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Abstract: Image time series such as MRI functional sequences or Satellite Image Time Series (SITS) provide valuable
information for the automatic analysis of complex patterns through time. A major issue when analyzing
such data is to consider at the same time their temporal and spatial dimensions. In this article we present a
novel data representation that makes image times series compatible with classical deep learning model, such
as Convolutional Neural Networks (CNN). The proposed approach is based on a novel planar representation
of image time series that converts 2D+ t data as 2D images without loosing too much spatial or temporal
information. Doing so, CNN can learn at the same time the parameters of 2D filters involving temporal and
spatial knowledge. Preliminary results in the remote sensing domain highlight the ability of our approach to
discriminate complex agricultural land-cover classes from a SITS.

1 INTRODUCTION

Image time series are daily produced by various sen-
sors such as MRI (functional imaging), satellites,
drones or classical cameras observing particular land-
cover classes leading to a large amount of images
(2D + t). In the context of Earth observation, new
constellations of satellites acquire images with a high
spatial, spectral and temporal resolution around over
the world. For example, Sentinel-2 produces optical
Satellite Image Time Series (SITS) with a revisit time
of 5 days and a spatial resolution of 10 – 20 meters.

Among relevant applications of SITS, we can
mention the mapping of land cover (e.g. agricultural
zones, urban areas) and the identification of land use
changes (e.g. urbanization, deforestation). The grow-
ing availability of such temporal data makes it possi-
ble to produce and update accurate land-cover maps
of a territory (Inglada et al., 2017). In order to effi-
ciently handle the huge amount of data produced by
these new sensors, adapted methods for SITS analysis
have to be developed. Such methods should allow the
end-user to obtain satisfactory results, with minimal
time, and minimal effort.

A major issue when analyzing image time series is
to consider simultaneously the temporal and the spa-
tial dimensions of the 2D+ t data-cube. Taking these
two aspects into account at the same time can, for ex-
ample, make it easier to discriminate between differ-

ent complex agricultural land cover classes (e.g. or-
chards, meadows) from SITS. This article focuses on
this specific problem. To deal with this issue, we de-
fine a novel spatio-temporal representation of image
time series that makes it possible to consider classi-
cal deep learning framework (initially proposed for
2D images) for their analysis. Our main contribu-
tion is the proposal of a strategy to represent 2D+ t
data as 2D images without loosing too much spatial
or temporal information. Doing so, deep Convolu-
tional Neural Networks (CNN) can learn 2D filters
involving at the same time temporal and spatial in-
formation. Here we do not aim to produce temporal
land-cover maps or to study land use changes but our
objective is to map complex land-cover classes prone
to confusions when a single image is used.

This article is organized as follows. Section 2 re-
calls some existing methods for SITS analysis. Sec-
tion 3 introduces our spatio-temporal representation
for CNN based SITS analysis. Section 4 describes
the experiments related to the classification of agricul-
tural crops. Section 5 provides concluding remarks.

2 RELATED WORKS

SITS allow the observation and the analysis of land
phenomena with a broad range of applications such as
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Figure 1: Flowchart of our method for SITS classification based on a planar spatio-temporal data representation.

the study of land-cover or even the mapping of dam-
age following a disaster. These changes may be of
different types, origins and duration.

Pioneer methods for analyzing SITS operated on
single images or stacks of images. On each image,
the different measurements per pixel were considered
as independent features and involved in classical ma-
chine learning-based procedures. In such approaches,
the date of the measurements was ignored in the fea-
ture space. Bi-temporal analysis, can locate and study
changes occurring between two observations (Bruz-
zone and Prieto, 2000).

Another category of approaches were directly de-
signed to deal with image time series. Most of them
are based on multi-date classification approaches such
as radiometric trajectory analysis (Verbesselt et al.,
2010). Such approaches exploit the notion that land
cover can vary through time (e.g. because of seasons,
vegetation evolution (Senf et al., 2015)), and they take
into account the order of measurements by using ded-
icated time series analysis methods (Bagnall et al.,
2017). Every pixel is viewed as a temporally or-
dered (and aligned) series of measurements, and the
changes of the measurements through time are ana-
lyzed to find (temporal) patterns.

