
Search for Robust Policies in Reinforcement Learning

Qi Li
University College London, 105 Gower Street, London, U.K.

Keywords: Reinforcement Learning, Model Free Policy Search, Robust Agents.

Abstract: While Reinforcement Learning (RL) often operates in idealized Markov Decision Processes (MDPs), their
applications in real-world tasks often encounter noise such as in uncertain initial state distributions, noisy
dynamics models. Further noise can also be introduced in actions, rewards, and the observations. In this paper
we specifically focus on the problem of making agents act in a robust manner under different observation
noise distributions for during training and for during testing. Such characterization of training and testing
distributions is not common in RL as it is more common to train and deploy the agent on the same MDP. In
this work, two methods of improving agent robustness to observation noise - training on noisy environments
and modifying the reward function directly to encourage stable policies, are proposed and evaluated. We show
that by training on noisy observation distributions, even if the distribution is different from the one in test, can
benefit agent performance in test, while the reward modifications are less generally applicable, only improving
the optimisation in some cases.

1 INTRODUCTION

A common formulation of Reinforcement Learning
(RL) is to learn agents that act in an environment with
previously unknown dynamics, and sometimes obser-
vation models, in such a way that optimises for some
stationary reward signal. Traditional RL formulation
operates on a single Markov Decision Process (MDP),
where an agent is allowed to interact with the MDP
in many episodes. This data collection process often
gives variations in the initial state distribution - that
is - the task given to the agent is expected to begin
not at one particular state, but rather a set of states.
In theory, with an adequate exploration policy, un-
der the Markovian assumption and assumptions about
observably and stationary dynamics and rewards, it
shouldn’t matter which states the agents begin during
training, as the agent should learn a (probabilistic) op-
timal policy or value function for all possible states.
In practice, especially for RL tasks involving high di-
mensions and continuous state or action spaces, this
does not happen, as the agent is only expected to in-
teract with the MDP a finite number of times. This
finite sampling means that the agent usually performs
well if it is initialized in the initial state distribution it
was trained on, and not on states outside of that distri-
bution. Such out-of-distribution issues is usually not a
concern for most RL applications, as there is no clear

difference between the “training” and “testing” initial
state distributions.

For more complex tasks however, a similar mis-
match might occur for the distribution of the state-
action transition model from “training” to “testing.”
This distributional shift is natural to formulate when
the MDP has stochastic transitions. During training,
the agent might interact with the MDP under one tran-
sition distribution, but during test, the agent might be
expected to act in an environment with a slightly dif-
ferent dynamics model. If the divergence between the
dynamics model of train and test is too wide, then of
course the agent will not perform well - it is like act-
ing on a different MDP altogether. If the transition
models differ in some structured manner, then one
might be able to adapt the agent’s behavior through
informed exploration, or train the agent on a wide
enough distribution during training such that the dis-
tribution of the testing dynamics is covered by the
training distribution. Some subset of the former ap-
proach can be called Transfer Learning, and the lat-
ter technique is called Domain Randomization (DR).
These techniques have been studied by many works
in the past.

Different from initial state distribution and dy-
namics mismatch, this work focuses on another as-
pect of uncertainty that is of interest to RL, which is
the potential noise in observations. The observation

Li, Q.
Search for Robust Policies in Reinforcement Learning.
DOI: 10.5220/0008917404210428
In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 2, pages 421-428
ISBN: 978-989-758-395-7; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

421

noise studied in this work is assumed to be uncorre-
lated across time and independent of an agent’s state
or actions. Further, it is assumed the noise is drawn
from the same, stationary distribution at all times. In
this way, the observation noise is i.i.d. This obser-
vation noise is of interest to us, because it is a very
common phenomenon when deploying RL agents in
real applications. Observations in the real world are
always noisy. This is the case for a physical sensor
such as cameras and accelerometers, and it is also the
case for digital “sensors,” such as survey results (hu-
man subjects may not accurately respond) and web
traffic (dropped packets, unreliable cookies).

The general formulation for noisy observations
is the Partially Observable Markov Decision Process
(POMDP). In POMPDP, the agent does not know the
actual underlying state that it is in, and instead it re-
lies on an observation model to maintain a distribution
over possible states that it could be in. This distribu-
tion is then used for policy or value function optimiza-
tion. POMDPs are very difficult to solve, because the
uncertainty in maintaining an agent’s state distribu-
tion widens quickly as a function of time. This makes
planning in the general POMDP problem very ineffi-
cient, so it is hard to make model-based approaches
to POMPDPs tractable in practice.

