
Host Fingerprinting for Web Servers Authentication

Ezio Lefons, Sebastiano Pizzutilo and Filippo Tangorra
Dipartmento di Informatica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy

Keywords: Authentication, Clock Skew, Database Security, Fingerprint.

Abstract: Fingerprinting is a biometric technique for computing a unique profile associated to a physical person for
authentication purpose. It has been successfully applied also to software entities by using hash functions for
integrity checking after downloading. In the paper, we propose a fingerprinting algorithm to identify a
machine during a client-server authentication process. In detail, this host identifier can be used for
connecting to a database server without using an account storing a plain-text password. After the
presentation of experimental results, we show some real scenarios where this solution can be applied.

1 INTRODUCTION

Authentication aims at checking the identity of an
individual, which may be a person or a software
agent, trying to access a system. The main
paradigms for authentication are: (a) something you
know, based on passwords or secret phrases; (b)
something you have, based on keys or badges, for
example; and (c) something you are, based on
biometrics techniques (Ben Natan, 2005; Bertino
and Sandhu, 2005; Gertz and Jajodia, 2007).

A biometrics technique consists in a
measurement of the physical and intrinsic
characteristics of an individual, such as his/her
fingerprints or iris and/or facial recognition, that
allow to create a unique profile of that individual
(Liu and Silverman, 2001; Jain et al., 2006; Tang,
2018; Sundararajan et al., 2019). A similar approach
is used for creating a unique profile of a software
entity on the basis of hash functions, such as MD5.
This digest is mainly used for verifying the integrity
of a software moving across a network (Deswarte et
al., 2004). However, the digest identifies a class of
software, and not a specific instance. Extending this
concept to hardware devices (Alaca and van
Oorschot, 2016), a host fingerprint involves a
strategy for identifying a single computer running a
set of applications (Veysset, 2002). In this case, we
are interested in the identification of a single host
that is part of a network.

A method for fingerprinting a hardware device is
based on clock skew, which is the variation of the
signals of the internal clock (Kohno et al., 2005). In

this paper, we propose an algorithm for computing
such fingerprint in order to identify a host in a
client-server communication. In this case, the host to
be identified is a computer running a web
application server that connects to database server.
The benefits of this approach is the possibility to
access a database server not by using a password
stored as a plain-text but by providing unique
identifier computed at run-time.

The method present in literature for computing
clock skews is discussed in Section 2, while in
Section 3 we explain our proposal, along with
experimental results. Section 4 shows some practical
applications of our proposal in web-based
environments. The final Section concludes the paper
with a summary and outlines future work.

2 RELATED WORK

In (Mills, 1992), Mills defines the offset of two
clocks as the time difference between them, while
defines the skew as the frequency difference
between them, computed as the first derivative of
offset with time. To this end, a synchronization of
the computer’s clock with a NTP (Network Time
Protocol) server is used for reducing, but not for
eliminating, this skew.

A method for exploiting this clock skew for
fingerprinting is explained in (Kohno et al., 2005).
The authors compute the clock skew of a remote
host by starting a network communication with it
and compare the timestamps contained in the TCP

Lefons, E., Pizzutilo, S. and Tangorra, F.
Host Fingerprinting for Web Servers Authentication.
DOI: 10.5220/0008942500450051
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 45-51
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

45

header with those of the observer. The correlation
between the TCP timestamps and the measured
machine’s time is based on a linear programming
technique, using the Graham’s convex hull
algorithm, for variable network delay renders simple
linear regression insufficient (Graham, 1972; Moon
et al., 1999). For the experiment, the authors tested
the algorithm using 69 machines in a campus
computer laboratory and ran the measurement for 38
days, computing clock skews on 12 and 24 hours
intervals. The experiment succeeded in
demonstrating the validity of this approach, for the
clock skew estimates for any given machine are
approximately constant over time and different
machines have detectably different clock skews.

The work of these authors has been commented
by Fink (Fink, 2007) who, conversely, treats the
problem as one of statistics and regression rather
than linear programming and optimization. Though
similar, the author proposes a solution for computing
the sample size required to produce a clock skew
that is within a fixed margin of the true population
clock skew. The sample size formula has been
further validated introducing network delays and
analysing correlations with hardware characteristics.