Concerning the type of features, “frequency-
domain” approaches include spectral analysis,
wavelet analysis (Andres et al., 1994) while “time-
domain” approaches involve auto-correlation and
cross-correlation analysis. Concerning the classi-
fication method, the classical way is to measure
similarity between any incoming sample and the
training set; and assign the label of the most similar
class using e.g. the Euclidean distance based on a
nearest neighbor algorithm or the Dynamic Time
Wrapping method (Petitjean et al., 2012a). Some
methods first propose a new representation of the
SITS into a new space to extract more discriminative
“hand-crafted” features (Petitjean et al., 2012b;
Chelali et al., 2019) and the classification is achieved
in this new enriched space.

More recently deep learning approaches have also
been considered to classify remote sensing images
and generate land-cover maps. In many works, convo-
lutional neural networks (CNN) are considered, gen-
erally dealing with the spatial domain of the data by
applying 2D convolutions (Huang et al., 2018). When

dealing with image time series, convolutions are often
applied in the temporal domain (Pelletier et al., 2019).
Another type of deep architecture that is designed
for temporal data is recurrent neural network (RNN)
like Long-Short Term Memory (LSTM), used suc-
cessfully in (Ienco et al., 2017). In this context, deep
learning approaches outperform traditional classifica-
tions algorithm like Random Forest (Ismail Fawaz
et al., 2019), but as a limit, they do not directly take
into account the spatial dimension of the data as they
consider pixels in an independent way. Some attempts
have been realized to consider both the temporal and
the spatial dimensions of the 2D+ t cube (Di Mauro
et al., 2017). A common strategy is to train two mod-
els (one for spatial dimension and one for temporal
dimension), and then to fuse their results at the deci-
sion level. In the domain of video analysis, spatio-
temporal features are learned using deep 3D CNN
(Tran et al., 2015) but such strategy requires the learn-
ing of an important number of parameters.

In this paper, our strategy is to classify a SITS us-
ing a classical 2D CNN model but we propose a new
representation of image time series that embed simul-
taneously the temporal and the spatial dimensions of
the data. We propose several representations based on
various strategies, the orderings of pixels being differ-
ent. The CNN learns with 2D convolutions temporal
and spatial information at the same time.

3 PROPOSED APPROACH

This section presents our method dedicated to the
classification of image time series based on a planar
spatio-temporal data representation. After providing
an overview of the global process, we will detail the
different steps involved in the method.

3.1 Overview of the Process

The proposed method is based on the use of a classical
deep neural network architecture. But the input has
not a 3D structure (Tran et al., 2015) nor a 1D struc-
ture (Pelletier et al., 2019) as this is often the case for
the state-of-the-art methods studying the time series
associated with each pixel. In our case, we propose to
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Figure 2: Illustrations of the different curves (in blue) covering a 2D space (in black, a grid of pixels); (a) Snake curve; (b)
Spiral curve; (c,d,e) The three first orders of the Hilbert curve.

consider the pixels of a region of interest (e.g. an im-
age patch or a polygon) as a whole and first to apply a
transformation of this 2D+t data providing a (planar)
2D structure containing all the spatio-temporal data.
This corresponds to the left part of the flowchart pre-
sented in Figure 1. Such a structure is then transferred
as the input of a classical neural network to achieve
classification. The network can be trained in order to
learn the labels from the spatial as well as temporal in-
formation contained in the data. The right part of the
flowchart depicted in Figure 1 illustrates this process.