A model-free approach, while more difficult to
provide optimality bounds, tends to be more achiev-
able, and is the focus of this preliminary work. In
short, we’d like to train an agent in a model-free man-
ner that is robust to observation noise during “test”
time.

There are many ways to accomplish this goal, and
two approaches are presented:

1. Like training with a distribution over initial state
distributions and a distribution over the dynam-
ics model, the agent can be trained to act in an
MDP with a distribution over observation noise.
This “observation” randomization hopefully en-
courages the agent to take actions that is more “re-
versible” or “conservative,” so that even if the ob-
servation is incorrect, the agent can recover from
suboptimal actions in the future.

2. The reward function can also be augmented, or
modified, with additional reward signals that ex-
plicitly encourage the policy the agent learns to
be robust. One additional reward that is exper-
imented with is adding a cost that corresponds
to the standard deviation of episode rewards of
an agent across many rollouts. This cost favors
agents that show consistent behavior across many
samples of the noisy observation environments.
Another cost in the experiments with is the stan-
dard deviation of episode rewards of an agent with

slightly perturbed parameters. This parameter-
space perturbation encourages the optimization of
more “stable” agents. This stability in the param-
eter space implicitly corresponds to a more sta-
ble local minima during optimization, which may
correspond to a higher quality policy that is less
likely to change given new agent interactions. The
hypothesis is that an agent less likely to change
during training is also an agent that is more robust
to observation noise.

The following sections give a detailed description
and background discussions, our policy search algo-
rithms, and the results of the experiments that were
performed to evaluate the proposed robustness mod-
ifications. By leveraging fast model-free parameter-
space policy search algorithms applied to an easy-
to-understand toy task (the CartPole), we are able to
characterize the agents’ behaviors across many dif-
ferent observation noise models in carefully designed
train and test distributions. This allows us to gain a
clear understanding of the performance and impact of
the proposed modifications.

2 RELATED WORKS

One context where the robustness framework has ap-
peared is on-line reinforcement learning (Singh et al.,
1994). Previous work has also studied robustness in
terms of input disturbance (action noise) (Morimoto
and Doya, 2005) (Anderson et al., 2007) (Kretchmar
et al., 2001) (Tessler et al., 2019) and modeling er-
rors (dynamics noise or stochastic transitions) (Sami
and Memon, 2018) (Rajeswaran et al., 2016) (Kinjo
et al., 2018). Some Other works introduce some mod-
ifications on RL algorithms to improve the robust-
ness of the agent in specific settings, such as in Parti-
game (Al-Ansari and Williams, 1999), multi-task
learning (Teh et al., 2017), signal temporal logic (Ak-
saray et al., 2016) (Jones et al., 2015), and hierarchi-
cal options (Mankowitz et al., 2018).

For many works, robustness is framed with re-
spect to an adversary that can affect the RL agent
during training or testing. Many works have pro-
posed ways to improve RL in such adversarial envi-
ronments (Lim et al., 2013) (Gu et al., 2018) (Pat-
tanaik et al., 2018) (Gu et al., 2018) (Abdullah et al.,
2019). In particular, these works might focus on “dis-
tributional robustness,” which is in general applicable
to the dynamics noise case, where the agent is made
to perform well even under distribution shifts in the
stochastic transition model.

Another way to improve robustness of RL is to
make the agent easy to transfer to new domains.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

422

(Oguni. et al., 2014) studies a case to transfer learned
transition and reward models, so the agent can poten-
tially adapt better online to say an environment with a
different noise distribution. (Killian et al., 2017) stud-
ies policy transfer in the case of MDPs with hidden
parameters.

Unlike previous works that focus on input distur-
bance (action noise) or modeling errors (dynamics
noise), this work is unique in that it explicitly con-
siders distributional shifts in observation noise, and
studies how might an agent learn to be robust to that.

3 ROBUST POLICY SEARCH

3.1 Markov Decision Processes

A mathematically idealized model, Markov decision
processes (MDPs) constitutes a basic framework for
dynamically controlling systems that could evolve in
a stochastic way. An MDP could have discrete or con-
tinuous state and action spaces, and can have finite or
infinite time horizons. An MDP has states st ∈ S , ac-
tions at ∈ S , and rewards Rt ∈ R. The focus of this
work is on the case of continuous states and actions,
so st ∈ Rn, and at ∈ Rm. Importantly, the Markovian
assumption made about MDPs states that the future
state, conditioned on the current state and action, is
independent of previous states and actions.

