Real-time 3D Object Detection from Point Clouds using an RGB-D
Camera

Ya Wang®?, Shu Xu and Andreas Zell
Department of Cognitive Systems, University of Tuebingen, Sand 1, 72076 Tuebingen, Germany

Keywords:

Abstract:

Object Detection, 2D, 3D, Real-time, RGB-D Camera, Point Clouds.

This paper aims at real-time high-accuracy 3D object detection from point clouds for both indoor and outdoor

scenes using only a single RGB-D camera. We propose a new network system that combines both 2D and
3D object detection algorithms to achieve better real-time object detection results and has faster speed by
simplifying our networks on real robots. YOLOV3 is one of the state-of-the-art object detection methods based
on 2D images. Frustum PointNets is a real-time method using frustum constraints to predict a 3D bounding
box of an object. Combining these two approaches can be efficient for real-time 2D-3D object detection, both
indoor and outdoor. We not only have the improved training and evaluation accuracy and lower mean loss on
the KITTI object detection benchmark, but also achieve better average precision (AP) on 3D detection of all
classes in three different levels of difficulty. In addition, we implement our system of on-board real-time 2D
and 3D object detection using only an RGB-D camera on three different hardware devices.

1 INTRODUCTION

Nowadays, there are many outstanding 2D and 3D
object detection approaches based on deep convolu-
tional neural networks (CNNs), and they can be real-
time with graphics processing unit (GPU) accelera-
tion, e.g. YOLO (Redmon and Farhadi, 2018; Red-
mon et al., 2016; Redmon et al., 2016), Faster R-CNN
(Ren et al., 2015), Mask R-CNN (He et al., 2017) and
PointNets (Qi et al., 2018; Qi et al., 2017a; Qi et al.,
2017b). Nevertheless, accurate and fast detection of
3D objects is a challenge and plays an important role
in robotics, especially for autonomous driving. Au-
tonomous robots are widely applied in different re-
search fields and can be equipped with different sen-
sors as well as powerful GPUs. RGB-D cameras are
broadly used and they are much cheaper and more
lightweight comparing with the Radar or Lidar sen-
sors, meanwhile offering rich scene information like
3D colorful point clouds. Specifically, an RGB image
offers us useful 2D information that can be used in
state-of-the-art 2D object detection approaches while
a depth map is useful for 3D information e.g. geo-
metric position of point clouds, which give more in-
formation on object geometry.

Some researchers work on methods that com-

(2 https://orcid.org/0000-0002-8726-8151

Wang, Y., Xu, S. and Zell, A.
Real-time 3D Object Detection from Point Clouds using an RGB-D Camera.
DOI: 10.5220/0008918904070414

bine both 2D and 3D object detection, e.g. Frus-
tum PointNets (Qi et al., 2018), MV3D (Chen et al.,
2017), PointFusion (Xu et al., 2018), and DenseFu-
sion (Wang et al., 2019). Similar to Frustum Point-
Nets, our method can easily and efficiently detect cars
and pedestrians for outdoor scenes, which is useful
for autonomous driving and street scene understand-
ing. Detecting cars, pedestrians, and cyclists precisely
and efficiently for outdoor scenes is useful for au-
tonomous driving and robot obstacle avoidance, while
person detection for both indoor and outdoor scenes
is also helpful and challenging for emergency rescue
and human-robot interaction.

We develop and analyze a modified Frustum
PointNet network, which mainly combines 2D and
3D object detection to achieve better pointwise ob-
ject detection accuracy, and has better performance
on real-time robot applications. We also compare our
proposed network system with the Frustum PointNets
algorithms, using existing benchmarks like the KITTI
object detection benchmark (Geiger et al., 2012).
Considering that our system has good real-time per-
formance and can be used for robotics, we also im-
plemented it on a Robotnik Summit XL mobile robot,
as well as a Jetson TX2 developer kit. All testing
experiments were performed and compared on three
different hardware devices. Furthermore, the perfor-
mance of object detection in practical indoor and out-

407

In Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020), pages 407-414

ISBN: 978-989-758-397-1; ISSN: 2184-4313

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

door scenes has also been improved.

Our main contribution in this paper is that we pro-
pose a new strategy of combining the 2D and 3D ob-
ject detection approaches to achieve higher accuracy.
Another contribution is that we realize 2D and 3D
combined object detection with fast inference time in
our mobile robots instead of only training and testing
on KITTI benchmarks. Last but not least, our strategy
works well both for indoor and outdoor scenes.

