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Abstract: In recent years, several research studies have been conducted that use metaheuristics to calculate 
approximations of solutions for solving NP-Hard problems, within this class of problems there is the Job Shop 
Scheduling Problem (JSSP), which is discussed in this study. Improved solutions to problems of this type 
have been created for metaheuristics in the form of additional operators. For the Genetic Algorithm (GA) the 
transgenic operator has recently been created, whose operation is based on the idea of "genetically modified 
organisms", with the proposal to direct some population of individuals to a more favorable solution to the 
problem without removing the diversity of the population with a competitive cost of time. In this study, our 
main contribution is an adaptation of the GA with transgenic operator to the JSSP. The results obtained by 
the proposed method were compared with three papers in the literature that work on the same benchmark: one 
using GA, one using Adaptive GA and another using Ant Colony Optimization. The results confirm that the 
GA used with the transgenic operator obtains better results in a competitive processing time in comparison to 
the other techniques, due to its better targeting in the search space.

1 INTRODUCTION 

The job shop scheduling problem (JSSP) is a 
combinatorial optimization problem defined in the 
literature as in the NP-Hard class (Lu et al., 2018a). 
Therefore, it is recommended the use of heuristic, 
metaheuristic and stochastic algorithms to optimize 
NP Hard class problems (Hasan et al., 2010). 

The JSSP is part of a class of problems among the 
job-based scheduling problems. This class represents 
a research area of great importance in current studies, 
such as flexible job scheduling problems (FJSPs), 
parallel machine scheduling problems (PMSPs), test 
task scheduling problems (TTSPs) and others (Lu et 
al., 2018a). Specifically, in this paper, we approach 
the class of combinatorial optimization problems 
known as JSSP. In the following paragraphs, some 
recent works are presented from a vast literature on 
the use of metaheuristics in job-based problems. 

Nguyen et al. (2018) proposed a study of the 
dynamic flexible job shop scheduling problem with a 
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new genetic programming algorithm (GP), entitled 
adaptive charting GP (ACGP), the proposed 
algorithm. The ACGP can balance its exploration, 
getting exploitation better than the existing surrogate-
assisted algorithm. The proposal performed better 
than standard genetic programming algorithm. 

Romero et al. (2018) proposed a study of the 
flexible job shop scheduling problem (FJSSP) with 
Lot Streaming with the Tabu Search (TS) algorithm, 
the study was compared with a mathematical 
programming solver, GUROBI. The algorithm 
obtained better results surpassing the upper limits 
found of GUROBI.  

Öztop et al. (2018) proposed a study of the hybrid 
flow shop scheduling problem (HFSP) using the 
Iterated greedy algorithms, IG and IGALL. The 
objective variable was to minimize total flow time 
and has been tested in HFSP instances from the 
literature. The authors emphasize that one of the main 
contributions of the study was that the results of flow 
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time criterion have been reported for the HFSP 
benchmark suite for the first time.  

Dao et al. (2018) proposed a study of the JSSP 
with an algorithm based on parallel versions of the bat 
algorithm (BA), using as objective variable 
makespan. The algorithm presented better 
convergence and competitive results than BA 
traditional and particle swarm optimization. 

Morandin, et al. (2008a) proposed a study to solve 
the Production Scheduling of Manufacturing 
Systems, the study has been tested in a benchmark of 
the type JSSP with a traditional genetic algorithm 
(GA) as a search method, using as objective variable 
the makespan measure. The GA achieved competitive 
results in a shorter processing time.  

Morandin et al. (2008b) added an improvement in 
the GA proposed in Morandin et al. (2008a), adaptive 
rules were included to the algorithm, entitled adaptive 
genetic algorithm (AGA). The crossover and 
mutation rate are dynamically adjusted according to 
the individual's fitness value. The study has been 
tested in a benchmark of the type JSSP. The AGA 
presented solutions with response time acceptable. 

Kato et al. (2010) proposed a study to solve the 
Production Scheduling of Manufacturing Systems. 
The study has been tested in a benchmark proposed 
in Morandin et al. (2008b). The authors use a Max-
Min Ant System algorithm as a search method. The 
proposal was compared with Morandin et al. (2008b) 
and obtained quality solutions in a shorter time. 

In the literature, it is possible to find several recent 
studies belonging to the job-based scheduling 
problems class that approach the task with AG 
(Asadzadeh, 2015; Kundakci and Kulak, 2016; Kurdi, 
2016; Lu et al., 2018b; Peng et al., 2018; 
Hosseinabadi et al., 2019). 

The GA is a metaheuristic widely used in current 
studies due to several advantages that this algorithm 
has, but it also has some disadvantages such as not 
solve complex problems easily (Guo et al., 2010). The 
GA has as one of its main disadvantages the high 
consumption of resources, that is, domain of large 
solutions will use longer search time (Kazemi et al., 
2012; Nie et al., 2013). 

