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Abstract: A denoizing and compression method for motion field data is proposed to improve the robustness and 
efficiency of optical deformation analysis. The proposed method estimates stress change over time imposed 
on a captured surface based on displacements and strains derived from motion fields obtained by optical flow. 
The method then finds the best least squares approximation of the motion components due to the stress time 
series from the motion time series at each coordinate. This process decomposes motion fields into stress and 
response vectors while removing disturbances. Experimental results confirm that the proposed method 
significantly reduces noise in visualizing crack opening displacements on a bridge beam under traffic loads, 
as well as the size of the motion field data. 

1 INTRODUCTION 

In recent decades, ensuring safety of aging civil 
structures in many developed countries has become 
an important global issue. However, performing 
frequent contact inspections of such structures is 
difficult; therefore, various technologies have been 
developed to support remote and automatic 
inspection and assessment. There are many types of 
structural properties that can be evaluated remotely, 
such as surface crack densities, temperatures, and 
dynamic behaviors (e.g., bridge deflections). Fatigue 
crack density is one of the most popular statistics used 
to assess concrete structures. Generally, fatigue 
cracks form and propagate owing to repeated cyclic 
loading on structures. Once the fatigue cracks reach 
steel wires inside the reinforced concrete, moisture 
penetration induces steel wire corrosion, which 
decreases structural strength significantly. Therefore, 
the early detection and limited repair of such cracks 
are important for safety and economic reasons. 

Traditionally, many automatic crack detection 
methods involving high-resolution digital imaging 
have been developed for this purpose. However, 
many of these methods attempt to detect cracks from 
a single image; thus, they cannot instantly determine 
whether a crack is propagating, and they cannot 
suggest information about a crack’s depth. 

                                                                                                 
* https://www.nec.com/ 

Therefore, approaches based on video analysis 
have emerged recently. Video analysis-based 
methods measure and visualize the dynamic behavior 
of cracks. In the material and structural mechanics 
field propagating cracks demonstrate an opening and 
closing motion under dynamic loading on structures, 
and deeper cracks show larger motions. These video-
based methods attempt to measure such minute crack 
motions using video analysis techniques to produce 
information about crack progression risks. 
Nevertheless, many of those are only used in indoor 
experiments and suffer robustness difficulties in real 
outdoor environments. In addition, video data of the 
entire structure are too large to handle at reasonable 
cost. 

Therefore, in this paper, we propose an efficient 
denoizing and compression method for the motion 
field of stress-imposed structure surfaces so that 
motion-based crack severity assessment methods can 
be used to evaluate real outdoor structures. 

2 RELATED WORK 

2.1 Still Image-based Approaches 

Many conventional crack assessment methods that 
attempt to find cracks from a single image based on 
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the characteristic texture appearance along cracks 
have been described in literature. A survey on the 
recent image-based crack assessment methods for 
concrete- and asphalt-based civil infrastructure (Koch 
et al., 2015) has introduced various methods for this 
approach, e.g., wavelet-based (P. Kohut, 2012) and 
SVM classifier-based (Liu et al., 2002) methods. 

This approach generally assumes that all cracks 
are visible in a single image and attempts to assess 
crack severity using static information, e.g., crack 
length, width, and density. However, depending on 
illumination or imposed stress conditions, cracks are 
often invisible in the early stage of propagation. In 
addition, crack propagating risks often appear in 
dynamic behaviors. For example, crack opening 
motions imply stress transmission to the crack, which 
relates to future propagating risk. The expansion of 
opening motion implies deeper crack propagation, 
which causes damage risks to steel wires. Therefore, 
still image-based methods can miss risk information 
about crack indication and propagation. 

2.2 Motion-based Approaches 

Video-based methods have emerged to compensate 
the shortcomings of the still image-based approach. 
The basic idea is to use the motion field around cracks 
as additional information for assessment. Digital 
image correlation (DIC) and optical flow are often 
used to obtain the motion field. Most structure 
surfaces, e.g., concrete, have natural textures; thus, a 
pixel-wise motion field can be acquired easily using 
such image tracking methods. 

