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Abstract: Many stereo matching methods show quite accurate results from depth estimation for images captured under 
the same lighting conditions. However, the lighting conditions of the stereo image are not the same in the real 
video shooting environment. Therefore, stereo matching, which estimates depth information by searching 
corresponding points between two images, has difficulty in obtaining accurate results in this case. Some 
algorithms have been proposed to overcome this problem and have shown good performance. However, those 
algorithms require a large amount of computation. For this reason, they have a disadvantage of poor matching 
efficiency. In this paper, we propose an efficient stereo matching method using a color formation model that 
takes into account exposure and illumination changes of captured images. Our method changes an input image 
to a radiometric invariant image and also applies a local binary patch, which is robust to lighting changes, to 
the transformed image according to exposure and illumination changes to improve the matching speed.

1 INTRODUCTION 

Many researchers have studied techniques for 
providing more realistic video content to the public. 
This effort led to the development of high-resolution 
digital imaging technologies such as high definition 
television (HDTV) and ultra high definition 
television (UHDTV). In addition, since the late 
2000s, three-dimensional (3D) movies have been 
popular all over the world, and various types of 3D 
video content have been produced. Recently, 
techniques for creating immersive video content such 
as super multi-view images and 360° images are also 
being studied. Various image processing and 
computer vision theories are used to create such 
realistic and immersive video content, and depth 
information of the object plays an important role in 
adding realism to the two-dimensional (2D) image. 
The more accurate the depth information of the 
object, the more realistic 3D video content can be 
produced. Therefore, until recently, research to obtain 
accurate depth information has been actively 
conducted. 
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One of the methods for depth estimation is an 
active-sensor based method. This method uses an 
infrared-ray or a laser to measure the distance 
between the sensor and the object. The other method 
is a passive-sensor based method. This method 
estimates depth information based on geometric 
theory and human visual system from single or 
binocular images. One representative passive-sensor 
based method is stereo matching that uses the 
characteristic of binocular disparity. It compares 
brightness values of pixels between two images 
having different viewpoints. Then, corresponding 
points are found and the disparity value between them 
is calculated. According to the characteristic of 
binocular disparity, the disparity value is interpreted 
as depth information of that pixel. 

There are several ways to estimate disparity 
values using stereo matching. A local stereo matching 
method defines a cost function between a reference 
patch and a target patch in the stereo image. After 
that, the principle of winner-takes-all (WTA) is 
applied to the matching cost calculated for all 
disparity candidates to determine the optimal 
disparity value of the current pixel. This is the basic 
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method for disparity estimation from the stereo 
image. Recently, a method for improving the 
performance of local stereo matching by aggregating 
the matching cost calculated according to the 
disparity candidates has been proposed (Zhang et al., 
2014). Another type of stereo matching is a global 
stereo matching method. This method models an 
energy function for the disparity estimation. The 
energy function includes a data term and a 
smoothness term. Each of the terms calculates the 
matching cost and checks the disparity continuity 
among neighboring pixels, respectively. This 
function is optimized by some optimization 
algorithms such as belief propagation (Sun et al., 
2002) and graph cuts (Boykov et al., 2001) to 
determine the final disparity value. Generally, the 
global stereo matching method shows better 
performance than the local stereo matching method. 
However, due to the process of optimization that 
compares the disparity continuity among pixels, this 
method usually requires more computation than the 
local stereo matching method. 

Recently, many researchers are interested in deep 
learning, and since the appearance of AlexNet 
(Krizhevsky et al., 2012), researches on image 
processing and computer vision using convolutional 
neural networks (CNNs) such as VGGNet (Simonyan 
et al., 2014) and ResNet (He et al., 2016) have 
increased. Those networks have been applied to 
various fields in computer vision and shown better 
performance than conventional methods. At a similar 
time, deep learning began to be used for stereo 
matching. MC-CNN calculates the matching cost by 
extracting the same sized patch from the left and right 
viewpoint images according to disparity candidates. 
Then, it trains the learning model to have the optimal 
matching cost at the actual disparity value (Zෘbontar et 
al., 2015). Similarly, an algorithm was proposed that 
improves the performance of MC-CNN by increasing 
the size of the target patch according to disparity 
candidates and then training the probability 
distribution of the matching cost (Luo et al., 2016). 
Those two methods applied deep learning only to the 
part that calculates the matching cost in stereo 
matching. Unlike those methods, a method of 
applying deep learning to all the processes of stereo 
matching was proposed (Mayer et al., 2016). 