Amaral and Hruschka (2014) have developed an 
operator for evolutionary algorithms entitled 
Transgenic Operator. This operator was inspired by 
genetic engineering, in which there is the possibility 
of manipulating the genetic material of individuals by 
adding features that are believed to be important. This 
type of approach can be understood as a strategy of 
elitism focused on specific genes. The Transgenic 
Operator must direct a portion of individuals of the 

population for a better solution, without loss of 
diversity in population and in a smaller cost of time.  

The objective of this work is the application of an 
alternative version of Transgenic Operator (Amaral 
and Hruschka, 2014) in the job shop scheduling 
problem. In this paper, we approached the reasoning 
proposal used by Morandin et al. (2008a), Morandin 
et al. (2008b), Kato et al. (2010), which uses the same 
benchmark for the job shop problem and are solved, 
respectively, by the metaheuristics GA, AGA and Ant 
Colony Optimization (ACO). In this way, the 
comparison of the results of our method with the 
methods of such studies becomes more natural, since 
we will use the same benchmark. 

The remainder of this paper is organized as 
follows. Section 2 contains the JSSP specification and 
the fundamentals of GA and description of the 
Transgenic Operator. The components of the 
proposed algorithm are presented in Section 3. The 
computational experiments and analyses of the 
obtained results are presented in Section 4. Finally, 
Section 5 presents the conclusions of the paper. 

2 PROBLEM DESCRIPTION 

2.1 Job Shop Scheduling Problem 

In this context, in a manufacturing system, there is a 
set of ݊  jobs { ଵܲ, ଶܲ, . . . , ௡ܲ}  that are produced by 
manufacturing, and such products make shared use of 
a set of ݉ machines {ܯଵ,ܯଶ, . . . ,  ௠}. A job containsܯ
a set of operations and a predetermined sequence of 
machines. Each operation makes use of one of the 
machines for a predetermined time interval to 
complete a job. A schedule can be defined as the 
assignment of operations, established by a sequence 
of elements in the set ࣩ = { ଵܱ, ܱଶ, … , ௡ܱ⋅௠}, which 
determine the priority order in which a job should be 
processed on a machine. 

For each possible operations sequence ܱ , we 
associate the value ௜ܶ(ܱ), which is the time it takes 
the job ௜ܲ  to be processed by all machines in the 
respective script, which consists of the production 
itinerary detailed in this same section, and thus be 
considered finished according to the defined 
sequence of operations at ܱ. 

Thus, the makespan value of a sequence ܱ can be 
defined as being the time taken for finish the 
production of all the jobs, as described in the 
Equation (1): 

ܵܭܯ  = max௜ ௜ܶ(ܱ). (1)
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Dao et al. (2018) do a similar and rigorous 
modeling of the makespan measurement in their 
work. Moreover, in this work, for each job ௜ܲ, a set ℛ௜ of ݊௜ possible scripts is considered, as defined in 
Equation (2), which increases the complexity of the 
task of minimizing the makespan value in the space 
of operations. A script of a job determines by which 
machines it should be processed and the order in 
which it must occur for it to be considered finished. 
Studies such as those from Morandin et al. (2008a), 
Morandin et al. (2008b) and Kato et al. (2010) are 
characterized by this specification. 

 ℛ௜ = ൛ܴ௜,ଵ, ܴ௜,ଶ, . . . , ܴ௜,௡೔ൟ		. (2)

2.2 Search with Genetic Algorithm 

Genetic Algorithms (GAs) were developed in the 
1970s by Holland (Holland, 1975) with the objective 
of optimizing complex and non-linear systems. This 
type of technique has a strong appeal to biological 
inspiration derived from the theory of evolution to 
perform its operation, so that its use does not require 
very elaborate mathematical theories.  

Many improvements have been implemented over 
the last few years (Antonio and Coello, 2017) to the 
GAs that Holland formulated in his initial work 
(Holland, 1975) and presented in the classic 1992 
book (Holland, 1992). However, all the improved 
GAs present in the specialized literature maintains as 
the main sequence of steps the one originally 
presented by Holland (1992) in Algorithm 1. 

Algorithm 1: A Genetic Algorithm Pseudocode. 

(1) it = 0;  
(2) Generate initial population: Ω଴ = ,ଵܥ} ,ଶܥ … ,  {௡ܥ
(3) Evaluate the fitness of the initial population 
(4) Repeat 
(5)       Select individuals for crossover 
(6)       Apply crossover operator 
(7)       Apply mutation operator 
(8)       Evaluate new individuals 
(9)       Generate a new population: Ωitାଵ 
(10)       it = it + 1; 
(11)  Until Termination criterion is satisfied 

 
The generation of a new population, as done in 

step (9) of Algorithm 1, generally takes into account 
some own insertion technique so that only the best 
individuals from the iteration are maintained and do 
not change the size of the population. 