3.2 Planar Data Representation: From
2D+ t to 2D

In order to decrease the complexity of the data struc-
ture, we propose to transform the spatial representa-
tion of the pixels in a 1D structure. Initially, a pixel
is defined by its position (a couple of integers) in the
image with height H and width W. Now, it will be
defined by only one integer given by an index speci-
fying the position of the pixel in a path (i.e. a string)
covering the region of interest. The function ℜ

ℜ : [1,W]× [1,H]→ [1,W×H]

(x,y) 7→ i = ℜ(x,y)

associates to a pixel of coordinates (x,y) its position i
in a one-dimensional space.

What is important in the plan is the notion of
neighborhood. A pixel has usually 8 or 4 neighbors
according to the topology that is considered. In a
1D string each element has only 2 nearest neighbors.
Then, of course, by transforming a 2D space in a 1D
space the spatial information will be diminished, but
the objective is to keep the most representative infor-
mation during the transform.

When a particular transform is chosen (some ex-
amples will be proposed hereinafter), it will be ap-
plied in the same way to all the N images (or for a
particular region of interest) of the series. So, we get
N strings that will be considered as the rows of a new
image. The new image height is equal to the number
N of the images in the SITS and its width is equal to
the number of pixels of the region we want to repre-

sent. Such new image constitutes then a 2D spatio-
temporal representation of a 2D+ t image time series.

In order to keep some significant neighbors in this
novel representation, the problem is then to fill a 2D
discrete space with a discrete curve. Following the
pixels along the curve, all the pixels of the region will
be numbered only once and, by construction, two ad-
jacent pixels in the curve are neighboring pixels in
the plan. In the literature, many methods were pro-
posed to achieve such a transformation but the aim is
to consider statistically representative neighbors with-
out any bias due to the path chosen in the plan. We
have compared experimentally several strategies:

• the first representation is the most naive one
among the others, noted ℜsnake. The space is
filled by a simple curve which scans the image,
line by line, as a snake (Figure 2 (a)). Lines are
linked smartly so the spatial neighborhood infor-
mation are preserved: odd lines ends are linked
with heads of even ones, and vice versa. The pix-
els are finally numbered according to the curve.

• the second representation is based on
Archimedean spiral, noted ℜspiral . The pixel grid
is associated with a spiral curve that fills a square
(Figure 2 (b)). The curve starts from a center
point (0,0) of a square and its right neighbor
then it revolves around. The construction of
this curve is done by fixing two variables that
indicate the next curve point, (x + dx,y + dy).
dx, dy are initialized to 0 and 1 respectively.
The angular points are those verifying x = y,
x = −y and y > 0, x− 1 = −y and x > 0. The
curve has to go to the right, to the left, to the
bottom or to the top according to the directions
of (dx,dy). The (dx,dy) values are successively
(0,1),(−1,0),(0,−1) and finally (1,0).

• the third representation is based on space-filling
curves, noted ℜHilbert . Our choice is the Hilbert
curve which is a fractal space-filling curve (Butz,
1971) and it fills a square (2D space). To define
this curve, a recurrent process is applied starting
from a square domain, the domain being divided
into four equal squares. The four small squares
are linked in such a way that “two parts with
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Figure 3: Polygon Image Time Series (PITS) representation based on the Hilbert curve.

a common edge have two consecutive indexes”.
This rule is applied recursively on squares with a
width being a power of 2. The order of pixels is
finally given by the Hilbert curve. The main inter-
est of this kind of curve is the preservation of the
spatial neighborhood relation of successive points
on the curve. Figure 2 (c–e) illustrates the three
first orders of Hilbert curves.
By applying the process to the N images (or to

a specific region of interest) of the SITS, we obtain
N rows of length equals to the number Nr of pixels
in the region. These rows are used to fill a matrix
and a new SITS image representation is obtained with
N rows and Nr columns. Now this new image can
also be interpreted in terms of columns. Each column
is associated with a pixel and its time series in the
SITS, a temporal pixel p = {< pt(x,y)> |t = 1 . . .N}
is contained in the column of the new image. Figure 3
illustrates how the new representation is built.

