
Slag Removal Path Estimation by Slag Distribution and Deep 
Learning   

Junesuk Lee1 a, Geon-Tae Ahn2, Byoung-Ju Yun1 b and Soon-Yong Park1 c 
1School of Electronics Engineering, Kyungpook National University, Daegu, South Korea 

2Research Institute of Industrial Science and Technology, Pohang, South Korea 
 

Keywords: Path Estimation, Deep Learning, Intelligent Robots, Industrial Robots. 

Abstract: In the steel manufacturing process, de-slagging machine is used to remove slag floating on molten metal in a 
ladle. In general, temperature of floating slag on the surface of the molten metal is above 1,500℃. The process 
of removing such slag at high temperatures is dangerous and is only performed by trained human operators. 
In this paper, we propose a deep learning method for estimating the slag removal path to automate slag 
removal task. We propose an idea of developing a slag distribution image structure(SDIS); combined with a 
deep learning model to estimate the removal path in an environment in which the flow of molten metal cannot 
be controlled. The SDIS is given as the input into to the proposed deep learning model, which we train by 
imitating the removal task of experienced operators. We use both quantitative and qualitative analyses to 
evaluate the accuracy of the proposed method with the experienced operators.    

1 INTRODUCTION 

Recently, in the field of intelligent robotics, artificial 
intelligence technology has significant research 
topics (Kim. J. et al., 2018), (Cauli et al., 2018). An 
intelligent robot is a robot that can recognize the 
external environment and judge the situation by itself 
to operate autonomously. Intelligent robots are 
mainly divided into industrial robots and service 
robots. Industrial robots perform dangerous, 
hazardous, or simple repetitive tasks on behalf of 
humans. These robots offer significant benefits in the 
manufacturing industry: labor cost, productivity, and 
quality. In particular, industrial robots improve the 
working environment for humans. In industrial 
environments, people are always threatened by 
polluted air, dangerous materials, and so on. 
Introducing robots into industrial environments can 
consequently reduce the severity of most dangerous 
effects to humans. 

In steel company, various by-products/residues, 
such as slag, dust, and sludge are produced when steel 
is produced. Molten iron is located in the lower part 
of the furnace, and by-products drift on it. To produce  
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Figure 1: System overview. 

high quality steel, such residue must be removed from 
the furnace. In general steel company, slag removal is 
performed using a skimmer as shown in Figure 1. 
Since steel production has dangerous working 
environment, there is a high probability of accidents 
involving human operators. This is because the 
molten metal has a temperature of about 1,500℃ or 
higher and the view of the metal is covered by some 
dust. To protect operators getting exposed to such 
dangerous conditions, automated robots capable of 
performing human tasks are required. 

In this paper, we propose an accurate slag 
removal path estimation method which can easily be 
embedded into any automated system. The system 
overview of the proposed method is briefly shown in 
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Figure 1, where the skimmer moves from top to 
bottom along the ladle. The overview of the proposed 
system has two distinctive stages: an image 
transformation stage which contains slag distribution 
information, and a slag removal path estimation stage 
based on deep learning. The main contributions of 
this paper are three-fold: 
1. propose a learning model that mimics the slag 

removal path of a skilled human operators to 
estimate its removal path. 

2. create a slag distribution image structure that 
contains slag distribution information from color 
images. 

3. estimate the slag removal path in real-time, and 
the experimental results verify the performance of 
the proposed method. 

The structure of this paper is organized as 
follows: First, the related work is discussed in Section 
2. Section 3 describes the creation of the proposed 
slag distribution image and how training data can be 
extracted. Section 4 describes the structure and post-
processing of the deep learning model used to predict 
the slag removal path. Section 5 discusses about the 
working environment and quantitative and qualitative 
accuracy analyses through a few experimental results. 
Finally, we conclude in Section 6. 

2 RELATED WORK 

In this section, we briefly discuss previous studies 
which are related to automated robots of desk 
cleaning, rock excavation, slag removal, and route 
prediction. (Kim. J. et al., 2018) proposed a desk 
cleaning technique using the iCub humanoid Robot 
for cleaning graffiti and lentils from a desk. For a 
robot to clean the top of a desk automatically, it must 
recognize the material on the desk and estimate the 
path to clean it. In this study, a human instructor 
teaches the robot how to perform cleaning tasks. Task 
Parametrized Gaussian Mixture Model (TP-GMM) is 
used to encode the demo variables and to properly 
generalize the features. However, the 
parameterization of TP-GMM is very difficult 
because it requires partitioning and extracting 
complex images of small tables. Therefore, while the 
instructor demonstrates the cleaning task, a trained 
deep neural network is used to extract parameters 
from the robot camera image. 