2.3 Transgenic Operator 

In order to simulate the biological advances of genetic 
engineering, Amaral and Hruschka (2014) proposed 
the use of transgenic technique in GA. The concept of 
transgenics is to transfer, from one generation to 
another, genes that probably describe a good feature. 
For example, vitamin supplementation of maize is 
used in developing countries to avoid that the 
population, usually with food habits based mainly on 
cereals, suffers from lack of vitamins. This 
supplementation can be done with the use of 
transgenic planting (Naqvi et al., 2009). The addition 
of this concept to GA occurs in the form of an 
operator, as represented in Algorithm 2. 

Algorithm 2: A Transgenic Genetic Algorithm Pseudo-
Code. 
 

(1) it = 0;  
(2) Generate initial population:  Ω଴ = ,ଵܥ} ,ଶܥ … ,  {௡ܥ
(3) Evaluate the fitness of the initial 

population 
(4) Repeat 
(5)       Select individuals for crossover 
(6)       Apply crossover operator 
(7)       Apply mutation operator 
(8)       Evaluate new individuals 
(9)       Generate a new population: Ω

itାభమ 
(10)       Apply transgenic operator 
(11)       Evaluate modified individuals 
(12)       Generate modified population: Ωitାଵ 
(13)      it = it + 1;
(14)  Until Termination criterion is satisfied 

 
In Algorithm 2, two inserts of individuals are 

carried out: one in the step (9) and another in the step 
(12). However, only the population Ωitାଵ  is 
maintained in the process, since the population Ω

itାభమ 
is an intermediate population, from which the 
transgenic individuals are made in step (10). In this 
way, the population Ωitାଵ  is formed by the 
individuals of Ω

itାభమ together with the transgenic ones. 

The transgenic operator codification is described 
in detail in the next section. 
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3 THE PROPOSED GENETIC 
ALGORITHM MODEL FOR 
JSSP 

3.1 Chromosome Codification 

In this study, we will follow Morandin et al. (2008a) 
approach to treating a subproblem within the JSSP, 
which is to get the best sequence of products that must 
be obeyed as a priority list when starting product 
processing on each of the machines in their respective 
script. Thus, the metaheuristic developed here should 
not obtain an "optimal sequence of operations", but 
rather an "optimal sequence of ݊	jobs". 

Thus, the chromosome ( ܥ ) of the proposed 
method is formulated according to Equation (3): 

 C = ൫ൣ ௜ܲభ , ܴ௜భ,௝భ൧, ൣ ௜ܲమ, ܴ௜మ,௝మ൧, … , ൣ ௜ܲ೙, ܴ௜೙,௝೙൧൯, (3)

 
in which, ݅௞ ∈ {1,2, … , ݊} , ݅௞ିଵ ≠ ݅௞  and ܴ௜ೖ,௝ೖ ∈	ℛ௜ೖ, ∀݇ ∈ {1,2, … , ݊}. 

In this way, the problem chromosome is formed 
by the genes ௜݃ = ൣ ௜ܲ, ܴ௜,௝(௜)൧ and hence ܥ represents 
a product processing order in JSSP. 

Figure 1 shows an example of chromosome and 
some scripts for this modeling applied to a 3 × 3 
JSSP. 

 

Figure 1: Example of chromosome and scripts. 

Thus, in the example shown in Figure 1, the list of 
operations that the processing of jobs ଵܲ, ଶܲ and ଷܲ 
must obey, following scripts ܴଵ,ଵ , ܴଶ,ଵ  and ܴଷ,ଶ 
respectively and according to the priority sequence 
defined on chromosome ܥ, would be the next: 

1) ଵܲ processing starts at ܯଵ; 
2) ଶܲ processing starts at ܯଵ as soon as it is vacant; 
3) ଷܲ processing starts at ܯଶ; 
4) ଵܲ processing starts at ܯଶ as soon as it is vacant; 
5) ଶܲ processing at ܯଷ begins; 
6) ଷܲ processing starts at ܯଵ as soon as it is vacant; 
7) ଵܲ processing starts at ܯଷ as soon as it is vacant. 

 
It is noteworthy that, by construction, the 

feasibility of this modeling is maintained, as 
presented by Morandin et al. (2008a). 

3.2 Fitness Function 

The objective function of this work is the time taken 
to process the products of the JSSP, according to the 
configuration given in the input chromosome. Thus, 
the definition of this function is given in Equation (4): 
 fit(C) = MKS,	 (4)
 
in which, MKS  is the makespan value of 
configuration ܥ, defined in Equation (1). 

Thus, the goal of the GA developed here is to find 
the ܥ  configuration that has the lowest possible 
makespan value. 

3.3 Transgenic Operator Codification 

3.3.1 Transgenic Operator 

Let us suppose at this stage of the study that a set of 
genes that we know carry "good features" is given, 
since in this subsection we describe how the 
transgenic operator works given a set of better genes. 
In the next subsection we describe a most relevant 
gene selection technique that we use in this paper to 
define which genes should be transferred in the 
transgenic operator.   