2 RELATED WORK

2.1 2D Object Detection

There are many popular deep CNNss object detection
approaches based on 2D RGB images. 2D object de-
tection can be divided mainly on two parts: region-
based CNNs like Mask R-CNN (He et al., 2017) and
Faster R-CNN (Ren et al., 2015); one-shot CNNs like
YOLOVv3 (Redmon and Farhadi, 2018) and SSD (Liu
et al., 2016).

Faster R-CNN (Ren et al., 2015) is an end-to-
end object detection method with region proposal net-
works (RPNs) that works in real-time. It is based on
the previous region-based work of Fast R-CNN (Gir-
shick, 2015), and the authors use RPNs to replace
selective search from fast R-CNN, and later merge
RPN and fast R-CNN into a single network by shar-
ing the convolutional features. Mask R-CNN (He
et al., 2017) is based on Faster R-CNN, and extends
into image segmentation by adding a mask network
parallelly, therefore it can do both object detection
and segmentation. However, even with a powerful
GPU acceleration like an Nvidia GTX 1080Ti, it can
only reach 5 frames per second (fps).

On the contrary, YOLOv3 (Redmon and Farhadi,
2018) is much faster, and it is based on the previ-
ous work of YOLOv1 (Redmon et al., 2016) and
YOLOV2 (Redmon and Farhadi, 2017). YOLOV3 is
a real-time object detection method, which contains
Darknet-53 to extract features and feature pyramid
networks (FPN) to detect small objects. Therefore,
it achieves good performance for detection of objects
at different scales. It can reach around 25 fps with the
same type of single GPU acceleration. Its 2D bound-
ing boxes of object detection can not only improve
tracking accuracy by removing some outliers of fea-
ture matching (Wang and Zell, 2018), but also give
useful semantic information that might be used for 3D
object detection (Qi et al., 2018).

408

2.2 3D Object Detection

RGB-D cameras can give us rich information about
the objects in scenes. They offer not only 2D RGB
images but also depth maps and can get 3D point
clouds directly using stereo infrared sensors. In
(Wang and Zell, 2019a) and (Wang and Zell, 2019b),
the authors built an RGB-D map of colorful point
clouds using a forward-looking Microsoft Kinect v2
camera installed on a Metralabs Scitos G5 mobile
robots, and they showed that colorful point clouds are
useful compared with only geometric point clouds.
Most real-time state-of-the-art 3D object detec-
tion approaches are using expensive Lidar sensors
such as Vote3Deep (Engelcke et al., 2017), PointR-
CNN (Shi et al., 2019) and Fast PointRCNN (Chen
et al., 2019). Some state-of-the-art object detection
approaches based on images lack information about
3D geometry (Su et al., 2015; Kanezaki et al., 2018;
Johns et al., 2016). They need multi-view images
or projection methods e.g. triangulation, which will
cause additional drift error in the measurement.

2.3 Combination of 2D and 3D Object
Detection

There exist some state-of-the-art methods that com-
bine both 2D and 3D object detection. MV3D (Chen
et al., 2017) is a multi-view based 3D object detection
network mainly for autonomous driving. The appli-
cation is close to ours but we only use a single RGB-
D camera without Lidar sensors. The authors com-
bined bird-view point clouds, front-view point clouds
and RGB image information, and no speed was men-
tioned, so we guess there might be some space for
real-time autonomous driving tasks.

Frustum PointNets (Qi et al., 2018) is using a 2D
detector to get a 2D box and then project into a corre-
sponding frustum constraint to do 3D box regression.
PointNet and PointNet++ (Qi et al., 2017a; Qi et al.,
2017b) are used for instance segmentation inside each
frustum and also used for amodal 3D box estimation.
PointFusion (Xu et al., 2018) proposed a deep sen-
sor fusion method for 3D bounding box estimation. It
uses RGB images as input of ResNet to get 2D fea-
tures and uses the same 3D point cloud input from a
Lidar sensor before putting it into PointNet, and then
gets the 3D feature. Both dense fusion and global fu-
sion are done by comparing with the final model and
the baseline model. But these above methods are all
needed to use 3D point clouds from Lidar sensors,
namely having a good performance within intensity
but not perform well without intensity. Besides, the
2D detector part has no open-source code, and they



Real-time 3D Object Detection from Point Clouds using an RGB-D Camera

use the ground-truth 2D detection results for training
in the KITTI benchmark.