Although many stereo matching papers have been 
published so far, most stereo matching algorithms 
have been tested to stereo images taken under the 
same lighting conditions. In a real stereo image 
shooting environment, it is difficult for two viewpoint 
images to have the same lighting conditions and it 
causes errors in the result of stereo matching. An 

adaptive normalized cross-correlation (ANCC) that 
calculates the matching cost between two images by 
eliminating lighting factors in the color formation 
model was proposed (Heo et al., 2010). This method 
shows a stereo matching result that is robust to 
lighting changes. However, in calculating the 
matching cost, there is a disadvantage that it is 
inefficient because of too much computational 
complexity. Various methods have been proposed to 
solve the computational complexity problem of 
ANCC. Those methods have less computational 
complexity than that of ANCC. However, they show 
unstable stereo matching results compared with 
ANCC. Therefore, we propose an efficient stereo 
matching method that shows fast and stable matching 
results for various lighting changes. 

2 RELATED WORKS 

In general, the result of stereo matching is poor when 
images are captured under different lighting 
conditions. Fig. 1 shows results of stereo matching 
with various methods. We tested conventional stereo 
matching methods using Aloe from Middlebury 
stereo datasets (Scharstein et al., 2007). 

 
(a) Left image  (b) Right image      (c) SAD 

 
(d) DL             (e) NCC       (f) Ground truth 

Figure 1: Stereo matching with various methods. 

In Fig. 1, Fig. 1(a) and (b) represent a left 
viewpoint and a right viewpoint images. Both images 
are captured under different illumination conditions. 
Fig. (c) - (e) show stereo matching results using the 
sum of absolute differences (SAD), deep learning 
(Luo et al., 2016), and normalized cross-correlation 
(NCC), respectively. Fig. (f) is a ground truth 
disparity map of the left viewpoint image. All results 
in Fig. 1 were optimized by graph cuts (Boykov et al., 
2001). As shown in Fig. 1, it is difficult to obtain a 
good disparity map with general matching methods. 
Even the stereo matching method using deep learning 
shows a poor disparity map. In this section, we 
introduce some algorithms proposed to solve this 
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problem and also explain disadvantages of each 
method. 

2.1 Adaptive Normalized  
Cross-Correlation (ANCC) 

The ANCC method (Heo et al., 2010) uses a color 
formation model that is defined by (Finlayson et al., 
2003) to remove lighting factors from captured 
images. The color formation model in the left 
viewpoint image is defined in (1). In the process of 
storing a digital image, the actual color values are 
distorted by lighting factors as shown in (1). 

ቌ𝑅௅ሺ𝑝ሻ𝐺௅ሺ𝑝ሻ𝐵௅ሺ𝑝ሻቍ → ቌ𝑅௅෪ሺ𝑝ሻ𝐺௅෪ሺ𝑝ሻ𝐵௅෪ሺ𝑝ሻቍൌ ቌ𝜌௅ሺ𝑝ሻ𝑎௅𝑅௅ఊಽሺ𝑝ሻ𝜌௅ሺ𝑝ሻ𝑏௅𝐺௅ఊಽሺ𝑝ሻ𝜌௅ሺ𝑝ሻ𝑐௅𝐵௅ఊಽሺ𝑝ሻቍ 

(1)

In (1), where 𝜌௅ሺ𝑝ሻ  is a brightness factor that 
represents the lighting geometry at the current pixel 𝑝, 𝛾௅  is a gamma exponent, and 𝑎௅ , 𝑏௅ , and 𝑐௅  are 
scale factors. The ANCC removes 𝜌௅ሺ𝑝ሻ using log-
chromaticity normalization. As a result, 𝑅௅෪ሺ𝑝ሻ  is 
changed to (2). 𝑅௅ᇱᇱሺ𝑝ሻ ൌ log ௔ಽඥ௔ಽ௕ಽ௖ಽయ ൅ 𝛾௅log ோಽሺ௣ሻඥோಽሺ௣ሻீಽሺ௣ሻ஻ಽሺ௣ሻయ  (2)