We propose, in a preliminary way, that the genes 
set for use in the transgenic operator are the index 
genes ࣥ	 = 	 ൛ܭଵ, …,ଶܭ , ேTransܭ

ൟ, so that the elements 
of ࣥ  are Tܰrans index of genes ௜݃ = [ ௜ܲ, ܴ௜,௝] on the 
set {1,2, . . . , ݊}, where ݊ is the number of genes in a 
chromosome and Tܰrans is the number of genes to be 
transferred in the operator.  

In order to control the reduction of population 
diversity, we propose the use of Tܰrans 	≤ √݊	, since 
if genes are replicated in large quantities, transgenic 
individuals may present endogenous phenomena. In 
this work, we take Tܰrans = ceil൫√݊൯.  

In order for the concept of transgenesis to be 
maintained, we propose to transfer genes from a 
model individual, which is the individual with the 
best fitness, to the worst individuals. That is, in each 
generation ݐ , we take the best individual ܿ∗  and 
transfer its genes, whose indices belong to ࣥ, to the ݊Trans worst individuals of the same generation.  

Thus, the transgenic individual will have the index 
genes belonging to ࣥ  in the same coordinates 
(positions) in which they are arranged in the best 
individual. And the remaining genes will occupy the 
remaining coordinates respecting the order in which 
they were in the individual before suffering 
transgenics. An operation scheme of the transgenic 

0 
 
 
 

 

ܴ1,1 = 2,1ܴ (3ܯ,2ܯ,1ܯ) = 3,2ܴ (3ܯ,1ܯ) = ܥ (1ܯ,2ܯ) = 			 1ܲ , ܴ1,1				 2ܲ , ܴ2,1					 3ܲ , ܴ3,2
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operator is shown in Figure 2, given a set of indices ࣥ , a subject ܿ∗   considered as an individual with 
good features, and an individual ܿ that will receive 
transgenic genes, it is possible to construct a 
transgenic individual  ܿ̂.  

Thus, the transgenic operator is modelled 
according to the function trans௖∗(⋅)  presented in 
Equation (5). 

 
trans௖∗(ܥ) = trans௖∗൫ൣ ௜ܲభ, ܴ௜భ,௝భ൧, … , ൣ ௜ܲ೙, ܴ௜೙,௝೙൧൯

 =	trans௖∗൫݃௜భ, … , ݃௜೙൯  (5)

 = ቀ݃௜భ, … , ݃௄భ∗ , … , ݃௄మ∗ , … , ݃௄ಿTrans

∗ , … , ݃௜೙ቁ,
in which, ܿ∗ = (݃௟భ∗ , ݃௟మ∗ , … , ݃௟೙∗ ) is the best individual 
in the current generation.  

 

Figure 2: Transgenic operator application example. 

In this way, the transgenic operator is defined in 
detail in Algorithm 3 below. 

Algorithm 3: Transgenic operator. 

Input: 

݊Trans 
Number of individuals to 
get transgenics Ω௧ Current population ࣥ 
Index of genes to be 
transferred 

(1) ܿ∗ ≔ Individual with best fitness on Ω௧ 
(2) 

൛ݓଵ, ,ଶݓ … ௡Transݓ,
ൟ ≔  The ݊Trans  worst 

individuals in Ω௧ 
(3) For ݅	 = 	1 to ݊Trans do: 
ෝ௜ݓ         (4) ≔ trans௖∗(ݓ௜) 
(5) End 

Output: ൛ݓෝଵ, ,ෝଶݓ …  ൟ Transgenic	ෝ௡Transݓ,
individuals 

 
It is worth noting that the chromosomes generated 

by the transgenic operator have their feasibility 
guaranteed by Equation (5), that is, the operator is 
also feasible by construction, since the genes (jobs) 
chosen to be transferred by transgene (set ࣥ ) will 
already have their guaranteed position in the 
chromosomes generated, which is the position 
established by the best individual in the population, 
while the genes that do not belong to the set ࣥ will 

receive the position in which they present themselves 
in the worst individuals. 

In the next subsection, a method for determining 
the most significant genes is presented. In other 
words, we have established how to construct the set ࣥ  so that the indices of the genes selected to be 
transferred by the transgenic operator transfer good 
features to the affected individuals. 

3.3.2 Method to Find More Significant 
Genes  

A necessary step to perform the Genetic Algorithm 
with Transgenic Operator is to determine which genes 
are the most significant to the problem, ie, which 
genes will be transmitted from the best individual to 
other individuals in the population in order to direct 
the worst individuals to the best solutions. 

In this work we propose a method to determine the 
most significant genes, this method uses as a principle 
of weighted average and simulation, the latter being 
the concept of applying repeatedly the metaheuristic 
developed in the JSSP scenario we wish to solve 
before actually applying the algorithm to a given 
problem. 

Specifically, the elaborated method simulates the 
behavior of GA with Transgenic operator, in which 
each gene individually must be simulated as the most 
significant through the Transgenic operator and such 
simulations are performed over ீܰ 	generations. In 
each simulation, the difference between the fitness 
value of an individual prior to the use of the 
Transgenic operator and after the use of the 
Transgenic operator is saved over this generations, so 
that it is possible to evaluate some improvements in 
individuals by applying certain genes in the 
Transgenic stage. 