Also (Polčák and Franková, 2014) explores
remote computer identification based on the
estimation of clock skew computed from network
packets, but measurements were difficult to take, as
they needed to analyze network traffic, and required
an external reference time to compare with. Salo
(Salo, 2007) proposed a solution to this problem by
comparing two different clocks: the one used by the
CPU and the independent one used to maintain the
internal timer. The proposed methodology required a
long execution time to generate fingerprint. In
(Sanchez-Rola et al., 2018), authors look at code
execution time as a way to precisely identify
different devices, considering that the time that a
computer spends to execute an instruction depends
on how many clock cycles the instruction requires,
and on the duration of each cycle.

3 METHOD PROPOSAL

Our underlying idea is to observe timestamps taken
from the internal clock and computing the offset of a
timestamp in reference to the previous one. The
assumption is that, if the clock shows a constant
skew, then a regular pattern in clock signals is
present.

The main differences between this proposal and
that present in literature are:

 The skew is locally computed. That is, it is not
computed by a fingerprinter through a remote
observation of the fingerprint. Conversely, it is
computed by a server-side program, observing
the timestamps of the internal clock of the host
on which the program is running.

 The granularity of the timestamp is the
microsecond, in order to bring out the subtle
differences in clock signals. In our server-side
implementation, we adopted the microtime PHP
function (Sklar and Trachtenberg, 2003).

 The skew is quickly computed and does not
require a long-running observation of the
fingerprint. To do so, the algorithm uses a CPU-
intensive cycle, which takes few seconds to be
completed. The number of cycles is a parameter
that has been tuned in an empirical way. We
discuss about the number of CPU-cycles in the
next implementation sub-section.

 The skew is not computed by comparing the
timestamps with those derived from another
source (i.e., the observer or a NTP server) but it
is self-referential. Therefore, the fingerprint is
autonomously computed.

Let Ti be the timestamp observed at the i-th CPU-
cycle, for i = 0,…, n ∈	Գ.

We define

offseti = TiെTi-1, for i = 1,…, n, and

O = { offseti : i ∈ {1,…, n} where n ∈ Գ}.

Here, an offset is the incremental step in clock
signals, that is, the difference between sequential
timestamps. Of course, this step can present different
values, for the observation process is strongly
affected by other processes that may slow down the
system and cause abnormal delays (i.e., outliers) in
observations. However, if we consider an arbitrarily
high value for n, the incremental steps converge to a
stable offset.

Let

D = {xi | xi ∈	O and xi ≠ xj if i≠j, 1≤ i, j ≤ m, m ∈	Գ}

be the set of the distinct values of the observed
offsets. Of course, m ≤ n because the cardinality of
D is usually lower than that of O, for numerous
repeated offset can be observed.

So, let f(xi) be the frequency of xi or the number
of times that xi appears in O. Finally, given the host
H, the fingerprint of H is defined as

fpH = k, such that k ∈	D and f (k) = max(f (xi)).

For the sake of simplicity, the fingerprint of H is that
offset having the highest frequency.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

46

It is worth noting that this approach does not
preserve from typical attacks, such as spoofing for
example, that usually affect also traditional systems.
Our proposal is mainly devoted to avoid the attacks
aiming at taking possession of a password stored in a
plain-text. Indeed, using a fingerprint instead of a
text makes it possible to identify a host on the basis
of its own characteristic and use it as a run-time
computed information.

3.1 Implementation of the Method

As a proof of concept, the source code of the
algorithm is publicly available for testing, for it has
been released on a repository of open source projects
(see https://sourceforge.net/projects/webfingerprint).

The aim of the open source project is to launch a
large-scale experimentation for verifying a
fingerprint collision. In detail, we are interested in
discovering whether two hosts may present the same
fingerprint on a wide area network.

In the implementation solution, we introduced
two loops: an external loop made by n cycles and an
inner loop made by m rounds. This rationale is
simulating a human-based sampling of the
timestamps that takes a set of observations at regular
intervals of time. In our case, after the end of the
inner loop, we suspend the clock for s seconds. So,
the number of CPU-cycles is given by nm. After
several tries, we fixed n = 1000, m = 10, and s = 0.1
as a compromise between velocity and accuracy. We
stress that a low value for the total CPU-cycles
implies a large number of outliers. On the other
hand, a high value implies a high computation time
and a PHP timeout error. Indeed, a computation time
that takes more than 5 seconds is not suitable in
web-based environments.