DenseFusion (Wang et al., 2019) is using only
an RGB-D camera, and it is similar to PointFusion’s
dense fusion part, estimating 6DoF object pose by it-
eration. It is a pixel-wise dense fusion method that
concatenates color embeddings and PointNet geomet-
ric embeddings for matching points. Different from
PointNets, they use average pooling instead of max
pooling to get the global features. Later they use the
same way to combine local point features with the
global feature. The authors also demonstrated their
approach in a robot that can grasp and manipulate ob-
jects, and they announced that their method is approx-
imately 200x faster than PoseCNN+ICP. However, it-
erative closest points (ICP) is very slow and few re-
searchers would use it for real-time applications. The
authors also announced that they can reach 16 fps
with 5 objects in each frame for a Toyota Human Sup-
port Robot, but no hardware GPUs, CPUs, and mem-
ory information was mentioned. Therefore, it is not
possible to fairly compare the speed of our method
with theirs. Besides, the object classes are different
and the application is also different.

Briefly speaking, the approaches of combining 2D
and 3D object detection can normally bring us more
precise detection results, but may slow down the sys-
tem speed. Therefore, fast and accurate real-time 2D
and 3D object detection is a big challenge. We want
to find a novel and smart strategy for the combination
of 2D and 3D object detection, and finally realize both
accurate and fast detection for the indoor and outdoor
scenes.

3 SYSTEM ANALYSIS

3.1 Our Network Structure

Figure 1 shows our proposed system workflow. The
yellow parts highlight our main differences from
Frustum PointNets (Qi et al., 2018). In detail, we
only use a single RGB-D camera, namely an Intel Re-
alsense D435, in our system to realize both 2D and
3D object detection. 2D object detection in Frustum
PointNets mainly works in the region to frustum pro-
cess, and later object class vector k is used. How-
ever, in our designed system, 2D information is fully
used as extra channels that CNNs can learn additional
features. Meanwhile, amodal 3D box estimation net-
works also use 2D information again.

3.2 Data Pre-processing

For benchmarks, we choose the KITTI object detec-
tion benchmark for both the training and evaluation
processes. The pre-processing of having pickle files
was the same as the Frustum PointNets authors did.
In KITTI (Geiger et al., 2012) the RGB images were
taken by a PointGrey Flea2 RGB camera and the 3D
information was from a Velodyne HDL-64E 3D Li-
dar sensor. The calibration files were also needed for
coordinates transformation and points projection.

For the real implementation in our robots, we
mainly use an Intel Realsense D435 RGB-D camera.
This RGB-D camera is lightweight, cheap, easy-to-
use, and has official documentation which is conve-
nient and efficient for us to do data collections for
the real-world environment, both indoor and outdoor.
Since we choose the Intel Realsense D435 camera,
pyrealsense2 is used. There is no need to use all
point clouds from the RGB-D camera because of large
number points and some noise points, so we do frame-
by-frame random down-sampling into 2048 points for
each frustum. The principle is that we can not reduce
points too much and keep the main features from orig-
inal point clouds.

There are mainly three steps for data pre-
processing: 2D bounding box extraction, frustum ex-
traction, and data augmentation. The 2D box can be
either directly taken from the KITTI benchmark or re-
ceived by YOLOv3 2D detector from a D435 cam-
era. Then by using the region2frustum function we
can get an extracted frustum. In data augmentation,
the 2D box center is randomly shifted and the width
and height are randomly re-scaled from 0.9 to 1.1 for
our real implementation. The type of objects is rep-
resented as one-hot vectors. Finally, the whole data
is saved as pickle files and the pickle files contain the
information of ID, 2D box parameters (positions and
sizes), 3D box parameters (positions and sizes), point
clouds positions and intensities, labels, object types,
3D heading bins (yaw angle), and frustum angles. The
pickle files are mainly used for training.

3.3 2D and 3D Object Detection

One of our main contributions in this paper is that we
propose a new strategy of combining 2D and 3D in-
formation into the neural networks. Frustum Point-
Nets first use 2D object methods to get 2D bounding
box, then use this information to get a 3D frustum and
feed into PointNets, do instance segmentation, finally
predict 3D bounding box of each object.