For example, a defect classification method based 
on surface motion patterns has been proposed (Imai, 
2016). First, this method estimates out-of-plane 
global motions from the motion field, and then it 
extracts in-plane stress field information from the 
motion field by subtracting an apparent motion vector 
component due to global motion. Experimental 
results obtained on stress-imposed soft materials 
demonstrate the possibilities of classifying internal 
defects (e.g., cracks, peeling, and cavities) from stress 
field patterns. 

Another experimental study applied this type of 
method to real outdoor bridges (Imai, 2017). To 
evaluate accuracy, crack opening displacements by 
DIC were compared using a clip-on gauge sensor. 
The results indicate they have similar variation ranges 
but different graph shapes in displacement time 
series. 

Pixel-wise motion vectors tend to be less accurate 
than pixel intensities; thus, many postprocessing 
methods have been developed. For example, a spatial-

temporal nonlinear filtering method combined with 
conditional random fields has been proposed 
(Chaudhury, 2017). The results of indoor experiments 
with concrete material demonstrate improved crack 
detection accuracy, particularly in the early stages 
where cracks are not yet visible without imposed 
stress. 

Motion-based methods have high potential to 
provide additional information about crack severity 
compared to still image-based methods. However, 
many such motion-based methods remain limited to 
laboratory investigations and are not yet feasible for 
real outdoor environments, primarily due to their 
insufficient accuracy. The difficulties in measuring 
real outdoor structure motions compared to indoor 
experiments are assumed to be smaller material 
deformation due to its solidity, smaller apparent 
displacements due to far shooting distance, and 
undesired apparent displacements caused by heat 
haze. 

In addition, the data size problem will arise in 
practical applications. For example, 4K (3840x2160) 
video at 60 fps with an 8-bit pixel value consumes 498 
MB/s of bandwidth and storage. In addition, video 
compression techniques, e.g., H.265/HEVC, cause 
compression noise, which reduces motion accuracy; 
thus, this trade-off should be considered carefully. 
Note that the size of motion field data will become 
even larger. If in-plane displacements are represented 
as two 32-bit values, the output data bandwidth 
increases to 3981 MB/s. Most video compression 
formats do not support such pixel formats, e.g., 32-bit 
floating point; thus, efficient compression will 
become even more difficult. Simply scaling down the 
spatial resolutions of the result vectors can be a 
solution; however, even with 16 × 16 downscaling, 
15.6 MB/s of data will be produced, which is still 
impractical for outdoor use. 

2.3 Thermographic Approach 

A thermoelastic stress analysis method has been 
proposed to detect and assess cracks remotely. Here, 
the basic idea is to capture minute temperature shifts 
induced by stress using an infrared thermography 
video camera. Such temperature shifts occur around 
crack tips; thus, this method is expected to be suitable 
for detecting micro cracks in the early initiation 
stages or those with future propagating risks. 

However, the temperature shift induced by stress 
is generally too small to be identified clearly in 
thermal images, particularly in outdoor 
environments. To reduce noises in thermal images, 
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the self-reference lock-in thermography technique 
has been developed (Sakagami, 2016). 

Figure 1 shows an outline of the self-reference 
lock-in thermography method. In this case, we show 
the noise reduction process for input signals ݏሺ݅, ݆,  ሻݐ
based on predetermined reference signals	ݎሺݐሻ, where 
݅ and ݆ are the spatial coordinates in the image, and ݐ 
is a frame number. 
a) Reference signal time series ݎሺݐሻ are selected out 

of ݏሺ݅, ݆, ሻݐ  at an arbitrary position that gives 
relatively large temperature change caused by 
stress, e.g., near crack tips. The method then 
extracts ݏሺ݅, ݆, ሻݐ  for each spatial coordinate 
ሺ݅, ݆ሻ. 