3.3 CNN Model (Architecture)

Convolutional Neural Networks are used in most
methods belonging to the family of deep learning al-
gorithms. CNN are composed, in the left part, of lay-
ers of neurons computing convolutions of the previ-
ous layer outputs. The neurons of each layer are ac-
tivated by non-linear functions which allow the ex-
traction of high order features of the input. There is
also max-pooling layers between convolutional layers
to reduce progressively the quantity of the inputs and
the number of the parameters to be computed to define
the network, and hence to also control over-fitting. In
the final right part of the network, to solve classifi-
cation problems we generally find a fully connected
layer that provides a probability vector, coupled to a
softmax function to predict a class label.

In our approach, we consider the SqueezeNet
model (Iandola et al., 2016). This model is a rather
small network and has few parameters to be fixed.
In our case, this is an interesting model since it is
adapted to our applicative context and our dataset
(small size of training examples). This CNN leads

to the same accuracy level as AlexNet model, when
evaluated on the ImageNet dataset.

4 EXPERIMENTAL STUDY

The proposed approach has been evaluated in a re-
mote sensing application, namely the classification of
agricultural crop fields from SITS. Our objective is to
separate some agricultural thematic classes (e.g. tradi-
tional vs. intensive orchards). The visual appearance
of these agricultural parcels is heterogeneous because
orchards are the subject of many agricultural prac-
tices, depending on the season, and their automatic
identification remains a complex task. In order to dif-
ferentiate these two classes, spatio-temporal features
can carry useful information to better discriminate the
agricultural practices.

4.1 Data Presentation

The data used in experimental study are optical SITS,
sensed by the Sentinel-2 satellite (East of France).
The acquired data have been corrected and orthorec-
tified by the French Theia program to be radiomet-
rically comparable. The images are distributed with
their associated cloud masks. A pre-processing was
applied on the images with a linear interpolation on
masked pixels to guarantee same size for all images.

We dispose of a SITS of N = 50 images sensed in
2017 over the same geographical area. For each im-
age, only three bands are kept which are near-infrared
(Nir), red (R) and green (G). All these bands have a
spatial resolution of 10 meters.

In addition to the images, we dispose of reference
data which is composed of the reference agricultural
parcel delineations (in our context orchards) repre-
sented as vector polygons. These polygons are ex-
tracted from the French IGN RPG. In our case, poly-
gons have been rasterized according to the spatial res-
olution of each image, leading to a new Polygon Im-
age Time Series, noted PITS, that will be represented
with the strategies presented in Section 3.
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Class PITS Spatio-temporal representation

Trad.
orchard

Inten.
orchard

Figure 4: Example of PITS representing orchards; (left) Evolution of a traditional / intensive orchards; (right) Associated
spatio-temporal representations (Hilbert strategy ℜHilbert ).

The reference data used in our experiment are the
semantic labels of these polygons (traditional or in-
tensive orchards). Figure 4 presents an example of the
temporal evolution of two orchards through the SITS.
Finally, we dispose of 100 polygon per class. In order
to get more annotated data, data augmentation (DA)
technique is used by applying rotations with the an-
gles: 45◦, 90◦, 135◦ and 180◦.

4.2 Experimental Protocol

We applied the proposed method to classify the two
orchard classes (traditional vs. intensive). From an
intuitive point of view, intensive orchards should have
a more homogeneous texture in the spatial domain
since the fruit trees are generally aligned which is not
always the case in the traditional ones.

4.2.1 Data Preparation

Firstly, the input data are prepared thanks to the
proposed spatio-temporal representations of images.
This is operated at the polygon level. Each PITS
is processed in 3 different ways according to the
ℜsnake,spiral,Hilbert functions presented earlier. To
highlight the interest of considering the spatial rela-
tion between pixels, we added (as a naive baseline) a
random way to build the spatio-temporal representa-
tion of the PITS, noted ℜrandom.