After several trials, we finally designed our system
as shown in Fig. 1.

409



ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

3D point clouds

L 4

2D object
detection

region2frustum |3 Nx3

r

%

h 4

Amodal 3D
box estimation

3D Instance
Segementation

i

MxC

T E 3

-

3D box

object class vector
{

Figure 1: OurFPN System Workflow: We only use a single RGB-D camera to get 3D point clouds, and yellow parts highlight

our main differences.

For the input, x,y,z of point clouds position as well
as width and height of box information from 2D ob-
ject detection offers useful prior information of ob-
jects. The problem is that we need to get 2D box in-
formation and find a smart strategy to fuse both 2D
and 3D detections. The original Frustum PointNets
authors use ground truth 2D box of KITTI to train
their model, while we use YOLOV3 fast object detec-
tion method to get the 2D box. Even though YOLOv3
is fast, it is not as precise as Frustum PointNets au-
thors designed 2D encoder-decoder detector and they
do not open source this part code, but through their
paper description they used Fast R-CNN (Girshick,
2015) and reduced VGG (Simonyan and Zisserman,
2014) base network from SSD (Liu et al., 2016), also
added the feature pyramid layers (Lin et al., 2017).

Figure 2 shows our sub-system of 3D instance
segmentation and the yellow parts highlight our main
differences from Frustum PointNets (Qi et al., 2018).
Here MLPs denote multi-layer perceptrons, and the
number inside the circle means the number of convlu-
tional layers. Each layer has batch normalization with
ReLU.

MLPs(64,64) MLPs{128,512) ool
30 point — — }Nxﬁ‘\ | maxsoaing
clouds
— I
MLPS(256,256,128,2)
2D box, 2 —
NX(B4-512+K) | — > ——
SCores.
20 object h

detection object class vector, k

Figure 2: OurFPN 3D Instance Segmentation: We add
not only the region2frustum output and one hot vector k as
object class vector, but also 2D bounding box information.
The yellow parts highlight our main differences.

Briefly, for 3D instance segmentation, we can see
that 1024 feature vector is not a necessity. For 3D
instance segmentation, the precision is high (above
90%) comparing with 3D box prediction, and we
notice that even a decrease of the final global fea-
ture vector number from 1024 into 512 elements is
still sufficient. Therefore we changed the global fea-
ture vector, which saves both our training and infer-

410

ence time. Besides, some convolutional layers can be
safely removed with our many tests and the robust-
ness of the whole system will not be affected, which
also speeds up our whole system.

Figure 3 shows our sub-system of 3D instance
segmentation. The yellow parts highlight our main
differences from Frustum PointNets (Qi et al., 2018).

MLPs{128,128,256,512)
— max-pooling
Mx512

3D point
clouds

FCs(512,256,3+4NS+2NH)
2D box, 2
| Nx(512+k=2)

\ ‘ 3D box
object class vector, k

Figure 3: OurFPN 3D Box Estimation: We add not only
the transformed output from 3D instance segmentation, but
also combined 2D bounding box information again in this
sub-system. The yellow parts highlight our main differ-
ences.

2D object
detection

Here NS denotes the number of size clusters (de-
fault value 8), and NH denotes the number of heading
bins (default value 12). FCs denote fully-connected
layers, and the number in the circle means the num-
ber of layers.

Our system is more robust and accurate than the
original Frustum PointNets system, but if we only add
more information inside our system it will be slow.
We have a real-time requirement, as a fast real-time
system is useful for robot applications. Therefore, we
need to do some speed improvements. Totally speak-
ing, our current system does well in a trade-off be-
tween accuracy and speed, shown in section 4.

4 EXPERIMENTS

Our experiments are divided into two parts: KITTI 3D
object detection benchmark and real-world robot im-
plementation. We mainly compare our methods with
two versions of Frustum PointNets (F-PNv1 and F-
PNv2) (Qi et al., 2018). F-PNv1 is based on PointNet



Real-time 3D Object Detection from Point Clouds using an RGB-D Camera

(Qietal., 2017a) and F-PNv2 is based on PointNet++
(Qi et al., 2017b).