There are still scale factors and the gamma 
exponent in (2). ANCC uses a N × N sized patch for 
elimination of scale factors. It also applies a bilateral 
filter to the patch (Tomasi et al., 1998) for preserving 
depth information of object boundary. An equation 
for removing scale factors is defined in (3). 𝑅௅ᇱᇱᇱሺ𝑡ሻ ൌ 𝑅௅ᇱᇱሺ𝑡ሻ െ ∑ 𝑤ሺ𝑡ሻ𝑅௅ᇱᇱሺ𝑡ሻ௧∈ௐሺ௣ሻ𝑍ሺ𝑝ሻ   (3)

In (3), where 𝑊ሺ𝑝ሻ is the kernel at current pixel 𝑝, 𝑤  represents the kernel of bilateral filter, and 𝑍 
means the sum of weights in the bilateral kernel. The 
last lighting factor, the gamma exponent, is removed 
using an equation of NCC as shown in (4). 𝐴𝑁𝐶𝐶௟௢௚஼௛௥௢௠_ோ൫𝑓௣൯  ൌ ∑ 𝑤௅ሺ𝑡௜ሻ𝑤ோሺ𝑡௜ሻሾ𝑅௅ᇱᇱᇱሺ𝑡௜ሻሿ × ሾ𝑅ோᇱᇱᇱሺ𝑡௜ሻሿெ௜ୀଵට∑ |𝑤௅ሺ𝑡௜ሻ𝑅௅ᇱᇱᇱሺ𝑡௜ሻ|ଶெ௜ୀଵ × ට∑ |𝑤ோሺ𝑡௜ሻ𝑅ோᇱᇱᇱሺ𝑡௜ሻ|ଶெ௜ୀଵ  (4)

The equation (4) is used as a cost function of 
ANCC. In (4), where 𝐴𝑁𝐶𝐶௟௢௚஼௛௥௢௠_ோ means the cost 
function of log 𝑅 channel and 𝑓௣ is a set of disparity 
candidates at the current pixel. This cost function 
shows robust results in lighting changes. Authors of 

ANCC define an additional cost function from the 
original RGB image to compensate the information 
loss due to the process of log-chromaticity 
normalization. The cost function of original 𝑅 
channel is defined in (5). In (5), where 𝑅෠௅ሺ𝑡௜ሻ ൌ𝑅௅෪ሺ𝑡௜ሻ െ ∑ ௪ಽሺ௧ሻோಽ෪ሺ௧ሻ೟∈ೈሺ೛ሻ௓ሺ௣ሻ . 𝐴𝑁𝐶𝐶ோ൫𝑓௣൯ ൌ ∑ ௪ಽሺ௧೔ሻ௪ೃሺ௧೔ሻሾோ෠ಽሺ௧೔ሻሿ×ሾோ෠ೃሺ௧೔ሻሿಾ೔సభට∑ |௪ಽሺ௧೔ሻோ෠ಽሺ௧೔ሻ|మಾ೔సభ ×ට∑ |௪ೃሺ௧೔ሻோ෠ೃሺ௧೔ሻ|మಾ೔సభ      (5)

Both cost functions in (4) and (5) are applied to 
the energy function for the global stereo matching, 
and it is optimized by graph cuts. 

The ANCC method using both log-chromaticity 
and original RGB cost functions shows stable results 
under different lighting conditions as depicted in Fig. 
2(a). However, since the bilateral filter is applied to 
all the pixels, the computational complexity becomes 
high depending on the kernel size. 

2.2 Normalized Cross-correlation in 
Log-RGB Space 

To reduce the computational complexity of ANCC, a 
stereo matching method in log-RGB space using 
NCC was proposed (Li, 2012). Unlike ANCC, which 
requires the bilateral filter for all pixels in the image 
to remove scale factors, this method has less 
computational complexity than ANCC because it 
only requires calculating the average of all the pixel 
values in the log-RGB image. Therefore, the equation 
of (3) is changed to (6). In (6), where 𝐼௟௢௚ is a set of 
pixels in the log-RGB image having the left 
viewpoint and 𝑀 is the number of pixels in the image. 𝑅௅ᇱᇱᇱሺ𝑡ሻ ൌ 𝑅௅ᇱᇱሺ𝑡ሻ െ ∑ 𝑅௅ᇱᇱሺ𝑡ሻ௧∈ூ೗೚೒𝑀   (6)

 
(a) ANCC        (b) Log-RGB       (c) APBM 

Figure 2: Results of ANCC, Log-RGB, APBM methods. 