Reinforcement learning aims to find a policy π :
S → A , mapping from states to actions of an MDP,
that maximizes the expected sum of discounted re-
wards:

E
T

∑
t=1

γRt (1)

Where γ is a discount factor between 0 and 1. Here
the expectation can be taken over the distribution over
transitions if the dynamics is stochastic. Or, it can
also be taken over the distribution of the policy if the
policy is stochastic. In general, T is the time horizon
of the task, and it can be infinite. However, even if the
time horizon is infinite, a γ smaller than 1 effectively
imposes a finite time horizon, as future rewards fall
off exponentially.

Different from supervised learning, RL is not su-
pervised with the optimal action, or actions, to take
at each state. Instead, it is given a evaluative super-
vision - how good is an action or a sequence of ac-
tions. In addition, actions chosen by the RL agent
will affect future states that the agent is in, hence it
will affect future inputs into the model. The sequen-
tial decision nature of RL may lead to distributional
shifts over time in the states and dynamics the agent

encounters, making RL much harder to learn than su-
pervised learning.

3.2 Policy Search in Parameter Space

There are many ways to search for a policy π in
RL, and they roughly separate into Model-based or
Model-free methods. Model-based methods first sam-
ple transitions from the MDP. Then it fits a func-
tion to model the dynamics of the environment, as
well as the reward, to learn the MDP. With the MDP
learned, standard MDP optimization algorithms can
be used to find the optimal policy in the learned MDP.
Model-based methods often suffer from distribution
mismatch issues - the data collected during model
learning may not correspond well to the data seen by
the agent during execution. However, when the distri-
bution shift is small, and when the learned model has
low estimation bias, model-based RL tend to be more
sample efficient than model-free ones.

Model-free methods can be further separated into
on-policy and off-policy algorithms, as well as value-
based and policy-based algorithms. This work fo-
cuses on the on-policy, policy-based variation. This
type of policy search usually first represents the pol-
icy in some parameterized way, like a linear or Neu-
ral Network (NN) function. Denote these parameters
as θ, and denote the policy with such parameters πθ.
Then, exploration is performed either in the action
space, by adding noise to the policy outputs, or in
the parameter space, by directly perturbing the pol-
icy parameters. The former method corresponds to
Policy Gradients, while the latter is usually done by
derivative-free optimization.

Derivative-free policy search in the parameter
space is used, because it achieves comparable perfor-
mance with policy gradients but with less variance
and higher sample efficiency (Mania et al., 2018).
Generally, a derivative-free policy search contains the
following steps:

1. Sample policies

2. Evaluate each policy

3. Update optimiser

4. Keep track of the best policy so far until reaching
a reward threshold or out of compute budget

Training policies can be done through either step-
based or episode-based feedback. Episode based
training waits for each episode to finish before start-
ing another policy, whereas step based training gives
a reward at each state-transition pair. Derivative-free
policy search methods are usually episode-based, so
the policy training feedback takes into account of the
agent’s cumulative performance across the entire task.

Search for Robust Policies in Reinforcement Learning

423

In our experiments, we evaluate and analyze 3 dif-
ferent derivative-free optimisers to search for agent
policies in the parameter space:

3.3 Random Search (RS)

RS evaluates a random set of directions that the policy
parameters can go into, and weights these directions
by how well, in relative terms, the policies perform.
At each training iteration, it first samples N numbers
of ∆θn , then πθ+∆θn and πθ−∆θn are evaluated. Update
formula is as following:

θt+1 = θt +
α

N

N

∑
n=1

(R(πθt+∆θn)−R(πθt−∆θn))∆θn (2)

where α is the learning rate.

3.3.1 Cross Entropy Method (CEM)

CEM uses Gaussian distribution to maintain a dis-
tribution over the policy parameters N (µt ,Σt). At
each training iteration, CEM samples N numbers of
θn ∼ N (µt ,Σt), then evaluates πθns. The update pro-
cess is as the following:

1. Sort θns by their rewards.

2. Choose the top Nbest θns

3.

µt+1 =
1

Nbest

Nbest

∑
n=1

θn (3)

Σt+1 =
1

Nbest

Nbest

∑
n=1

(θn−µt)(θn−µt)
T (4)

3.3.2 Genetic Algorithm (GA)

GA is a “population-based” algorithm. Unlike RS and
CEM, it does not explicitly maintain a current policy
or a current distribution of policies. Instead, it main-
tains a population of policies.

Initially, GA samples N numbers of parameters of
the policy from θ

(1)
t to θ

(N)
t . Then, at each training

iteration:

1. Choose N pairs of previously sampled solutions,
i.e (θ

(i)
t ,θ(j)

t), where i 6= j.