b) The method forms the relationship between ݎሺݐሻ 
and ݏሺ݅, ݆,  .ሻ at the coordinateݐ

c) The method uses the regression model 
,ሺ݅ݏ ݆, ሻݐ ൌ ܾሺ݅, ݆ሻ ∙ ሻݐሺݎ ൅ ݁ሺ݅, ݆ሻ  at each 
coordinate ሺ݅, ݆ሻ . Here, ݔ௧  represents ݎሺݐሻ  ௧ݕ ,
represents ݏሺ݅, ݆,  ሻ, and f represents the numberݐ
of data for convenience. Then, regression 
coefficient ܾሺ݅, ݆ሻ is expressed as follows. 

ܾሺ݅, ݆ሻ ൌ
݂ ௧ݕ௧ݔ∑ െ ௧ݔ∑ ௧ݕ∑
݂ ௧ݔ∑

ଶ െ ሺ∑ݔ௧ሻଶ
 (1)

d) Finally, the method derives the denoized signal 
time series ݏᇱሺ݅, ݆,  .ሻ at the coordinate as followsݐ

,ሺ݅′ݏ ݆, ሻݐ ൌ ܾሺ݅, ݆ሻ ∙ ሻ (2)ݐሺݎ

By applying the above process to each coordinate, 
components that correlate with ݎሺݐሻ  are extracted 
from ݏሺ݅, ݆, ሻݐ , and uncorrelated components are 
removed as noise. This method is suitable for real 
structures, e.g., bridges, because the process works 
without additional information for shaping signals. In 
contrast, traditional lock-in methods require a known 
reference signal pattern, e.g., periodical thermal 
emission. The experimental results in the literature 
demonstrate that self-reference lock-in thermography 
method can clearly visualize temperature shift at 
crack tips on real steel bridges under load. 

However, this method faces some difficulties 
relative to wide-scale deployment. For example, it 
requires costly equipment, such as cooled 
thermography cameras, and manual specification of 
the reference point. In many cases, we cannot know 
the crack tip position in advance; thus, manually 
selecting an appropriate position is unrealistic in 
practical applications. 

 

Figure 1: Self-reference lock-in thermography method. 

3 PROPOSED METHOD 

3.1 Noise Reduction 

Inspired by self-reference lock-in thermography, we 
have developed a new denoizing method for a motion 
field (Figure 2). First, the proposed method estimates 
the stress change imposed on the captured plane for 
each frame based on the global 3D motion and 2D 
deformation motion of the plane. Then, the proposed 
method applies a lock-in calculation to the 
deformation vector for each coordinate using the 
stress change time series as reference signals. 

To estimate the stress change from motion 
vectors, we propose two derivation methods. Unlike 
self-reference lock-in thermography, deformation 
vector time series at one representative coordinate 
will not correspond directly to the imposed stress. The 
simplest way to estimate stress on the surface is to 
reference a global motion component for the normal 
direction of the plane. In a bridge application, 
essentially, the motion of deflection is assumed to be 
proportional to the amount of external force imposed. 
However, this component does not always accurately 
match the surface stress due to various factors, e.g., 
structural mechanics and camera self-vibration. 

Therefore, we also propose to derive the imposed 
stress based on the surface strain. Figure 3 shows the 
derivation process. 
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Figure 2: Outline of the proposed method. 

 
Figure 3: Reference signal generation by strain. 

1. The process first extracts local deformation 
vectors for each coordinate, which are 
calculated as the differences of adjacent vectors. 

2. The process then applies singular value 
decomposition to the local deformation vectors 
and derives singular values (ߪଵ, :ଶߪ ଵߪ ൒  ଶ) andߪ
singular vector ࢜ଵ	ሺ|࢜ଵ| ൌ 1ሻ , which 
corresponds to ߪଵ . With the values ߪଵ,  ଶ, andߪ
ଵ࢜ , the local opening vectors ࢖࢕࢜ሺ݅, ݆, ሻݐ  are 
derived as follows. 