The removal of the remaining lighting factor is the 
same as that of ANCC. We implemented this method 
and tested it using the same image used in Fig. 1. The 
result of this method is shown in Fig. 2(b). Compared 
with the ANCC result in Fig. 2(a), the result of this 
method looks worse. On the contrary, compared with 
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the results of Fig. 1(c), (d), and (e), Fig. 2(b) shows a 
better result than them. 

2.3 Adaptive Pixel-wise and  
Block-wise Matching (APBM) 

An adaptive pixel-wise and block-wise matching 
(APBM) is another stereo matching method that has 
lower computational complexity than ANCC and is 
robust to lighting changes (Chang et al., 2019). This 
method removes scale factors using the average of the 
all the pixel values in the log-RGB image and 
eliminates the gamma exponent using an equation of 
hue transformation. Through this process, the input 
image is converted into an independent image from 
the lighting factors. 

The APBM method uses the equation of pixel-
wise matching based on the transformed input image 
to speed up the process of stereo matching. 
Subsequently, the equation of block-wise matching is 
also used for compensation of the matching 
inaccuracy caused by using the pixel-wise matching. 
This method is faster than ANCC. However, when we 
compare the APBM result with the result obtained 
using both log-chromaticity and original RGB cost 
functions, the result of APBM looks worse than that 
of ANCC as depicted in Fig. 2(c). 

3 PROPOSED METHOD 

3.1 Analysis of Conventional Methods 

In Section 2, we introduced ANCC that showed 
robust stereo matching results in various lighting 
conditions and also introduced Log-RGB and APBM 
methods that solve the computational complexity 
problem of ANCC. However, those algorithms did 
not show better results than ANCC in terms of stereo 
matching accuracy. For the objective evaluation of 
each algorithm, we estimated disparity maps by 
applying each algorithm to Aloe images captured 
under various exposure and illumination. After that, 
the error rate between the obtained disparity map and 
the ground truth was calculated and summarized in 
Table 1 and Table 2. 

Table 1 shows an error rate comparison under 
different exposure levels and Table 2 represents the 
error rate comparison under different illumination 
levels. Each first column in the two tables means the 
exposure and the illumination levels of the left and 
right images, respectively. In Table 1, where GC 
means that the energy function is optimized by graph 
cuts. ANCC, Log-RGB, and APBM methods show 

lower error rates than SAD when the two images have 
different exposure levels. However, when compared 
to NCC, those methods show higher error rates than 
NCC. In particular, at dark exposure levels (e.g. 0-0, 
0-1, and 0-2), those methods show very poor results 
than NCC. 

On the other hand, it can be seen that ANCC, Log-
RGB, and APBM methods show better error rates for 
most illumination levels than SAD and NCC. 
Especially, those methods perform better than other 
methods when the illumination level differences 
between the left and right images are large (e.g. 1-3 
and 2-3). 

Table 1: Error rate comparison (exposure). 

 SAD 
+GC 

NCC 
+GC 

ANCC
(7×7) 

ANCC 
(31×31) 

Log-
RGB+GC 

APBM
+GC 

Error rates (%) 
0-0 13.9 13.05 12.27 10.74 18.32 15.3
0-1 97.87 10.96 16.24 13.6 17.94 15.32 
0-2 97.93 10.75 19.55 15.48 16.73 14.33
1-1 12.01 10.23 6.6 5.42 12.46 9.19 
1-2 97.55 10.13 6.22 4.99 11.19 7.62
2-2 11.09 9.94 5.37 4.5 9.99 5.51

Table 2: Error rate comparison (illumination). 

 SAD 
+GC 

NCC 
+GC 

ANCC
(7×7) 

ANCC 
(31×31) 

Log-
RGB+GC 

APBM
+GC 

Error rates (%) 
1-1 12.01 10.26 6.6 5.29 12.43 9.42
1-2 77.43 12.75 9.78 7.97 15.65 11.68 
1-3 82.99 23.01 16.35 11.81 17.44 13.8
2-2 11.97 10.72 5.98 4.55 10.9 7.2 
2-3 72.25 17.93 12.91 9.73 16.28 13.02
3-3 11.9 11.42 7.24 5.2 11.9 8.59

Both Table 1 and Table 2 show that ANCC, Log-
RGB, and APBM are generally stronger than SAD 
and NCC for illumination changes, but are more 
vulnerable to exposure changes. In the case of the 
NCC method, it shows robust results in exposure 
changes without removing lighting factors of input 
images. Therefore, ANCC, Log-RGB, and APBM 
methods, which remove lighting factors from input 
images based on the color formation model, are rather 
inefficient compared to NCC. 