In each simulation performed, the improvement of 
the modified individuals is stored during the ீܰ 
generations of the Transgenics process. Improvement 
is measured by the difference between an individual's 
fitness value before using Transgenics and after using 
Transgenics. Thus, in a simulation that the gene ௜݃ =[ ௜ܲ, ܴ௜,௝] is the most significant, a vector ݒ௜ ∈ ℝேಸ×ଵ 
storing the average improvement between the 
individual fitness values before and after transgenic 
application is created. At the end of all generations of 
the fixed gene simulation, the difference matrix ܩ is 
defined, as shown in Equation (6) below. 

ܩ  = ൥ | | ଵݒ| … |௡ݒ | | ൩. (6)

 

 
 
 
 
 
 
 

 

ࣥ =		 {2,4} 
ܿ∗ = 			 4ܲ, ܴ4,1		 3ܲ , ܴ3,2		 2ܲ , ܴ2,2		 1ܲ , ܴ1,2  

ܿ̂ = 			 4ܲ , ܴ4,1		 3ܲ , ܴ3,1		 2ܲ , ܴ2,2		 1ܲ , ܴ1,3  

ܿ = 			 3ܲ , ܴ3,1		 2ܲ , ܴ2,5		 4ܲ, ܴ4,2		 1ܲ , ܴ1,3  
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After the simulation and generation step of the 
improvement matrix ܩ, a weighted average is used to 
calculate which genes are most significant. For each 
column ݒ௜	 the measures of mean ߤ , standard 
deviation ߪ  and largest difference ߣ  are calculated. 
These measurements are included in the calculation 
of the weighted average W, given by Equation (7), 
which is a vector score containing a coordinate for 
each gene in the chromosome. The higher the score 
of a gene in W, the more significant we consider it. 

 W( ௜݃) = (௜ݒ)ߪ + 2 ⋅ (௜ݒ)ߤ + 3 ⋅ 6(௜ݒ)ߣ . (7)

 
All measures used in the weighted average 

calculation were chosen for certain purposes. 
Standard deviation ߪ  was applied to verify the 
convergence speed of the possible improvements 
obtained. Mean ߤ  was applied to assess whether a 
given gene influences a high or low improvement 
over all generations. Largest difference ߣ was applied 
by determining which genes contribute to great 
instantaneous improvement, representing the 
influence of a given gene on a generation. The weight 
values used for each statistical property used in the 
Weighted Average Measurement presented were 
obtained through evaluations of a grid search. 

3.4 Basic Operators 

The genetic algorithm we developed is based on the 
genetic algorithm of Morandin et al. (2008a) used in 
the resolution of JSSPs of size 9 × 9 and the main 
contribution of this work is the adaptation of the 
transgenic operator for use in JSSP and the evaluation 
of this in larger problems. In this way, all the standard 
operators of our GA, such as crossover and mutation, 
are the same operators described by Morandin et al. 
(2008a). For the selection operator, we use the 
technique of roulette wheel and for insertion operator 
we use elitism. 

4 RESULTS AND DISCUSSION 

4.1 Experimental Settings and 
Benchmark Specification 

As this work was developed using a modeling similar 
to the one used by Morandin et al. (2008a), Morandin 
et al. (2008b) and Kato et al. (2010), so the 
evaluations are performed on a similar benchmark 
used by the authors of the referred works, which 

consists of specialized scenarios for the used 
modeling. In this way, the scenarios evaluated are of 
similar or more complex dimensions to the 
dimensions of the most commonly used state-of-the-
art base instance configurations, such as Lawrence 
(1984), which were not used in this paper because it 
has only one script per job and fixed size, thus 
presenting great distinction to the experiments 
performed in the works used for comparison. 
However, the scenarios evaluated in this experiment 
have dimensions equivalent to those in Lawrence's 
bases. 

The method described in this paper was evaluated 
in a specific job shop scheduling problem of size 9 × 
9, which consists of a problem of  ݊ = 9 jobs and ݉ = 9 machines, which was found and detailed by 
Kato et al. (2009). Two more complex JSSP scenarios 
were generated to test the scope of the method and its 
direction in the search space. A specific job shop 
scheduling problem of size 20	 × 	8 and a job shop 
scheduling problem of size 100	 × 	40, which were 
generated following the same rules as the 9 × 9 
scenario.  

Specifically, the times at which jobs take to be 
processed by machines were randomly generated 
following a uniform distribution within the time range [400,500] . For each product, 2  to 5  scripts were 
randomly generated, containing 5 to 7 machines per 
script, as detailed in Table 1. Each of these scenarios 
was generated before all evaluations were performed. 
Thus, the metaheuristics compared here acted on the 
same JSSP scenarios, so that the tests were as honest 
as possible. 

Table 1: Benchmark specification. 