According to the CNN input size which is 224×
224, we adapt our generated images to fit this size.
For the temporal dimension (Y axis), we propose two
strategies. The first one is to center the original infor-
mation from the N input images vertically (N = 50).
The remaining top and bottom lines are fixed to zero
value. For the second, we choose to process a 224
long time series, that is to fill all the remaining ver-
tical space. In order to do this, we have applied a
linear interpolation on time information. We assume
that the temporal information between two consecu-
tive dates is monotonic and linear. The interpolation
is then done by considering that we only have 224
days in the year so that one day is done with about

39 hours. For the initial dates, we affect the temporal
information of the first date in the SITS. For the last
dates, we affect the last temporal information in the
SITS. For the other unknown date values, we com-
pute them by applying a linear function that considers
two consecutive available dates (taken from the set
of N = 50 images of the SITS). Finally, we got 224
dates that complete the height of the image. These
two strategies (with original dates or with temporal
interpolation) will be evaluated separately.

For the spatial dimension (X axis), as the size of
the polygons is rarely equal to 224, we adopted the
following strategy. For polygons where pixel num-
ber is less than 224, we repeat the sequence. For
those composed of more than 224 pixels, we slice
the new representation into different images with 224
columns, leading potentially to a higher number of
data to be classified than the number of polygons.

The data images have been normalized based on
the maximum and the minimum values of the dataset.
In our case, we limited the values with 2% (or 98%)
percentile, as proposed in (Pelletier et al., 2019).

4.2.2 Learning and Validation Protocol

To validate these experiments, a 5-fold cross valida-
tion strategy is employed. In each case, the dataset is
randomly split into 3 sets, at the polygon level, and
we repeated 5 times the process. The size of these
sets is 60%, 20% and 20% of all available data rep-
resenting respectively the training, validation and test
sets. In each experiment, the same folds are consid-
ered in order to make the results more comparable.
The model is trained and evaluated 5 times according
to each split and for one split we consider the system
that gives the best result on the validation set. Note
that the decision from the classifier output is taken
at the polygon level. We explained before that for
large polygons (which have more than 224 pixels), we
build several different images in our process (see Sec-
tion 4.2.1). Then several images are associated with
a single polygon. To take a decision in this case, the
model returns the probabilities of classes for each im-
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(a) (b) (c) (d)
Figure 5: Loss curves related to the training of our model with the different spatio-temporal representations; (a) Random
strategy ℜrandom; (b) Snake strategy ℜsnake; (c) Spiral strategy ℜspiral ; and (d) Hilbert strategy ℜHilbert .

age associated with the polygon. Then, we average
these probabilities with respect to each class and we
affect to the polygon the label of the class with the
highest probability. We report the overall accuracy
that is the average value of the results on the test sets
according to the 5 splits and the standard-deviation.

We train the model using Adam as optimizer with
a learning rate of 10−6 and default values of the other
parameters (β1 = 0.9, β2 = 0.999 and ε = 10−8) with
batch size of 8. We limit the number of epochs to
2000, following an early stopping technique with a
patience number of 100. As the size of the avail-
able dataset is limited, we train the network using two
strategies: (1) from scratch and (2) with fine-tuning
(the model was pre-trained on ImageNet). We have
also proceeded with data augmentation.

4.3 Results and Discussions

The proposed spatio-temporal representations of the
PITS have been used to feed the CNN. We also used
the random ℜrandom ordering of pixels in order to
evaluate the importance of spatial information. Two
successive pixels in the 1D representation are neigh-
bors in the 2D space is a property of the different
space filling curves we have considered. For visu-
alization purpose, Figure 4 illustrates two PITS with
their resulting spatio-temporal representations, here
based on the ℜHilbert strategy.

The CNN model was trained accordingly to the
learning protocol, with and without fine tuning. We
also evaluated the impact of considering the original
temporal dates or applying an interpolation to fit the
224×224 image input size required by SqueezeNet.