,ሺ݅࢖࢕࢜ ݆, ሻݐ ൌ
ଵߪ െ ଶߪ
ଵߪ

૚ (3)࢜

3. Finally, the process applies principal component 
analysis to the local opening vectors ࢖࢕࢜ሺ݅, ݆,  ሻݐ
in frame	ݐ to acquire reference signal ݎሺݐሻ as the 
square root of the eigenvalue of the first main 
component. When greater stress is imposed, the 
opening vectors will vary along one direction 
(e.g., the beam tensile direction); thus, the stress 
reflects the reference signal ݎሺݐሻ. 

3.2 Compression 

With the proposed method, all denoized motion 
vectors ݏᇱሺ݅, ݆, ሻݐ  can be reconstructed from ܾሺ݅, ݆ሻ 
and ݎሺݐሻ, as shown in Equation (2). This means that 
motion field ࡿ′  can be decomposed into the 
regression coefficients ࡮  and reference signal time 

series ࡾ, as shown in Equation (4), where ݊ is the 
number of pixels in each frame, and ݂ is the number 
of frames. 

′ࡿ ൌ  ࡾ࡮

′ࡿ ൌ ቎
ଵଵ′ݏ ⋯ ଵ௙′ݏ
⋮ ⋱ ⋮

௡ଵ′ݏ ⋯ ௡௙′ݏ
቏,	

࡮ ൌ ሾܾଵ ⋯ ܾ௡ሿࡾ ,ࢀ ൌ ሾݎଵ ⋯  ௙ሿݎ

(4)

This decomposition process drastically reduces 
the number of coefficients to be handled. Here, ࡮ is 
derived for the x- and y-axes, each coefficient is 
represented as a 32-bit floating-point value, and the 
data are coded using (64݊ ൅ 32݂) bits, which means 
that motion fields for a 4K resolution video sequence 
can be coded with 66 MB of data. With downscaling 
to 16 × 16, the data are compressed to 259 kB, which 
is sufficient for practical outdoor application. 

In addition, if further compression is required, 
image and audio compression formats that support 
floating-point values, e.g., JPEG-XR and MPEG4-
ALS, can be applied. 

4 EVALUATION 

4.1 Implementation 

We implemented the motion estimation process 
shown in Figure 4. First, users are requested to set up 
optical parameters, such as shooting distance, lens 
focal length, sensor resolution, pixel pitch on sensor, 
and frame rate. Then, the system captures the target 
surface and estimates the global 3D motion of the 
plane against a predetermined reference frame in the 
sequence. The estimated global motion is converted 
to a physical scale based on the optical parameters. 
The system also estimates the pixel-wise motion from 
the captured video. By subtracting the apparent vector 
components due to the global motion from the pixel-
wise motion, the system finally acquires 2D in-plane 
displacements, which represent surface deformation. 
Incidentally, minute self-motions of the camera are 
removed in the final process. 

We implemented a region-based matching 
algorithm (Shimizu, 2004) for global 3D motion 
estimation and dense optical flow (Brox, 2004) for 
pixel-wise motion estimation with exhaustive 
optimization for both Intel and nVidia architectures. 
Typical processing times for a 4112x3008 pixel frame 
are shown in Table 1. 

 

In-plane 2D Motion

3D Motion of Whole Plane
Stress Change 
on Surface

Est.

Lock-in

t

Load

Monocular
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Img based Motion Retrieval
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Figure 4: Outline of motion estimation process. 

Table 1: Typical processing time per frame [ms]. 

 i7-8086k GTX1080ti 
Global 3D motion 20 6 
Pixel-wise motion 120 9 

4.2 Experimental Setup 

To evaluate crack opening displacement accuracy, we 
conducted a dynamic loading test with a heavy 
vehicle on a real bridge with reinforced concrete (RC) 
beams in Japan (Figure 5) using a contact type crack 
gauge sensor for reference. 

 

Figure 5: Overview of experimental field. 