4.1 KITTI 3D Object Detection
Benchmark

The KITTI 3D object detection benchmark (Geiger
et al., 2012) consists of 7481 training images and
7518 test images, as well as the corresponding 3D
point clouds, comprising a total of 80256 labeled ob-
jects. There are three levels of difficulty (easy, moder-
ate and hard): Easy means that the minimum bound-
ing box height is 40 pixels, the maximum occlusion
level is fully visible, and the maximum truncation is
15%; Moderate means that the minimum bounding
box height is 25 pixels, the maximum occlusion level
is partly occluded, and the maximum truncation is
30%; Hard means that the minimum bounding box
height is 25 pixels, the maximum occlusion level is
difficult to see, and the maximum truncation is up to
50%. Besides, for cars, a 3D bounding box overlap
of 70% is required, while for pedestrians and cyclists
only 50% is needed. The reason is that, in 3D space,
cars normally have constant geometric shapes while
pedestrians and cyclists are more flexible in geome-

try.

(a) B-PNv1 (b) F-PNv2 (c) OurFPN

Figure 4: Quantitative results: The Precision-Recall
Curves for Pedestrian, Car, Cyclist 3D Detection. Our net-
work (c) is better than Frustum PointNets (a) and (b) in all
three different objects as well as difficulty.

The precision-recall (PR) curve is useful for mea-
suring if the method is good enough for all the posi-
tive and negative samples, and it can be calculated as:
Precision = % and Recall = TPZ%. Here TP
means true positive, F'P means false positive, and FN
means false negative. Figure 4 shows the PR curves

for pedestrians, cars, and cyclists 3D detection in all

levels of difficulty. We can see that our RGB-D mod-
ified Frustum PointNet named OurFPN (c) is always
the best when comparing with the other two Frustum
PointNets in (a) and (b), especially much better than
Frustum PointNet v2.

Table 1: AP Comparison on KITTI 3D Detection (%).

Network | Class Difficulty

Easy | Moderate | Hard
Pedest. | 66.49 55.71 49.23
F-PNv1 Car 84.00 69.88 62.74
Cyclist | 70.16 51.61 47.52
Pedest. | 50.60 44 .48 45.66
F-PNv2 Car 79.09 62.16 54.24
Cyclist | 69.48 48.87 45.66
Pedest. | 66.84 57.69 50.95
OurFPN Car 85.17 71.86 64.10
Cyclist | 76.81 56.94 53.37

Comparing our RGB-D modified Frustum Point-
Net (OurFPN) with two Frustum PointNets (F-PNv1
and F-PNv2), average precision (AP) is calculated in
Table 1. We can see that our modified Frustum Point-
Net outperforms in all classes (Pedestrian, Car, Cy-
clist) and difficulty (Easy, Moderate, Hard) for 3D
detection. Frustum PointNet v1 without intensity is
better than v2, but still not as well as ours. Since we
only use a single RGB-D camera, there is no need to
compare 3D point clouds with intensity, which is nor-
mally from expensive Lidar sensors.

The training and evaluation accuracy comparison
is shown in Fig. 5. Our modified Frustum PointNet
(OurFPN) achieves the highest accuracy in both train-
ing and evaluation processes, while Frustum PointNet
v2 is the worst using 3D point clouds without inten-
sity. It is easy to explain that the original Frustum
PointNet v2 uses the local regions by grouping and
sampling, which heavily depends on the sparsity of
points, and the intensity from Lidar sensors helps a
lot.

box estimation accuracy (loU=0.7): eval box estimation accuracy (loU=0.7):

(a) Training accuracy

(b) Evaluation accuracy

Figure 5: Quantitative results: Training and evaluation ac-
curacy of our modified Frustum PointNet and original Frus-
tum PointNets (v1 and v2) on KITTIL.

Besides, we also compare the mean loss during
training and evaluation, shown in Fig. 6. OurFPN

411



ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

achieves the lowest mean loss in both training and
evaluation processes especially for evaluation, while
Frustum PointNets are almost the same.

mean loss: eval mean loss:

4 50 100 150 200 250 300 4 20 40 60 80 100
Time Epochs

(a) Training accuracy (b) Evaluation accuracy

Figure 6: Quantitative results: Training and evaluation
mean loss of our modified Frustum PointNet and original
Frustum PointNets (v1 and v2) on KITTIL.