Figure 5 illustrates the resulting loss curves when
SqueezeNet is trained from scratch (following an
early stopping technique) with images related respec-
tively to the ℜrandom, ℜsnake, ℜspiral and ℜHilbert
strategies, here with original dates. From these
curves, we notice that the worst (highest) loss values
are obtained with the ℜrandom strategy as expected.
Also the loss curve of the ℜrandom strategy starts sta-
bilizing near 200 epochs compared to others which

start stabilizing from about 600 epochs. Intuitively,
this means that the ℜrandom strategy does not provide
a good representation of PITS with a good ability to
generalize when training. Other representations allow
to make a rather good fit. We can also see the best
learning curves are obtained in (c), using the ℜspiral ,
with the best results on the validation set. This rank-
ing is not preserved at the global test set level.

Table 1 reports the classification results (over-
all accuracy) obtained with our spatio-temporal rep-
resentations (with original dates). We notice that
ℜrandom always provides the lowest scores compared
to the other representations, with and without DA, or
with and without fine tuning. This is quite expected as
the discrimination between traditional and intensive
orchards is relying on spatial information and this in-
formation is partly preserved with space filling curves
providing spatial information in addition to tempo-
ral information. From Table 1, we also notice that
with DA, all scores are slightly increased, and the best
scores have been obtained by combining DA and the
fine tuning strategy. Finally, here the best representa-
tions oscillate between ℜsnake, ℜspiral and ℜHilbert .

As comparative study, we compared our results to
the ones obtained with the TempCNN method dedi-
cated to the classification of time series, proposed in
(Pelletier et al., 2019). This approach relies on the
use of a CNN classifier, where convolutions are ap-
plied in the temporal domain (1D convolutions). The
filter sizes are fixed following the criterion given in
(Pelletier et al., 2019): with a kernel size of 5 when
considering the original dates, and 11 when consider-
ing the interpolated dates. For comparison purpose,
we trained and validated the TempCNN model us-
ing the same validation protocol. Note that the Tem-
pCNN model is proposed with different architectures
(depths), leading to different number of filters.

Table 2 reports the TempCNN results. Best scores
were obtained with 256 filters. The obtained scores
suggest that the results obtained with TempCNN out-
perform the ones obtained with our method when we
train from scratch. However, when considering fine-
tuning from the pre-trained model on ImageNet, we
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obtain better scores. This highlights, for our applica-
tive context, the benefit of considering a classical 2D
CNN model for classifying 2D+ t images combined
with our spatio-temporal representations.

Table 1: Classification results (overall accuracy – OA
and standard deviation – STD) obtained with our spatio-
temporal representations (with original date images);
(first/second rows) Without/With data augmentation.

From scratch Fine tuning
Rep. OA STD OA STD

w
/o

D
A

ℜrandom 71.50 7.17 81.00 8.15
ℜsnake 78.00 4.30 90.50 7.96
ℜspiral 76.00 8.74 92.00 3.31
ℜHilbert 79.00 5.61 91.00 2.00

w
ith

D
A ℜrandom 80.50 3.67 87.00 4.58

ℜsnake 83.50 7.00 93.50 2.54
ℜspiral 84.50 5.33 93.00 1.87
ℜHilbert 81.50 6.44 91.00 2.54

Table 2: Classification results (overall accuracy – OA and
standard deviation – STD) with the TempCNN architectures
(with original dates and kernel size of 5).

Nb filters 16 32 64 128 256 512 1024
OA 78.81 77.38 81.66 78.45 85.37 81.73 84.80
STD 6.08 6.51 4.59 4.79 3.44 5.75 6.48

Table 3: Classification results (overall accuracy – OA
and standard deviation – STD) obtained with our spatio-
temporal representations (with temporal interpolation);
(first/second rows) Without/With data augmentation.