Table 2 summarizes the experimental 
configuration. The crack gauge was installed 
beforehand at a known crack on the bottom side of the 
RC beam. The monocular camera was fixed to a 
tripod on the ground just below the crack to shoot the 
surface perpendicularly. Here, we used two lenses 
(i.e., 75 and 180 mm) to examine reproducibility. The 
gauge and camera could not be synchronized 
electrically; thus, we performed manual adjustments 
based on the maximum value of each measurement. 
We also measured the deflection of the beam using a 
laser range finder with 0.5-mm repeatability for 
reference. 

Table 2: Experimental configuration. 

Camera MC124MG-SY (+Tripod) 
Pixel Resolution 4112 x 3008 
Pixel Pitch on Sensor 3.45μm 
Lens Focal Length 75mm / 180mm 
Shooting Speed 25fps 
Shooting Distance 2.70m 
Loading Weight 20t (178kN) 

The crack opening displacements were measured 
by the motion difference between two reference 
points located across the crack. For performance 
comparison, four motion denoizing methods were 
tested. For each method, we visualized strain maps, 
which show the local strain on each coordinate 
derived as the larger singular value decomposed from 
the local deformation. 

4.3 Results 

Figure 6 shows a 75-mm shot image with the ground 
truth crack position and global 3D motion time series 
estimated by image. We performed motion estimation 
for the region in the rectangle (Figure 7) to exclude 
objects other than the concrete surface. The crack 
gauge sensor was set to measure the crack on the right 
side of the image, and the two reference points for the 
image-based crack opening measurement were set to 
A and B. 

The global motion graphs show deflection (depth 
in the image), bridge axial motion (horizontal in the 
image), and bridge-axis perpendicular motion 
(vertical in the image). The deflection graph shows 
the time series of the bridge beam bending while the 
vehicle passed, with a maximum deflection of 
approximately 800 μm. 

Figure 7 shows the time series of the crack 
opening displacement and strain maps for a 75-mm 
shot with each denoizing method. From top to 
bottom, measured time series compared with the 
crack gauge sensor, strain map at the time-stamp of 
0.0, 4.5, 5.0, 5.8, and 7.0 s in the video sequence. 
From left to right, no lock-in, lock-in with horizontal 
displacement at reference point A, lock-in with strain, 
and lock-in with deflection are shown. 

The results of strain and deflection-based lock-in 
demonstrate significant improvements in graph shape 
and crack visibilities compared to the other methods. 
The graph of deflection-based lock-in shows slightly 
better matches with the crack gauge sensor than the 
strain-based one. The raw result appears noisy, and 
locking-in with the motion near crack does not look 
effective to improve graph shape nor crack visibility.
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Figure 6: 75-mm shot image and global motion estimation results by region-based matching. 

 

Figure 7: Crack opening displacements and strains measured and visualized by each method for 75-mm shot. 

Figure 8 shows a 180-mm shot image with the 
ground truth crack position and global 3D motion 
time series estimated by image. Figure 9 shows the 
time series of the crack opening displacement and 
strain maps for the 180-mm shot with each denoizing 
method. Compared to the 75-mm shot, the 
implications of the results are similar, with slight 
improvement in most of the graph shapes and strain 
images, which is likely due to the substantially higher 
resolution of the input images. Nevertheless, the raw 
results still contain noise, which implies that simply 

upscaling image resolution cannot solve the outdoor 
noise problem. 

Table 3 shows quantitative evaluation results 
comparing the value of the crack gauge sensor and 
image-based measurement of each method in root 
mean square error (RMSE). As can be seen, 
deflection-based lock-in demonstrates the best 
performance among the tested algorithms. Strain-
based lock-in gives a value that is close to that 
obtained by the deflection-based method; thus, the 
strain-based method can be an alternative if deflection  
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Figure 8: 180-mm shot image and global motion estimation results by region-based matching. 

 

Figure 9: Crack opening displacements and strains measured and visualized by each method for 180-mm shot. 
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is unreliable as a stress index due to structural or 
shooting conditions. 