 Scenario 1 Scenario 2	 ܗܑܚ܉ܖ܍܋܁ ૜
Jobs 9 20	 100
Machines 9 8	 40
Production 
time [400,500] [400,500] [400,500] 
Scripts per 
job 2 {2,3,4,5} {2,3,4,5} 
Machines 
per script 

{5,6,7} {5,6,7} {5,6,7} 
 

The number of evaluations was set to 35 for each 
technique in order to use the non-parametric 
Wilcoxon tests (Veldhuizen and Lamont, 2000) to 
determine if our method presents competitive results 
to the compared metaheuristics. In addition, the 
statistical properties presented by the tests can be 
viewed in box plots visualizations. 
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All the algorithms tested were coded in Matlab 
software. All tests were run on a notebook with i7 
processor and 16GB RAM. 

4.2 Results of the Proposed Algorithm 
and Comparisons with Other 
Works 

In order to compare the efficiency of the proposed 
method (GA-Trans), we implemented some 
metaheuristics already successfully used in JSSP: GA 
(Morandin al., 2008a); Adaptive GA (AGA) 
(Morandin et al., 2008b); and Ant Colony 
Optimization (ACO) (Kato et al., 2010). 

We try to follow as closely as possible the settings 
presented in each work for honest results. However, 
the configurations of our method are more similar to 
GA and AGA metaheuristics configurations, which 
makes sense, since these algorithms differ only in the 
use of specific operators. Thus, the configurations of 
the GA, AGA and GA-Trans techniques are presented 
in Table 2 and the configurations used by the ACO 
are set out in Table 3. 

Table 2: State-of-the-art configuration on GAs. 

GA AGA GA-Trans 
Number of 
chromosomes 30	 30	 30
Crossover 
Rate 0.8	 0.8	 0.8
Mutation Rate 0.05	 0.05	 0.05
Iterations 200	 200	 200݊Trans  - - 12
Stopping 
Criterion 

Iterations Iterations Iterations 

Table 3: State-of-the-art configuration on ACO. 

Number of Ants 50 2  ߚ 1  ߙ ௠ܶ௔௫  10 ௠ܶ௜௡  0.25 
Evaporation 0.02 
Iterations 75 
Stopping Criterion Iterations 

 
In addition, we apply the methodology described 

in section 3.3.2 to determine which genes should be 
used (ࣥ ) in the transgenic operator. The genes 
obtained are shown in Table 4. 
 
 

Table 4: More significant genes. 

Scenario Genes ૢ × ૢ [2,4,7] ૛૙ × ૡ [1,4,10, 13,18] ૚૙૙ × ૝૙ [5,21,33,49,53,68,72,80,93,100] 
4.2.1 Results Comparison 

Scenario ૢ × ૢ.	The first scenario evaluated is the 
used by Morandin et al. (2008a), Morandin et al. 
(2008b), Kato et al. (2009) and Kato et al. (2010). The 35 tests are show in Table 5. So, the maximum value 
obtained by each technique is colored red and the 
minimum value is colored blue. 

Table 5: Results of 35 Tests. 

ACO GA AGA GA-Trans 
1 4632 4698 5015	 4670	
2 4669 4936 4677	 4944	
3  4977 4752 4673	 4632	
4  4945 4956 4640	 4635	
5 4929 4694 4741	 4691	
6  4872 4996 4718	 4929	
7 4746 4917 4944	 4848	
8 4754 4981 4688	 4632	
9 4693 4954 4989	 4688	
10 4901 5051 4632	 4848	
11 4968 4848 4659	 4635	
12 4736 4991 4934	 5019	
13 4688 4705 4921	 4688	
14 4956 4718 4956	 4635	
15 4895 4988 4925	 4929	
16 4734 4725 4945	 4635	
17 4788 5042 4880	 4860	
18 4782 4945 4848	 4632	
19 4704 4934 4956	 4688	
20 4899 5068 4945	 4677	
21 4752 4891 4848	 5051	
22 4785 4669 4951	 4670	
23 4752 4951 4919	 4776	
24 4929 4958 5006	 4656	
25 4860 4848 4968	 4691	
26 4763 4710 4693	 4718	
27 4688 4925 4705	 4670	
28 4642 4898 4984	 4979	
29 4688 4848 4759	 4635	
30 4909 4945 4944	 4635	
31 4693 4848 4735	 4670	
32 4692 4679 4635	 4654	
33 4898 5168 4929	 4929	
34 4646 4705 4956	 4635	
35 4946 4901 4632	 4677	

 
Analyzing Table 5 and Table 6, it can be 

concluded that the proposed technique presented, on 
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average, makespan values that are smaller than the 
other techniques. In addition, GA-Trans presented the 
smallest makespan (4632) when considering the 35 
evaluations conducted. In addition, GA-Trans 
presents as the most often occurring value the value 4635, which is a makespan value that is less than the 
minimum value presented by the GA and a value that 
is very close to the minimum makespan presented by 
the other methods.  

Table 6: Statistical Measures. 