The purpose of proposed method is to create an 
efficient stereo matching algorithm that uses basic 
and simple cost functions to reduce computational 
complexity and is also robust to exposure and 
illumination changes. 
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3.2 Image Transformation 

We analyzed that APBM performed worse than 
ANCC because it did not consider the problem of 
discriminability caused by the log-chromaticity 
normalization, which was mentioned in the original 
paper of ANCC. Therefore, the proposed method 
transforms the input image to the independent image 
from lighting factors based on color formation models 
divided into two cases to solve this problem.  

The first case is that the stereo image is captured 
with a fixed camera exposure. In this case, we assume 
that scale factors in (1) are all the same. According to 
this assumption, (1) is rewritten as (7). 

ቌ𝑅௅ሺ𝑝ሻ𝐺௅ሺ𝑝ሻ𝐵௅ሺ𝑝ሻቍ → ቌ𝑅௅෪ሺ𝑝ሻ𝐺௅෪ሺ𝑝ሻ𝐵௅෪ሺ𝑝ሻቍ ൌ ቌ𝜌௅ሺ𝑝ሻ𝑅௅ఊಽሺ𝑝ሻ𝜌௅ሺ𝑝ሻ𝐺௅ఊಽሺ𝑝ሻ𝜌௅ሺ𝑝ሻ𝐵௅ఊಽሺ𝑝ሻቍ  (7)

In the same way with ANCC, the log transform is 
applied to (7). After that, the log-chromaticity 
normalization is performed for eliminating the 
brightness factor. Therefore, an equation (2) is 
changed to (8). 𝑅௅௔ሺ𝑝ሻ ൌ 𝛾௅log 𝑅௅ሺ𝑝ሻඥ𝑅௅ሺ𝑝ሻ𝐺௅ሺ𝑝ሻ𝐵௅ሺ𝑝ሻయ   (8)

The second case is that the stereo image is 
captured with a fixed lighting geometry. In this case, 
the brightness factor 𝜌௅ሺ𝑝ሻ may be omitted from (1). 
Therefore, we assume that the color formation model 
in (1) is transformed to (9). 

ቌ𝑅௅ሺ𝑝ሻ𝐺௅ሺ𝑝ሻ𝐵௅ሺ𝑝ሻቍ → ቌ𝑅௅෪ሺ𝑝ሻ𝐺௅෪ሺ𝑝ሻ𝐵௅෪ሺ𝑝ሻቍ ൌ ቌ𝑎௅𝑅௅ఊಽሺ𝑝ሻ𝑏௅𝐺௅ఊಽሺ𝑝ሻ𝑐௅𝐵௅ఊಽሺ𝑝ሻቍ  (9)

In (9), there are scale factors 𝑎௅, 𝑏௅, and 𝑐௅. We 
apply log transform to (9). The scale factors are 
removed by subtracting the average pixel value of 
each color channel from all the pixels in the log image. 
Those processes are defined in (10) and (11). The 
equation (11) is also summarized in (12). log ቀ𝑅௅෪ሺ𝑝ሻቁ ൌ log𝑎௅ ൅ 𝛾௅log𝑅௅ሺ𝑝ሻ (10)𝑅௅௕ሺ𝑝ሻ ൌ log ቀ𝑅௅෪ሺ𝑝ሻቁ െ ∑ ୪୭୥൫ோಽ෪ሺ௧ሻ൯೟∈಺೗೚೒ ெ         (11) 𝑅௅௕ሺ𝑝ሻ ൌ 𝛾௅log ோಽሺ௣ሻට∏ ோಽሺ௧ሻ೟∈಺೗೚೒ಾ                (12) 

The proposed method uses the average sum of (8) 
and (11) to solve the problem of discriminability. This 
is because the equation (8) has the log-chromaticity 

normalization problem, but (12) is free from this. The 
combination of (8) and (11) is defined in (13). 