Finally, with lock-in applied, the data size of the 
motion fields at one shot area was reduced to 446 kB 
for the 4112x3008 pixel frame with 16 × 16 
downscaling, including various metadata, e.g., 
shooting conditions. 

Table 3: RMSE between crack gauge values and crack 
opening displacements measured by each method for 75-
mm and 180-mm shots. 

Method 75mm 180mm 
Raw output (without lock-in) 1.87 1.78 
Lock-in with motion near crack 2.88 2.64 
Lock-in with strain 1.01 0.82 
Lock-in with deflection 0.58 0.69 

5 CONCLUSIONS 

We have proposed a denoizing and compression 
method for the motion field of stress-imposed 
surfaces. Experimental results confirmed that the 
proposed method significantly reduces the noise and 
data size of a motion field acquired in outdoor 
environments. This method decomposes the motion 
field into a stress time series and response map under 
certain stress on the surface while removing 
disturbances. Related studies have demonstrated the 
possibility of classifying internal defects using stress 
field patterns; thus, this response map will help 
identify internal defects. Furthermore, this 
representation reduces dataset dimensionality; 
therefore, it will facilitate the application of learning-
based pattern recognition methods to defect 
classification. In future, we plan to further extend 
motion-based structure assessment based on the 
proposed method. 

ACKNOWLEDGMENTS 

We are grateful to Research Association for 
Infrastructure Monitoring System 1  for sharing the 
concrete crack dataset. This work was partly 
supported by Strategic Innovation Promotion 
Program (SIP), a Japanese project led by the Cabinet 
Office’s Council for Science, Technology and 
Innovation. 
 

                                                                                                 
1 http://www.raims.or.jp/en/ 

REFERENCES 

C. Koch, K. Georgieva, V. Kasireddy, B. Akinci, and P. 
Fieguth, 2015. A review on computer vision based 
defect detection and condition assessment of concrete 
and asphalt civil infrastructure. Advanced Engineering 
Informatics, 29(2):196–210. 

P. Kohut, K. Holak and T. Uhl, 2012. Monitoring of civil 
engineering structures supported by vision system, 
European Workshop on Structural health monitoring, 
1575-1582. 

Z. Liu, S. Azmin, T. Ohashi and T. Ejima, 2002. Tunnel 
crack detection and classification systems based on 
image processing, Society of Photo-Optical 
Instrumentation Engineers (SPIE) Conference Series, 
4664, 145–152. 

M. Imai, M. Ohta, K. Tsuyuki, H. Imai, S. Miura, K. Murata 
and J. Takada, 2017. Video image-based dynamic 
behavior analysis of concrete structures by using digital 
image correlation method, JofJSCE 2017, 5(1), 246-
251. 

S. Chaudhury, G. Nakano, J. Takada and A. Iketani, 2017. 
Spatial-temporal motion field analysis for pixelwise 
crack detection on concrete surfaces, WACV 2017. 
336-344. 

H. Imai, M. Ohta and K. Murata, 2016. Structural internal 
deterioration detection with motion vector field image 
analysis using monocular camera, EI 2016, 3DIPM-
410. 

T. Sakagami, Y. Izumi, D. Shiozawa, T. Fujimoto, Y. 
Mizokami and T. Hanai, 2016. Nondestructive 
Evaluation of Fatigue Cracks in Steel Bridges Based on 
Thermoelastic Stress Measurement, Procedia Structural 
Integrity Vol.2, pp. 2132-2139. 

M. Shimizu, T. Yano and M. Okutomi, 2004, Precise 
simultaneous estimation of image deformation 
parameters, CVPR 2004, 2, 954-961. 

T. Brox, A. Bruhn, N. Papenberg and J. Weickert, 2004. 
High-accuracy optical flow estimation based on a 
theory for warping, ECCV 2004. LNCS, 3021, 25-36, 
Springer, Heidelberg (2004). 

 
 
 
 
 
 
 
 
 
 
 
 

VISAPP 2020 - 15th International Conference on Computer Vision Theory and Applications

774