 ACO GA AGA GA-Trans 
Mean 4797.4	 4881.2	 4838.5	 4741.7
Standard 
Deviation 110.3	 130.1	 134.3	 131.3
Minimum 
Value 4632	 4669	 4632	 4632
Maximum 
Value 4977	 5168	 5015	 5051
Mode 4688	 4848	 4956	 4635
Average 
of time (s) 

6.62	 1.12	 1.66	 1.53
 
With respect to the average time of the GA-Trans, 

it can be affirmed that it is very competitive to GA-
like methods and usually takes only 23,11% of the 
time spent by the ACO, as can be observed in more 
detail in Figure 3.  

  

Figure 3: Time taken in 35 tests for each technique. 

Although GA-Trans does not present the smallest 
worst makespan, it can be observed in the box plot of 
Figure 4 that it is a discrepant value of the technique. 
In fact, we can see that GA-Trans is the method that 
usually presents the best results in comparison with 
the other techniques. 

 

Figure 4: Box plot of the methods’ results. 

Convergence graphs were constructed of the 
proposed algorithm and the three algorithms tested, to 
evaluate the evolution of the entire population of the 
algorithm when iterations of the method are 
advanced. Specifically, all methods were used to 
generate a solution, and all individuals involved in the 
process were evaluated. In this way, graphically, the ݕ -axis shows the average of all of the makespan 
values reached by the individuals (chromosomes or 
ants) of a population along the iterations of each 
technique, and the ݔ -axis shows its number of 
iterations (generation). The purpose of these graphs is 
to demonstrate how fast or slow the algorithm is in 
finding an optimal solution. As seen in the 
convergence graphs of the algorithm, the GA with the 
transgenic operator shown in Figure 5, which is being 
directed through the application of transgenics of the 
most significant genes, has a convergence that 
requires fewer iterations if compared to a simple GA, 
to an Adaptive GA or to an ACO. With this finding, 
we note the advantage in a faster convergence that a 
GA with a transgenic operator can offer. Furthermore, 
according to the graph, there is no consensus among 
ACO ants in the observed evaluation, since the ants 
that find the minimum makespan do not significantly 
change the mean of the whole population. 

 

Figure 5: Mean fitness function of a chromosome or ant 
population over 75 iterations of each method. 
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The Wilcoxon test is used to infer if two samples 
come from the same distribution and, if they are not, 
the test also classifies which sample is composed of 
statistically lower values. Thus, we use this statistical 
test to decide whether GA-Trans is statistically 
equivalent to some other metaheuristic evaluated. As 
observed in Table 7, assuming as initial hypothesis 
( ଴ܪ ) that GA-Trans is equal to some other 
metaheuristic, the Wilcoxon test presents zero or 
almost zero ݌ -values (0.0026  and 0.0072), which 
means that the initial hypothesis must be discarded as 
it is very unlikely. Similarly, assuming that GA-Trans 
has makespan values statistically lower than the 
values presented by other metaheuristics, the 
Wilcoxon test presents ݌-values equal to or very close 
to 1 , which guarantees that GA-Trans presents 
statistically lower values. 

Table 7: Wilcoxon test. ࡴ૙ ࢖-Value Confidence Level 
GA-Trans=GA 0 95%
GA-Trans<GA 1 95%
GA-Trans=GA 0.0026 95%
GA-Trans<GA 0.9987 95%
GA-Trans=GA 0.0072 95%
GA-Trans<GA 0.9965 95%

 
Scenario ૛૙ × ૡ . The parameter settings of the 
methods were the same as the previous test, Table 2-
4. In Table 8, some statistical measures extracted 
from the 35 evaluations on the 20 × 8 scenario are 
presented.  

Table 8: Statistical Measures. 

 ACO GA AGA GA-Trans
Mean 7164.8	 7252.3	 7193.6	 6799.0
Standard 
Deviation 76.3	 169.3	 198.1	 197.7
Minimum 
Value 6870	 6829	 6788	 6301
Maximum 
Value 7342	 7584	 7583	 7146
Mode −	 7254	 7221	 6688
Average 
of time (s) 17.35	 2.07	 3.26	 3.01

 
As we can see in Table 8, the results obtained in 

the 20 × 8 scenario by the proposed technique are, on 
average, smaller than the values presented by the 
other techniques. In addition, GA-Trans presented the 
smallest makespan (6301) of all of the techniques 
discussed when considering the 35  evaluations 
conducted in each. In addition, GA-Trans presents as 
the most often occurring value the value 6688, which 

is a makespan value that is less than the minimum 
value presented by the ACO, GA and AGA. 

With respect to the average time of the GA-Trans, 
it can be affirmed that it is very competitive to GA-
like methods and usually takes only 17,34% of the 
time spent by the ACO, which makes the time spent 
by the ACO a noncompetitive time, so we present in 
Figure 6 a comparison between the times spent by the 
compared GA-like techniques. 

 

Figure 6: Time taken in 35 tests for each technique. 