In (13), there is a gamma exponent. To remove the 
gamma exponent, we apply the log transformation 
again to (13). After that, the gamma exponent is 
removed in the same manner as in (11). This is 
defined in (14). If the result value of (13) has a 
negative value, the log transformation in (14) cannot 
have real value. Therefore, in the actual 
implementation process, we add the positive constant 
value to (13) and apply this value to (14). 
 𝑅௅௖ሺ𝑝ሻ ൌ 0.5 ∗ 𝛾௅log ோಽ್ሺ௣ሻඥோಽሺ௣ሻீಽሺ௣ሻ஻ಽሺ௣ሻయ ∙ ට∏ ோಽሺ௧ሻ೟∈಺೗೚೒ಾ (13)

𝑅௅ௗሺ𝑝ሻ ൌ log𝑅௅௖ሺ𝑝ሻ െ ∑ log𝑅௅௖ሺ𝑡ሻ௧∈ூ೗೚೒𝑀  
(14)

Based on color values converted so far, the final 
transformed color channels are shown in (15). We 
change the result of (14) to an exponential value. This 
is because the result of (14) may have a negative 
number because of the logarithmic value. In the actual 
implementation process, we also multiply the positive 
constant value to (15) for making 16bit integer value. 
In (15), where 𝑅௅ி, 𝐺௅ி, and 𝐵௅ி represent transformed 
color channels using the proposed method. 

ቌ𝑅௅ிሺ𝑝ሻ𝐺௅ிሺ𝑝ሻ𝐵௅ிሺ𝑝ሻቍ ൌ ቌ𝑒ோಽ೏ሺ௣ሻ𝑒ீಽ೏ሺ௣ሻ𝑒஻ಽ೏ሺ௣ሻቍ (15)

We applied our new color model to the stereo 
image that was used in Fig. 1 to test. As a result, 
images in Fig. 1 was changed to new images that have 
similar color distributions as depicted in Fig. 3. 

 
Figure 3: Image transformation using proposed method. 

3.3 Cost Computation 

The proposed method calculates the matching cost 
using the transformed images in Fig. 3. For the cost 
computation, we apply a census transform that uses a 
local binary patch for the similarity measure between 
left and right images (Zabih et al., 1994). The census 
transform calculates color differences between the 
center pixel and its neighboring pixels in the patch. 
Subsequently, if the difference is larger than 0, the 
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neighboring pixel value is changed to 1. In the 
opposite case, that pixel value is set to 0. This process 
is applied to both left and right patches. Binary values 
from two patches are listed in numeric sequences as 
shown in Fig. 4 to calculate the matching cost by 
measuring Hamming distance. 

 
Figure 4: Example of census transform. 

The cost function calculating Hamming distance 
between two patches is used as a data term 𝐷௣൫𝑓௣൯ of 
the energy function defined in (16). 𝐸ሺ𝑓ሻ ൌ ∑ 𝐷௣൫𝑓௣൯௣ ൅ ∑ ∑ 𝑉௣௤൫𝑓௣, 𝑓௤൯௤∈ேሺ௣ሻ௣   (16)

In (16), where 𝑞 is a set of neighboring pixels in 
the patch and 𝑉௣௤ is a smoothness term that checks the 
disparity continuity among pixels. The energy 
function is optimized by graph cuts and all parameters 
used in this process are the same as those used in (Heo 
et al., 2010). 

Table 1 shows that robust stereo matching 
methods in various lighting conditions have worse 
error rates than those of NCC when the exposure level 
of input image is low. In addition, some algorithms in 
Table 1 show worse results than NCC even under the 
same exposure levels. It means that stereo matching 
using the original input image shows better results 
than stereo matching using the transformed image in 
those situations. To solve this problem, we use 
average pixel values of the left and right images and 
also calculate the absolute difference between two 
average values. If the average value of the left or the 
right image is lower than 50, or the absolute 
difference between the two average values is lower 
than 7, original color images are used as inputs for 
stereo matching. If not, transformed images are used. 
An overall scheme of our method is shown in Fig. 5. 

 

 
Figure 5: Flowchart of proposed method. 

4 EXPERIMENTAL RESULTS 

We tested the proposed method using Middlebury 
stereo datasets: Aloe, Dolls, and Moebius (Scharstein 
et al., 2007). To evaluate whether the stereo matching 
result is robust to lighting changes, the exposure and 
illumination levels of the left and right images were 
classified into 6 cases, respectively. Fig. 6 shows 
disparity maps acquired through stereo matching 
methods when the illumination level of the left and 
right images is 1 and 3, respectively. ‘GT’ in Fig. 6(i) 
means the ground truth. 

For quantitative evaluation, we measured the error 
rate of the stereo matching result according to the 
exposure and illumination conditions. The error rate 
means that the ratio of the number of error pixels to 
the total number of pixels in the image. The error 
pixel refers to a pixel having the difference between 
the actual disparity value and the experimentally 
obtained disparity value is greater than 1. Those are 
summarized in Table 3 and Table 4.  