4.2 Real-world Implementation

In order to perform real-world experiments, we used
the hardware and software in Fig. 7: 1. Intel Re-
alSense D435 RGB-D Camera; 2. GPU: Nvidia
GTX1080Ti for desktop PC in Fig. 7a, Nvidia
GTX1050Ti for Summit XL in Fig. 7b, and Nvidia
Jetson TX2 in Fig. 7c; 3. Ubuntu 16.04 LTS with
ROS kinetic; 4. Tensorflow 1.13 with Python 3.6.

(@) (b) ©
Figure 7: Different Hardware Devices: (a) 1080Ti; (b)
1050Ti; (c) Jetson TX2 developer Kkit.

4.2.1 Indoor Experiments

The indoor person detection experiment was done us-
ing an RGB-D camera Intel Realsense D435. We
test both dark and bright scenes, both standing person
and sit-down person cases, occluded or not indoor to
check the robustness of our system to light. Figure 8
shows an example of 2D box visualization and 3D box
visualization of our system. No matter whether the
light is enough or not, we can still get good predicted
3D bounding boxes for humans. When a person is ei-
ther standing or sit-down, we can also get accepted
3D boxes, and the person who is sitting down can
also clearly separated from the chair. Besides, even
with quite a few point clouds, our method can still de-
tect the occluded person. The speed is 25-30 fps on
our mobile robot of Fig. 7b and around 90 fps on our
Desktop PC of Fig. 7a.

412

(a) 2D Box Visualization (b) 3D Box Visualization

Figure 8: Qualitative results: 2D and 3D predicted boxes
visualization of indoor pedestrian (person) detection.

4.2.2 Outdoor Experiments

We did experiments with our Robotnik Summit XL
mobile robot for the outdoor parking scene shown in
Fig. 7b. Notice that here we only use an installed
RGB-D sensor instead of using other sensors e.g. the
Velodyne Lidar sensor on top or the Sick Laser scan
in front. The speed is around 25-30 fps on our mobile
robot.

Figure 9 shows an example of 2D box visualiza-
tion and 3D box visualization in our system. In Fig. 9

(a) 2D Box Visualization

(b) 3D Box Visualization
Figure 9: Qualitative results: 2D and 3D predicted boxes
visualization of outdoor car and pedestrian detection.

we can see that two cars and one pedestrian can be
correctly detected even for crowded occlusion case.



Real-time 3D Object Detection from Point Clouds using an RGB-D Camera

4.3 Speed Comparison on Different
Hardware Devices

When measuring the speed of all the network systems,
we ran them on three different hardware devices with
Nvidia GPUs in Fig. 7. Detailed running speed com-
parison is shown in Table 2. Here MSG means multi-
scale grouping and SSG denotes single scale group-
ing (Qi et al., 2017b). From Table 2, we can see that

Table 2: Running speed comparison in frames per second
(fps) on different Nvidia GPUs.

Methods 1080Ti | 1050Ti | Jetson TX2

F-PNv1 70-100 | 20-30 5-15
F-PNv2 SSG | 50-55 -- --
F-PNv2 MSG | 15-20 -- --

OurFPN 80-105 | 25-30 10-15

our RGB-D modified Frustum PointNet is much faster
than Frustum PointNet v2, and almost the same as
Frustum PointNet v1 on different GPU devices. How-
ever, ours has better accuracy than Frustum PointNet
v1. Frustum PointNet v2 MSG and SSG are both slow
even in our desktop PC equipped with a single Nvidia
GTX 1080Ti GPU, therefore we did not transfer our
system on mobile robots and the Jetson TX2 devel-
oper kit equipped with less powerful GPUs.

S CONCLUSIONS

In this paper, we designed a new network system that
combines both useful features of 2D and 3D for chal-
lenging object detection tasks. The original Frustum
PointNet was only trained and tested on the KITTI
benchmark and directly used 2D object detection re-
sults. The 3D PointNet sub-system did not re-use
2D information in their network. Our simplified net-
work system (OurFPN) has higher accuracy and faster
speed than most current state-of-the-art 3D object de-
tection networks on three different devices, as well as
on the KITTI benchmark.