It can be observed in the box plot of Figure 7 that 
GA-Trans presents significantly better results than 
the other methods. In fact, the increase in the 
complexity of the scenario increased the differences 
presented by the comparative techniques and made 
GA-Trans stand out among the others. Using the 
Wilcoxon test would be redundant in stating that GA-
Trans gives the best results. 

 

Figure 7: Box plot of the methods’ results. 

Scenario ૚૙૙ × ૝૙. The parameter settings of the 
methods were the same as the previous test, Table 2-
4. Similar to the other scenarios, as we can see in 
Table 9, GA-Trans presented even more promising 
measures than in the other less complex scenarios. In 
the case, GA-Trans presented the smallest makespan 
( 7348 ) of all of the techniques discussed when 
considering the 35 evaluations conducted in each. In 
addition, GA-Trans presents as the most often 
occurring value the value 8016, which is a makespan 
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value that is less than the minimum value presented 
by the GA and AGA. 

Table 9: Statistical Measures. 

 ACO GA AGA GA-Trans 
Mean 8682.7	 8677.3	 8757.8	 7830.1

Standard 
Deviation 350.0	 164.7	 192.0	 254.3
Minimum 
Value 7643	 8274	 8423	 7348
Maximu
m Value 9162	 9105	 9162	 8569
Mode 8793	 8667	 −	 8016
Average 
of time 
(s) 

115.37	 13.91	 22.93	 19.14
 
With respect to the average time of the GA-Trans, 

it can be affirmed that it is very competitive to GA-
like methods and usually takes only 16.59% of the 
time spent by the ACO, as it can be observed in more 
detail in Figure 8. 

In Figure 9 it is possible to observe that GA-Trans 
maintained its good search direction, achieving much 
better results than the compared methods. Moreover, 
the difference between the compared techniques is so 
great in these last two scenarios that the use of the 
Wilcoxon test has become redundant, as the box plot 
show that GA-Trans statistically gets lower makespan 
values than the other techniques addressed. 

  

Figure 8: Time taken in 35 tests for each technique. 

With the obtained results it is possible to verify 
that the proposed method obtains good results in 
scenarios of less complexity and the results are more 
evident in the ones of greater complexity. Besides, the 
proposal was able to find better makespan results in a 
competitive processing time. 

 

 

Figure 9: Box plot of the methods’ results. 

5 CONCLUSION 

The objective of the paper was to develop an 
alternative version of the transgenic operator 
proposed by Amaral and Hruschka (2014) to reduce 
the makespan in job shop scheduling problem. The 
proposal was evaluated, and the results obtained were 
compared to other approaches proposed in related 
work (Morandin et al., 2008a; Morandin et al., 2008b; 
Kato et al., 2010), using as an evaluation criteria the 
minimization of the makespan value and the time to 
obtain the response.  The Transgenic operator 
proposed in this work is an altered and adapted 
version of the original operator proposed by Amaral 
and Hruschka (2014), in this way it is a new operator 
that was inspired by the original operator with the 
focus of obtaining a better performance in the specific 
problem. Some changes were proposed in the original 
operator with the purpose of a simplification of the 
method and a better use in the JSSP. Therefore, the 
fundamental contribution of this work is this new 
operator that translates into efficiency in the 
optimization of the JSSP and also the significant 
improvement of the results obtained in a scenario 
present in the literature with a competitive time. 

The first JSSP scenario that was evaluated (9 ×9), comparing the makespan values obtained, there 
was a tendency of improvement of the proposed 
algorithm in 82.86% of the cases in comparison to 
the results obtained with the GA and in 71.43% with 
the AGA. In comparison with the ACO technique, 
there was a tendency to improve the proposed 
algorithm in 65.71%  of the cases. The mean 
execution time of the proposed algorithm was 1.53 
seconds, while the mean time spent by the GA was 
1.12 seconds; the Adaptive GA used 1.66 seconds, 
and the ACO used 6.62 seconds, i.e., there was an 
increase of 36.6% when the proposed technique was 
compared with GA, and there was a reduction in the 
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processing time of the proposed algorithm of 7.83% 
with respect to the AGA and a reduction of 76.89% 
with respect to the ACO. In addition, by comparing 
the values of the makespan obtained for the problem 
addressed, it is possible to conclude by means of the 
Wilcoxon statistical test, with 95% confidence, that 
the proposed method will have better results than the 
results obtained by the GA, Adaptive GA and ACO.  

With respect to the last two evaluated scenarios, 
the box plot visualization showed that the GA-Trans 
technique presented much better results than the other 
techniques approached, statistically outperforming 
them and it was useful to confirm the versatility of the 
proposed method. 

The genetic algorithm with a transgenic operator 
is promising in solving the JSSP. Thus, it is 
convenient that in future studies, the proposed 
algorithm is applied in problems similar to the JSSP, 
since the GA with transgenic operator obtained more 
significant results when compared to other 
metaheuristics. In this way, it is possible to work 
equivalently when applied to other combinatorial 
problems. It would also be interesting to study 
possible alternative techniques to determine the most 
significant genes that are passed in the transgenics. 
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