3.2 Experiment

The aim of the experiment is twofold:

 verifying the collision probability, and

 verifying the fingerprint stability.

The collision probability is the probability that two
hosts of the same network present the same
fingerprint.

The fingerprint stability is the condition that a
given fingerprint remains quite stable over time.

For verifying the collision probability, the
experiment involved a small set of computers of a
local network. Each host presents different hardware
characteristics. In Figure 1, we report the result of
the measurement (relative to 10000 timestamp

observations that generate 9999 offsets) on the first
host.

The graph shows that only 5 distinct values of
offsets have been observed (outliers that do not
exceed the threshold frequency of 1% are not
considered). The most frequent value has almost the
73% frequency. Similarly, also the second host (see
Figure 2) shows the presence of a unique offset
having the highest frequency, almost equals to the
69%.

The offset with the highest frequency for the
third host is a unique value inside the network and
this value is almost equals to the 59% (see Figure 3).

At the end of this first part of the experimental
phase, we conclude that the computed fingerprints
are unique in the local network and, therefore, these
can be safely considered as host identifiers. This
measurement has been repeated several times for
each host, and the fingerprints have been confirmed,
though with slightly different frequencies for each
run. Furthermore, we note that the fingerprint is a
decimal number with precision 18 and scale 17.
However, only 14 of the 17 decimal digits are
significant. So, in absolutely theoretical sense, the
collision probability is 1E-14%. On the other hand,
in a wide environment, we expect that some values
are more frequent than others, for example in
systems having similar hardware characteristics. For
this reason, as a limit case, some values may never
be observed. Therefore, this line of research is
currently devoted to verify whether all the values are
equi-probable in the range [0.00000000000000000,
0.00099999999999999] over a wide area network.

LEGEND:
the x-axis indicates the distinct values of offsets
the y-axis reports the observed frequency of offsets.

Figure 1: Values frequency of offsets for host #1.

0
1000
2000
3000
4000
5000
6000
7000
8000

Host Fingerprinting for Web Servers Authentication

47

(LEGEND: see, Figure 1.)

Figure 2: Values frequency of offsets for host #2.

(LEGEND: see, Figure 1.)

Figure 3: Values frequency of offsets for host #3.

Figure 4: Correlation between number of offsets (x-axis)
and CPU-cycles (y-axis).

For further validating the experimentation of the
fingerprint stability, we modified the computation of
the offsets in order to obtain the distance of each
timestamp Ti in reference to the initial value T0. The
graph in Figure 4 shows a linear increase of the
offsets as correlated to the CPU-cycles for all the
hosts. In detail, only the second host showed some
biases due to punctual increases of the growth pace.
Therefore, we conclude that each offset is
incremented each time by approximately the same
quantity and, in case of abnormal increments of the
offset, surely related to peaks of CPU usage by other
processes, this bias is localized and the trend of the
function remains constant.

4 APPLICATION

In this Section, we present two working scenarios
for the application of a fingerprint-based
authentication. The first scenario refers to a typical
three-layer web architecture. The second requires the
introduction of an Authentication Server acting as a
middleware during the login phase.

4.1 Three-layer Architecture

The working scenario does not require any change in
a traditional web architecture. We assume that each
software agent runs on different hosts (see Figure 5).

The first level is represented by Web Browsers,
acting as clients and starting connections towards a
Web Server. Here, a Web Application accepts HTTP
requests and sends back dynamically-generated web
pages. The content of these web pages is created by
interacting with a Database Server in order to
execute queries and retrieve data. To do so, the Web
Application is configured with a database user
account, used to connect to the Database Server.
This account, usually composed of a username and a
password, is stored as a plain-text (Di Tria et al.,
2016).

It follows an example of database account used
by PHP applications to connect to MySQL
databases.

