019)

55.55 23.55

Our proposed MTL network 79.81 50.42

Here, we propose the procedure for training
a highly interdependent multi-tasking network that
avoids plateau regions, longer training periods, imbal-
anced training of two tasks, and overfitting. We ini-
tialized the encoder of the network with the weights
pre-trained on the ImageNet dataset (Deng et al.,
2009), and He initialization (He et al., 2015) is used
for initializing rest of the network. We use Adam op-
timizer with hyperparametersβ1 = 0.9, β2 = 0.999
andε = 10−10. We use dropout layers with probabil-
ity 0.5 in block4 of the encoder and just before trident
block. We use polynomial decay of the Learning rate
with cyclic restarts for every 10K iterations.

1. First, we train the whole network for 30K itera-
tions using an initial learning rate = 0.001 to stabi-
lize the network from producing asymptotic num-
bers.

2. Secondly, We freeze object detector, and we train
only encoder and segmentation decoder for 120k
iterations with the initial learning rate = 0.001 and
weight of detection loss functionWdet = 0,Wseg=
30−50. In our network, object detector extracts
feature maps segmentation decoder. So first, if the
segmentation decoder is trained well, then It will
give good feature maps, and the training of the

object detector will be smooth later. Otherwise,
object detector is taking many steps for training
that leads to overfitting of the encoder.

3. Then, We freeze encoder, segmentation decoder,
and we train the object detector for 120k iterations
with the initial learning rate = 0.0001 and weight
of segmentation loss functionWseg= 0,Wdet = 1.
Freezing segmentation decoder ensures that the
additional object detection will not intervene in its
segmentation task or any loss of segmentation ac-
curacy.

4. Finally, we train the whole network for another
50k iterations with the learning rate starting from
0.0001.

4.3 Evaluation

We implemented our proposed multi-tasking network
using TensorFlow (Abadi et al., 2015) deep learning
library. We carried out the experiments on a sys-
tem with one consumer-grade NVIDIA GeForce GTX
1080 Ti GPU. Per-class IoU and mean class IoU (In-
tersection over Union) were used as accuracy metrics
for semantic segmentation, per-class average preci-
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Table 3: Comparison Study of Single task segmentation net-
works (DPC (Chen et al., 2018a), DeepLabv3+ (Chen et al.,
2018b), PSPNet (Zhao et al., 2017), HRNetV2-W48 (Wang
et al., 2019), Mapillary (Bul et al., 2018)) vs Our proposed
Multi-task network.

Network Params(M) mIoU
DPC 41.8 80.9
DeepLabv3+ 43.5 79.6
PSPNet 56.3 80.9
HRNetV2-W48 (SOTA) 65.9 81.1
Mapillary 135.9 78.3
Our proposed MTL net-
work

37.9 79.8

sion, and mean average precision (mAP) are the met-
rics used for evaluation. During inference, we use
Non-maximal suppression with IoU threshold 0.55 to
handle multiple object detections.

In Table 1, we summarize the results of our pro-
posed MTL network. We trained our network on
the Cityscapes dataset with 11 semantic segmenta-
tion classes and three object detection classes. We
achieved semantic segmentation Mean Class Intersec-
tion over Union (mIoU) of 79.81 and object detection
score of 50.42 Mean Average Precision (mAP) with
only 37.9M parameters and inference time of 74ms
on a consumer-grade GPU. Table 2 shows the accu-
racy leap compared to that recently proposed MTL
network for joint object detection and semantic seg-
mentation evaluated on the cityscapes dataset. Table
3 shows the computational effectiveness of our pro-
posed MTL network. We are performing two tasks
with the only 37.9M parameters, which are consider-
ably less compared to other single task segmentation
networks itself. This shows that our proposed net-
work is the best and most accurate MTL network for
simultaneous semantic segmentation and object de-
tection with the right trade-off of performance, pro-
ductivity, and computational complexity. It is making
our proposed network as the most efficient way to per-
form visual perception tasks on resource-constrained
environments and with faster inference times.

5 CONCLUSIONS

In this paper, we discussed the importance of compu-
tational lightness and quickness of visual perception
algorithms. We examined the relationships between
different layers and different features. Then, we pro-
posed a multi-task learning framework for simulta-
neous semantic segmentation and object detection.
We focused on exploiting the helpful feature maps
from the decoder. We proposed a training scheme

for interdependent MTL networks. We centered on
designing a computationally efficient network to de-
ploy on resource-constrained platforms. We evaluated
and shared the results of the proposed network on the
cityscapes dataset (Cordts et al., 2016). We discussed
the effectiveness of our proposed network compared
to other MTL network and single task networks.
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