In the near future, we will optimize OurFPN to
realize higher precision and faster speed. We also in-
tend to use Lidar sensors as addition since the efficient
range of RGB-D cameras is limited, which is not suf-
ficient for outdoor street scene understanding of au-
tonomous driving cars. Actually, we notice that Velo-
dyne can get quite far away points like 30m but quite
sparse and not well for close distance points like 3m.
On the contrary, RGB-D cameras can work quite well
for close objects while can not detect far-away points.
We believe that combining these two types of sensor

information together will be an efficient way for better
object detection results. Besides, we will use the out-
come 3D bounding box information of object detec-
tion to help improve SLAM system for UAVs, while
the existing object-based SLAM system only uses 2D
image information.

REFERENCES

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. (2017). Multi-
view 3d object detection network for autonomous
driving. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 1907-1915. IEEE.

Chen, Y., Liu, S., Shen, X., and Jia, J. (2019). Fast point r-
cnn. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), pages 9775-9784.
IEEE.

Engelcke, M., Rao, D., Wang, D. Z., Tong, C. H., and Pos-
ner, I. (2017). Vote3deep: fast object detection in 3d
point clouds using efficient convolutional neural net-
works. In IEEE International Conference on Robotics
and Automation (ICRA), pages 1355-1361. IEEE.

Geiger, A., Lenz, P, and Urtasun, R. (2012). Are we ready
for autonomous driving? the kitti vision benchmark
suite. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
3354-3361. IEEE.

Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV),
pages 1440-1448. IEEE.

He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017).
Mask r-cnn. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 2961—
2969. IEEE.

Johns, E., Leutenegger, S., and Davison, A. J. (2016). Pair-
wise decomposition of image sequences for active
multi-view recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 3813-3822. IEEE.

Kanezaki, A., Matsushita, Y., and Nishida, Y. (2018). Ro-
tationnet: joint object categorization and pose estima-
tion using multiviews from unsupervised viewpoints.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5010—
5019. IEEE.

Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017). Feature pyramid networks
for object detection. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 2117-2125. IEEE.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., and Berg, A. C. (2016). Ssd: single shot multi-
box detector. In European Conference on Computer
Vision (ECCV), pages 21-37. Springer.

Qi, C.R., Liu, W., Wu, C,, Su, H., and Guibas, L. J. (2018).
Frustum pointnets for 3d object detection from rgb-d

413



ICPRAM 2020 - 9th International Conference on Pattern Recognition Applications and Methods

data. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
918-927. IEEE.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Point-
net: deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 652-660. IEEE.

Qi, C. R., Yi, L., Su, H.,, and Guibas, L. J. (2017b). Point-
net++: deep hierarchical feature learning on point sets
in a metric space. In Advances in Neural Information
Processing Systems (NeurPIS), pages 5099-5108.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: unified, real-time ob-
ject detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 779-788. IEEE.

Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,
stronger. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 7263-7271. IEEE.

Redmon, J. and Farhadi, A. (2018). Yolov3: an incremental
improvement. arXiv preprint arXiv:1804.02767.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: towards real-time object detection with region
proposal networks. In Advances in Neural Informa-
tion Processing Systems (NeurPIS), pages 91-99.

Shi, S., Wang, X., and Li, H. (2019). Pointrcnn: 3d object
proposal generation and detection from point cloud.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770-
779. IEEE.

Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E.
(2015). Multi-view convolutional neural networks for
3d shape recognition. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV),
pages 945-953. IEEE.

Wang, C., Xu, D., Zhu, Y., Martin-Martin, R., Lu, C., Fei-
Fei, L., and Savarese, S. (2019). Densefusion: 6d ob-
ject pose estimation by iterative dense fusion. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3343-3352.
IEEE.

Wang, Y. and Zell, A. (2018). Improving feature-based vi-
sual slam by semantics. In /EEE International Confer-
ence on Image Processing, Applications and Systems
(IPAS), pages 7-12. IEEE.

Wang, Y. and Zell, A. (2019a). Semantic scene segmenta-
tion of unordered point clouds on autonomous robots.
In European Conference on Mobile Robot (ECMR),
pages 1-6. IEEE.

Wang, Y. and Zell, A. (2019b). Semantic segmentation net-
works of 3d point clouds for rgb-d indoor scenes. In
International Conference on Machine Vision (ICMV).
SPIE.

Xu, D., Anguelov, D., and Jain, A. (2018). Pointfusion:
deep sensor fusion for 3d bounding box estimation.

414

In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 244—
253. IEEE.