<?php

$db["host"]="111.111.111.111";
$db["port"]="3306";
$db["name"]="DBname";
$db["username"]="root";
$db["password"]="qwerty";

?>

0
1000
2000
3000
4000
5000
6000
7000
8000

0
1000
2000
3000
4000
5000
6000
7000

0

1

2

3

4

5

6

7

8

9

1

1
1
1
2

2
2
2
3

3
3
3
4

4
4
4
5

5
5
5
6

6
6
6
7

7
7
7
8

8
8
8
9

Host1

Host2

Host3

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

48

Figure 5: A three-layer web architecture.

This represents a severe security threat, because
the database user account is exposed not only to
those having a physical access to the host but also to
those who success in a brute force attack to the FTP
Server, if any.

It is worth noting that, in a simple architecture,
both the server processes can be deployed at the
same host (i.e., in this case, we can state that
$db[”host”]=”localhost”).

This does not affect our authentication strategy.
Accordingly, the use of a firewall to prevent the
exposition of the Database Server does not avoid an
authentication strategy.

The application of our proposal in this context
involves the use of the fingerprint, instead of the
traditional database account, for identifying the host
that is trying to connect to the Database Server. If
the connection originates from the Web Server
running on the legitimate host, then the connection is
established, otherwise it is rejected. If we wish to
use this approach on a traditional MySQL database,
we can use the fingerprint as a password. The main
benefit is that this fingerprint is not stored in the file
system, but it can be computed on the fly. So, we
use the following line of code

$db[”password”]= fingerprint();

where fingerprint() is the function that
computes the Web Server fingerprint.

For the sake of simplicity, the Web Application
computes the fingerprint of the host on which is
running and uses it as a password. This requires that
legitimate hosts have been previously identified and

reviewed, such that a database account for each
legitimate host exists in the Database Server.

4.2 Four-layer Architecture

In this working scenario, we introduce the
Authentication Server devoted to checking the
fingerprint in the authentication process (see Fig. 6).

As in the previous case, the Web Application
computes the fingerprint of the host on which it is
running, but now contacts the Authentication Server,
which checks the given fingerprint against those
stored in its own database (i.e., the Fingerprint
Database, FDB). If a match is found, then the host is
identified and the Authentication Server contacts the
Database Server for creating a temporary database
account that is returned to the Web Application.

For increasing the account security, both the
username and the password can be randomly-
generated. This is very similar to the concept of
session token.

At this point, the Web Application can safely use
this on-demand database account for the connection
to the Database Server. When closing connection,
this database account can be removed.

The complete sequence of actions of the different
systems is shown in Fig 7.
The Authentication Server introduces a further
security level, because, thanks to this responsibility
separation and anonymization, the Database Server
is unaware of the client identity. So, in case of
identity disclosure, due to a brute-force attack to the
Fingerprint Database for example, this information
leakage cannot be used for connecting to the
Database Server with the identity of another person,
as it happens in case of stolen or cracked passwords.

Figure 6: A four-layer web architecture.

Host Fingerprinting for Web Servers Authentication

49

Figure 7: The sequence diagram of the authentication
process.

5 CONCLUSIONS AND FUTURE
WORK

In the paper, we discussed of a strategy for
computing the fingerprint of a host, i.e., a physical
device connected to the network.

The proposal is inspired by the method present in
literature that is based on clock skew. Analysing the
variations of clock signals, it is possible to obtain a
unique profile of a host. The works present in
literature demonstrated that clock skews are constant
for a given host. Our assumption is that this implies
a regular patterns in clock signals. So, a clock skew
can be quickly mined by analysing a single sequence
of timestamps and without any comparison against
external sources. This method increases the
computation of the fingerprint, by avoiding remote
long-time observations.

For concluding, we proposed a novel algorithm
for computing a hardware device’s fingerprint, in
order to use it for authentication purpose in a client-
server communication. The fingerprint is computed
at run-time in a short interval of time by discovering
regular patterns in the difference between
timestamps.

The actual Database Servers are based on the
something you know paradigm. For this reason, any
user or application that needs to interact with it has
to be equipped with an account –made by both a
username and a password− that, in case of
applications, must be stored in a configuration file as
a plain text. In order to strengthen the authentication
paradigm and adopt the biometrics techniques, a
Database Server has to completely revise its
authentication mechanism. A ready-to-use solution
is exploiting such fingerprints as passwords, which

may be computed on the fly.
However, the current real weakness of the

strategy proposed in this paper is that the client (i.e.,
the Web Server) computes its own fingerprint and
sends it to the Database Server. Therefore, this
strategy is exposed to fake fingerprinting and man-
in-the-middle attacks. To improve the connection
security, a solution of strong authentication could
consist in coupling the fingerprint with Mutual TLS.