From scratch Fine tuning
Rep. OA STD OA STD

w
/o

D
A

ℜrandom 84.00 9.02 87.00 4.30
ℜsnake 85.00 4.18 92.50 3.16
ℜspiral 85.00 3.53 91.00 2.54
ℜHilbert 89.00 3.39 91.00 2.54

w
ith

D
A ℜrandom 82.00 8.71 83.50 4.35

ℜsnake 86.50 5.38 90.50 1.87
ℜspiral 86.50 3.00 91.50 3.74
ℜHilbert 92.50 1.58 89.00 3.39

Table 4: Obtained results (overall accuracy – OA and stan-
dard deviation – STD) with the TempCNN architectures
(with temporal interpolation and kernel size of 11).

Nb filters 16 32 64 128 256 512 1024
OA 78.96 81.40 83.96 81.86 85.93 84.23 87.21
STD 7.34 6.32 7.14 5.18 8.03 6.23 8.28

Table 3 presents the classification results when
considering the temporal interpolation strategy. We
notice that with more temporal information, the over-
all scores are increased compared to the case with less
temporal information (images with original dates) re-
ported in Table 1. This can be explained by the non-

regular distribution of the original dates. Whereas,
with the interpolation, we obtain a temporal infor-
mation with an equal regularity to obtain 224 dates
and also due to actual monotonous behavior between
the consecutive dates used for the interpolation. We
observe again that the ℜrandom strategy leads to the
worst scores. This confirms that spatial information
is important and not just temporal one. We see also
that DA increases slightly the scores in case of from
scratch learning but is not able to improve the re-
sults in case of fine tuning. In this experiment, the
ℜHilbert strategy leads to the representation that pro-
vides the best scores when we train from scratch (with
and without DA). But when we fine tune, the best rep-
resentations oscillate between ℜsnake and ℜspiral .

The obtained results with TempCNN when con-
sidering the temporal interpolation strategy are listed
in Table 4. Initial scores range in the same interval as
our method when we train from scratch. But with DA
or/and fine-tuning, our scores are higher.

5 CONCLUSION

In this paper we present a new strategy for transform-
ing an image time series to a planar spatio-temporal
representation, reducing the complexity of an image
time series structure (from 2D+ t to 2D) while main-
taining (partially) the spatial and temporal relation-
ships of pixels. These representations are used to
feed a classical CNN in order to perform a classifi-
cation. 2D convolutions can then lead to an extrac-
tion of spatio-temporal features. Compared to 1D ap-
proaches dedicated to time series, we have a lower
number of annotated data, but this is compensated by
data augmentation. By considering 2D convolutions,
we can also benefit of a pre-trained model on Ima-
geNet. Such initialization of the weights of the CNN
is less tractable for 1D studies as no ImageNet like
dataset is available.

The proposed approach has been evaluated in re-
mote sensing for the classification of agricultural crop
fields from SITS. In our experimentation, we study
the impact of the spatio-temporal transformation us-
ing different space filling curves. The obtained re-
sults reflect the usefulness and the impact of consider-
ing both spatial and temporal information. From our
thematical study, we observe that the classification
scores are higher when considering spatio-temporal
representations with more temporal information (us-
ing the temporal interpolation) than those who have
less, even if built from the same initial data. It is then
more important to have many data along the temporal
domain than the way the 2D plan is filled with curves.
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In our comparative study, we notice that the Tem-
pCNN method (Pelletier et al., 2019) is applied at
the pixel level while our approach is applied at the
polygon level. This means that for TempCNN there
are more training samples compared to our method
where the pixels of a polygon are all summed up in
a spatio-temporal image. Despite the low number of
data available, the accuracy increase made possible by
our process is up to 8% based on the original data and
5% on the interpolated data.

In future works, the ordering of the pixels will
be more precisely studied, till now we have ordered
the pixels of a square region where the polygon is in-
cluded but we have to define an order adapted to the
geometry of the polygon itself. We will also increase
the number of instances of orchards and also apply the
same approach to problems involving a larger number
of classes in order to generate land-cover maps.
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