(Fukui et al., 2015) discussed about an Automated 
Ore Excavator. To carry out autonomous excavation 
of rocks, it is necessary to recognize the state of the 
fragmented rock piles and plan the appropriate 

excavation operation accordingly. They proposed an 
imitation-based motion planning method and 
developed a rock pile condition recognizer with an 
excavation motion planner. To verify the proposed 
method, they developed a 1/10 scale excavation 
model and conducted excavation experiments. 
Experimental results showed that rock piles could be 
distinguished according to surface shape and particle 
distribution, where the number and the variety of 
training data proved important for realizing high 
productivity excavation. 

(Kim. J. S. et al., 2018) conducted a study to 
remove slag using a de-slagging machine. In general, 
de-slagging machines can only be controlled by 
trained professionals. In their research, they proposed 
a method for estimating the slag removal path 
automatically using CNN. They trained their network 
by extracting block regions based on the actions of an 
experienced specialist. They performed backtracking 
and curve fitting to properly estimate the removal 
path and compared with the path of the experienced 
expert. 

(Minoura et al., 2018) proposed a path prediction 
method that takes target object attributes and physical 
environment information into account. Previous path 
prediction methods using deep learning architecture 
took into account the physical environment of a single 
target, such as a pedestrian. However, they proposed 
a route prediction method that could consider 
multiple target types. The method represents the 
attributes as one-hot vectors and encodes the physical 
attributes through convolutional layers. Furthermore, 
we used relative coordinates as the past motion 
history of prediction targets. They verified the 
proposed method using the Stanford drone dataset. 

3 TRAINING DATA ACQUISITION 

3.1 Slag Distribution Image Generation 

In slag removal task, an area with high slag 
distribution is removed first. The reason is that high 
slag distribution means that the slag is concentrated 
in the area. By removing dense slag areas, it results in 
efficient removal task. 

In this section, we discuss the design architecture 
of the slag distribution image which is proposed to 
train our deep learning network (Figure 2). It consists 
of 3 channels: grayscale, morphology, and distance 
transform images. In addition, it also contains 
information that can be used to distinguish the inside 
and outside of the ladle. In our method, we determine 
that the slag exists only inside the inner part of the 
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ladle and the skimmer is moved only within this area. 
We also generate a binary ladle image, which consists 
of zero and one as shown in Figure 3. The inside of 
the ladle is labeled as 1 and the outside is 0. 

 

 
Figure 2: Slag distribution image. 

 

Figure 3: binary ladle image. 

Figure 4 shows how the slag distribution image is 
created and how it is converted from an input color 
image. First, we convert the input RGB image into 
grayscale (Figure 4(a)) and perform the Hadamard 
multiplication using the binary ladle image. This 
operation results in zero value outside the ladle area 
in the converted grayscale image (Figure 4(b)). The 
operator ‘◦’ in Figure 4 represents the Hadamard 
multiplication operation. 

After getting the inverse binary image from the 
converted grayscale image, we apply the opening 
morphology operation (erosion and dilation) as 
shown in Figure 4(d). We used a 3x3 kernel for 
erosion and a 9x9 kernel for dilation, respectively. 
This morphology operation not only removes small 
slag chunks but also fills holes in large chunks. Next, 
we perform the Hadamard multiplication on Figure 
4(d) with the binary ladle image. Next, we multiply 
the figure 4(e) by 0.2 scale and add the output of the 
function 𝐺(ladle binary image). The final result of the 
morphology operation is shown in Figure 4(f). 
Function 𝐺ሺ𝑥ሻ is the same as Equation 1. Operation 
symbol ⊕ means bit XOR operation. 𝐺ሺ𝑥ሻ = ൫𝑥 ⊕ 𝑥൯ ∗ 255  (1)

To generate the distance transform image, we first 
apply the distance transform algorithm (Felzenszwalb 
and Huttenlocher, 2012) on Figure 4(d). The 
Hadamard multiplication is applied on Figure 4(g) to 
distinguish between inside and outside of the ladle. 
Finally, we merge the grayscale, morphology, and 
distance transform images to create the slag 
distribution image as shown in Figure 4(i). The three  

 
Figure 4: Pipeline for constructing the proposed slag distribution image. 
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separate channels in this slag distribution image 
resemble the BGR channels in a general color image. 

3.2 Proposed Training Data Format 
and Data Acquisition Method 

In this paper, we use a learning-based algorithm to 
solve the slag removal path estimation problem. In the 
proposed method, we equally divide the height (y-
coordinate) of the slag distribution image into 24 
fixed intervals as shown in Figure 5. We perform the 
learning and estimating processes only along the x-
coordinate. Fixing the y-coordinate reduced the total 
computational cost and increased the efficiency of the 
path estimation problem. 

 
Figure 5: Proposed training data format. 