The ANCC results in Fig. 6, Table 3, and Table 4 
are estimated using a 7×7 sized patch. The original 
ANCC paper used a 31×31 sized patch for stereo 
matching. Therefore its matching speed is slower but 
results performs better than ANCC with the 7×7 
sized patch. However, in this paper, the 7×7 sized 
patch was used for the proposed method and other 
methods such as SAD and NCC. For this reason, the 
7 × 7 sized patch was used for ANCC for fair 
comparison of execution time and error rates. 
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(a) Left     (b) Right     (c) SAD       (d) NCC    (e) ANCC (f) Log-RGB     (g) DL     (g) APBM     (h) Ours        (i) GT 

Figure 6: Disparity maps of datasets having the illumination level of the left and right image 1 and 3, respectively. 

Table 3: Error rate comparison between the proposed method and other methods (exposure). 

 
SAD+GC NCC+GC ANCC (7×7) Log-RGB+GC DL APBM+GC Ours 

Error rates (%) 
0-0 20.33 14.55 16.48 26.06 24.25 23.88 10.03 
0-1 97.93 12.71 17.82 23.51 31.11 21.07 9.17 
0-2 97.99 14.6 22.3 24.64 47.17 21.96 10.63 
1-1 18.14 11.56 9.46 15.86 23.56 12.31 7.04 
1-2 97.47 13.22 10.34 16.63 34.79 12.25 9.13 
2-2 17.23 11.66 8.03 13.2 24.94 8.63 7.19 

Avg. 58.18 13.05 14.07 19.98 30.97 16.68 8.87 

Table 4: Error rate comparison between the proposed method and other methods (illumination). 

 
SAD+GC NCC+GC ANCC (7×7) Log-RGB+GC DL APBM+GC Ours 

Error rates (%) 
1-1 18.15 11.6 9.41 15.81 23.56 12.41 7.06 
1-2 77.63 13.77 11.23 17.89 35.32 14.16 9.57 
1-3 87.88 28.1 21.14 23.31 59.59 18.92 20.12 
2-2 18.66 11.61 8.62 14.51 24.41 10.64 6.93 
2-3 80.07 22.68 16.54 20.12 52.06 15.96 14.88 
3-3 18.69 11.63 8.5 14.29 25.23 10.43 6.75 

Avg. 50.18 16.57 12.57 17.66 36.7 13.75 10.89 
 
Error rates in both Table 3 and Table 4 mean that 

in the non-occluded region. In Table 3, where DL 
means stereo matching using CNNs (Luo et al., 
2016). The proposed method shows the best results 
for all exposure conditions compared to other 
methods. In the case of illumination, our method 
performs better in all other illumination conditions 
except for ‘1-3’ than other methods as shown in Table 
4. 

The running time for the cost computation is 
summarized in Table 5. In Table 5, the deep learning 
based method shows the fastest running time. 
However, as shown in Table 3 and Table 4, deep 
learning-based method shows poor results for various 
exposure and illumination levels. On the contrary, the 

proposed method performs more robust results under 
various lighting conditions than other methods. In 
addition, our method shows faster cost computation 
time than ANCC. Considering the error rate and the 
speed of cost computation, the proposed method 
shows more efficient performance than ANCC and 
other methods even with the small sized patch. 

Table 5: Cost computation time. 

SAD
+GC

NCC
+GC

ANCC
(7×7)

Log-
RGB+GC DL APBM+GC Ours 

Time (sec.) 

24.14 38.45 117.86 38.72 7.72 74.81 39.77

Efficient Stereo Matching Method using Elimination of Lighting Factors under Radiometric Variation

781



5 CONCLUSIONS 

In this paper, we proposed a method for efficient 
stereo matching that is robust to lighting changes and 
has a fast matching speed. The proposed method 
transforms the input image into the independent 
image from lighting factors. After that, the matching 
cost is calculated using the concept of census 
transform. Besides, we also calculate average pixel 
values from the left and right images. Those values 
are applied to selecting whether to use the original 
color image or the transformed image as an input for 
stereo matching before the cost computation. As a 
result, the proposed method showed three times faster 
speed for the cost computation than that of ANCC and 
also showed 5.2% and 1.68% lower errors than 
ANCC in exposure and illumination conditions, 
respectively. 
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