Another improved solution consists in a
measurement of the Web Server’s fingerprint by the
Database Server.

So, future work will explore the possibility of a
design of a Database Server that is not passive in the
authentication process.

Similarly, this strategy can be extended also to
Web Browsers in order to identify the final users
that interact with a Web Application. This can be
done using a client-side computation of the
fingerprint on the basis of scripting languages as
JavaScript.

ACKNOWLEDGEMENT

A special thanks to Francesco Di Tria, for his
valuable technical support in the experiment
described in this paper.

REFERENCES

Alaca, F. and van Oorschot, P.C., 2016. Device
fingerprinting for augmenting web authentication:
classification and analysis of methods. In ACSAC, 32nd
ACM Annual Conference on Computer Security
Applications.

Ben Natan, R., 2005. Implementing Database Security and
Auditing, Elsevier Digital Press.

Bertino, E. and Sandhu, R., 2005. Database security -
Concepts, Approaches, and Challenges. IEEE
Transactions on Dependable and Secure Computing,
2(1).

Deswarte, Y., Quisquater, J.J., and Saïdane, A., 2004.
Remote integrity checking. In Integrity and internal
control in information systems VI. Springer US.

Di Tria, F., Lefons, E., and Tangorra, F., 2016. Improving
Database Security in Web-based Environments. In 2nd
International Conference on Information Systems
Security and Privacy.

Fink, R., 2007. A statistical approach to remote physical
device fingerprinting. Military Communications
Conference. IEEE.

Gertz, M., and Jajodia, S., 2007. Handbook of Database
Security: Applications and Trends. 1st edition 2007,
Springer.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

50

Graham, R.L., 1972. An efficient algorithm for
determining the convex hull of a finite planar set.
Information Processing Letters, 1(4).

Jain, A., Bolle, R., and Pankanti, S., (Eds.), 2006.
Biometrics: personal identification in networked
society, Vol. 479. Springer Science & Business Media.

Kohno, T., Broido, A., and Claffy, K.C., 2005. Remote
physical device fingerprinting. IEEE Transactions on
Dependable and Secure Computing, 2(2).

Liu, S., Silverman, M., 2001. A practical guide to
biometric security technology. IT Professional, 3(1).

Mills, D.L., 1992. Network Time Protocol (Version 3)
Specification. Implementation and Analysis, Network
Working Group, Request for Comments: 1305.

Moon, S.B., Skelly, P., and Towsley, D., 1999. Estimation
and removal of clock skew from network delay
measurements. In INFOCOM’99. Eighteenth Annual
Joint Conference of the IEEE Computer and
Communications Societies, Vol. 1. IEEE.

Polčák, L., and Franková, B., 2014. On reliability of
clock-skew-based remote computer identification. In
SECRYPT, 1st International Conference on Security
and Cryptography, IEEE.

Salo. T.J., 2007. Multi-Factor Fingerprints for Personal
Computer Hardware. In MILCOM, the Military
Communications Conference, IEEE.

Sanchez-Rola, I., Santos, I., and Balzarotti. D., 2018.
Clock Around the Clock: Time-Based Device
Fingerprinting. In CCS '18, ACM SIGSAC Conference
on Computer and Communications Security. ACM.

Sklar, D., and Trachtenberg, A., 2003. PHP cookbook.
O’Reilly Media, Inc.

Sundararajan, A., Sarwat, A.I., Pons, A., 2019. A Survey
on Modality Characteristics, Performance Evaluation
Metrics, and Security for Traditional and Wearable
Biometric Systems. ACM Comput. Surv. 52(2).

Tang, J., Xu, P., Nie, W., Zhang, Y., Liu, R., 2018. A
review of recent advances in identity identification
technology based on biological features. In 6th CCF
Academic Conference on Big Data, CCF Big Data.

Veysset, F., Courtay, O., and Heen, O., 2002. New tool
and technique for remote operating system
fingerprinting. Intranode Software Technologies, Vol
4.

Host Fingerprinting for Web Servers Authentication

51