To train our network, we collect training data by 
imitating the removal path of a skilled human 
operator. An example of a collected dataset is shown 
in Figure 6. The left side shows a recorded removal 
path, the middle is the slag distribution image, and the 
right is a 2D slag removal path-vector that stores the 
coordinates of the recorded control points. We use the 
slag distribution image and the 2D path vector to train 
our deep learning model. After training our network, 
we use only the slag distribution image in the test 
phase. Some examples of manual path recording are 
shown in Figure 7, which will be used in later 
sections. 

 
(a)                             (b)                           (c) 

Figure 6: Training data, (a) Removal path visualization 
image (b) Training image (c) Removal path vector. 

 
Figure 7: Acquisition of human operator’s removal path. 

The slag removal path-vector 𝑃ሺ𝑥, 𝑦ሻ  can be 
defined mathematically as in Equation (2). In this 
equation, 𝑤 and ℎ represent the width and height of 
the training image. 𝑥, 𝑦, and 𝑖 are of an integer data 
type. If slag removal is not need in the 𝑖-th vector 
position, we set its x-coordinate to -1. The green 
points in Figure 7 are displayed only if this condition 
is satisfied. 

𝑃ሺ𝑥, 𝑦ሻ = ቐ ሺ𝑥, 𝑦ሻ ቮ 0 ≤ 𝑥 < 𝑤, 𝑦 = ℎ24 ∗ 𝑖,0 ≤ 𝑖 < 24  ቑ  (2)

4 SLAG REMOVAL PATH 
ESTIMATION 

4.1 Deep Network Architecture 

The network structure proposed in this research is 
shown in Figure 8. We use the ResNet50 model's Skip 
connection (He et al., 2016) to minimize gradient 
vanishing problem. When training the network, we 
use both the slag distribution image and x-coordinates 
of the 2D vector as the inputs. Our network model 
outputs the respective x-coordinate value 
corresponding to each y-coordinate. The input image 
size is 288x192x3, and the output of the trained 
network model is 24x1x1, which means the 24 x-
coordinate values. We use a total of 25 layers to create 
the proposed network. All convolution layers in the 
proposed network use elu-activation (Clevert et al., 
2015) and zero-padding. A key point of the proposed 
network is that the filter size of all convolution is 5x5. 
In general, the object recognition problem using deep 
learning uses a convolution filter size of 3x3. 
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However, since it is important to recognize the 
distribution of slag, we use a large filter size to 
observe a larger area. 

 
Figure 8: Proposed network model for slag removal path 
estimation. 

4.2 Loss Function 

In this paper, we use the loss function as shown in 
Equation (3) to train our network. This loss function 
consists of two loss-terms. 𝜆 is a constant parameter 
for fine-tuning the weight for each term. In this paper, 𝜆ௗ௔௧௔ is set to 10 and 𝜆௟௔௣௟௔௖௜௔௡ is set to 1. 𝑙𝑜𝑠𝑠௥௘௠௢௩௔௟_௣௔௧௛ = 𝜆ௗ௔௧௔𝑙𝑜𝑠𝑠ௗ௔௧௔൅ 𝜆௟௔௣௟௔௖௜௔௡𝑙𝑜𝑠𝑠௟௔௣௟௔௖௜௔௡ (3)

𝑙𝑜𝑠𝑠ௗ௔௧௔ = ෍‖𝑣௜ሺ𝑡௜ െ 𝑥௜ሻ‖ଶଶெ
௜ୀ଴  (4)

𝑣௜ = ൜  1,   𝑖𝑓    𝑡௜ ് െ1  0,   𝑒𝑙𝑠𝑒              (5)𝑙𝑜𝑠𝑠ௗ௔௧௔ is an expression for finding weight values 
optimized for training data. In 𝑙𝑜𝑠𝑠ௗ௔௧௔, 𝑀 means the 
number of output elements. The proposed network 
outputs 24 x-coordinate values, so we set 𝑀 to 23. 𝑡௜ 
means the answer label. 𝑥௜  means the output of the 
network. 𝑣௜  is a variable that excludes the control 
point whose x coordinate point is -1 on the answer 
label. 𝑣௜ is defined as in Equation (5). 

𝑙𝑜𝑠𝑠௟௔௣௟௔௖௜௔௡ = ෍‖𝑥௜ିଵ െ 2 ∗ 𝑥௜ ൅ 𝑥௜ାଵ‖ଶଶெିଵ
௜ୀଵ  (6)𝑙𝑜𝑠𝑠௟௔௣௟௔௖௜௔௡  is defined by Equation (6). 𝑙𝑜𝑠𝑠௟௔௣௟௔௖௜௔௡  is an expression that minimizes the 

difference in magnitude between the values of listed 𝑥 -coordinates. In other words, it is a formula that 
minimizes the curvature of the slag removal path. 
This equation is necessary because the curvature of 
the slag removal path is large when a human operator 
removes slag. That is, the formula is to make an 
output value 𝑥௜  that minimizes the difference 
between 𝑥௜  and 𝑥௜ିଵ  and the difference between 𝑥௜ and 𝑥௜ାଵ. 

4.3 Path Estimation 

The proposed slag removal path estimation model 
yields 24 values for the x-coordinate. These output 
values correspond to the 24-equally spaced y-
coordinate values, as described in Section 3.2. As 
shown in Figure 7, the number of control points are 
sometimes 24 or less depending on the distribution of 
slag. To decide the removal path along only in the 
image areas covered by slag, output points in the de-
slag area should be removed. In this paper, such 
inefficient slag removal path coordinates are 
excluded as shown in Figure 9. The exclusion steps 
of inefficient removal path coordinates are as follows:  
1) In the grayscale channel of the slag distribution 

image, we search the intensity values of control 
points in the order from the top (𝑘 = 0) to bottom 
( 𝑘 = 23 ). 

2) If the intensity of a control point is less than 𝛾, this 
area is considered to be the area where slags exist. 𝛾 is the intensity threshold value for the slag area. 
We define ℎ as the lowest index number among 
the control points where the slag exists. 

3) We extract the ℎ th to 𝑘 th as the final slag removal 
path.  

Figure 9: Exclusion of unnecessary control points. 

 
 

Removal inefficient control-points 

Slag removal path 
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5 EXPRIMENTAL RESULTS 

We have done experiments using many ladle images 
to verify the performance of the proposed slag 
removal path estimation method. When performing 
these experiments, we used Windows-10 (64 bit) and 
an NVIDIA Titan XP graphics card. Also, our 
implementation uses the Keras-GPU library. To train 
the proposed network model for slag removal path 
estimation, we use a large number of training data as 
shown in Table 1. We assign a high weight to the 
training data count as there is not enough dataset. We 
use the Adadelta optimizer method (Zeiler, 2012) to 
train the proposed network model. We set the batch 
size to 100 and the learning rate to 0.8 in the learning 
options. 

Table 1: Number of Training, Validation and Test set. 

Training set Validation set Test set
1,110 139 139

Figure 10 is a comparison between the estimated 
removal paths from the proposed method with those 
of experienced operators, which we define as the GT 
(Ground Truth). 

The experimental results are analysed by both 
qualitative and quantitative ways. First, qualitative 
analysis is as follows. In Figure 10, (a), (b), and (c) 
estimated slag removal paths look similar to GT. 
However, the result in Figure 10(d) differs from the 
GT, it estimates the best efficient path. Figure 10(e) 
shows bad performance compared with GT. 

As quantitative analyses, we evaluate the amount 
of slag removal in the image. We compare the 
estimated removal path with the amount of slag 
removed from the GT. Slag removal is measured by 
the amount of slag inside the 3x3 kernel at the all  the 
control points. The measurement method counts the 
intensity value of less than 𝛾 in the grayscale channel 
of the slag distribution image. We measure the slag 
removal of 89 images and compare the proposed 
method using Equation (7). The average % of slag 
removal of the proposed method is about 77.33% 
compared with GT. 𝑆௥௔௧௜௢ = ்௛௘ ௔௠௢௨௡௧ ௢௙ ௉௥௢௣௢௦௘ௗ ௠௢௧௛௢ௗ்௛௘ ௔௠௢௨௡௧ ௢௙ ீ் × 100   (7)

The processing time of the proposed method is 
shown in Table 2. The conversion time from the input 
image to the generation of the proposed slag 
distribution image takes 28ms. Slag removal path  

(a)                                 (b)                                   (c)                                   (d)                                   (e) 

Figure 10: Slag removal path estimation results of various ladle images: Green dots are the result of an experienced 
professional (Ground Truth), RED dots are the estimated result of the proposed method. 
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estimation takes 9ms to process. Therefore, the total 
average processing time is 37ms. 

Table 2: Processing time. 

Convert to Slag 
distribution image 

Slag removal path 
estimation

28ms (35.71 fps) 9ms ( 111.11 fps)

6 CONCLUSIONS 

In this paper, we propose an efficient slag removal 
path estimation method based on a deep learning 
network. We introduce a slag distribution image 
structure, which includes 3-channel slag distribution 
information. This image is used as the input of the 
network, which was trained by slag removal path 
information by experienced human operators. We 
obtain optimal slag removal path information through 
the outputs of the network, and apply post-processing 
techniques to remove invalid control points from the 
output of the trained model. In experiments, we 
visualize that the estimated slag removal path has an 
average of 77.33% performance enhancement 
compared to the manually recorded path. The total 
average processing time is about 37ms, ensuring its 
real-time capabilities. 
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