2. Create N new policies, with parameter values set
to θn[k] = βnθ

(i)
t [k]+ (1−βn)θ

(j)
t [k]+ εn

βn is either 0 or 1, and it’s sampled from a Bernoulli
distribution with p= 0.5. εn is a noise parameter sam-
pled from a Gaussian distribution with ε∼ N(0,σ).

Unlike RS and CEM, GA can handle multi-modal
object landscapes, because it is not forced to converge
to a policy, it can maintain many policies that all per-
form well, even if they have very different parame-
ters (Loughlin et al., 2001; Zhan et al., 2013).

3.4 Noisy MDPs and Robust Policies

Noise in RL is common for real world applications.
Three types of noise models can be used to simulate
realistic learning environment: 1) Action noise - for
example, in robotics applications, a robot controller
might not follow exactly what the commanded actions
ask. 2) Reward noise - during training, the reward
feedback is noisy. 3) Observation noise - an observa-
tion that an agent receives is always a perturbed ver-
sion of the true observation. This paper studies how
to make policy search robust to observation noise.

In reinforcement learning, a policy is said to be
robust if it maximizes the reward when noise is intro-
duced during the process. One way to measure robust-
ness is to see how wide the variation, or the standard
deviation, of the agent’s performance is over multiple
rollouts:

σR =
1
K

K

∑
k=1

(Rk−µR)
2 (5)

Rk means the total cumulative reward of the kth policy
rollout. An agent with high µR and small σR is set to
be more robust than the one with high σRT .

The standard deviation of rewards on multiple
policies around a given policy is as:

σπθ
=

1
K

K

∑
k=1

(R(πθ+δθk)−µR)
2 (6)

δθk is a small perturbation on the true policy param-
eters, which is sampled from a Gaussian distribution.
This measures how sensitive the policy is to param-
eter perturbations, and hence to future training data
points.

Another way to measure an agent’s robustness is
by taking the ratio of rollout rewards under some ob-
servation noise distribution o1, while the agent was
trained on another o2:

φ12 =
µR(o1)

µR(o2)
(7)

The higher this ratio is, the more robust the agent is to
changes in the observation noise distribution.

The following experiments evaluate two ways of
training that may help improve robustness of a policy:
1. First, the policy is trained in noisy environment,

so it is expected a better performance during eval-
uation than a policy trained on environments with
no observation noise.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

424

2. Second, the training objective function of the opti-
miser is changed to optimise the robustness of the
policy, while the reward of the environment stays
the same. The modified reward function for the
optimisers can be written as the following:

R′ = R−αrσR−απσπθ
(8)

The αr and απ terms are scaling hyperparameters.

4 EXPERIMENTS

4.1 Benchmark Tasks

The CartPole task is used to perform learning experi-
ments. In a CartPole task, a pole is attached to a cart
by an un-actuated joint, which can be moved to left or
right along a track. So the action space of the task is
discrete and binary (either left or right). An agent ob-
serves the current position and velocity of the cart, as
well as the current angle and angular velocity of the
pole. These 4 numbers make up the state space.

By moving the cart backwards and forwards, the
pole can be controlled to stay upright. The goal of this
task is to prevent the pole from falling over. The ini-
tial state of the task has the pole angled upright with
0 angular and linear velocity. A reward +1 is given
when the pole stays upright. The performance of an
agent is measured by the cumulative reward at the end
of a fixed time horizon. If the time horizon is H, then
the maximum total reward is also H. A time horizon
of H = 200 is used in all experiments below.

The agent uses a linear policy consisting of a vec-
tor with 4 numbers: θ ∈R4. The action is determined
by πθ(s) = sign(θ>s). If the output is 1, the agent
moves right. If the output is −1, the agent moves left.

The CartPole task and the linear policy are cho-
sen, because they are fast to simulate, compute, and
optimise, allowing us to perform many ablation ex-
periments to understand effects of the algorithm.

4.2 Observation Noise

To add observation noise, we do s′ = s+ βε, where
ε ∼ N (0,Σs). Σs is a diagonal covariance matrix,
and its values are set to be the corresponding standard
deviations of states encountered by a random agent.
This ensures the magnitude of the noise added is in
the appropriate scale for each dimension of the obser-
vation vector, which all have different units. β is a
hyperparameter setting to scale the noise amounts.

Our experiments swept across 4 types of param-
eters to evaluate the performance of the agent with
different modifications on the CartPole task:

1. Random seed - each of the following experiments
were run with 3 different random seeds.

2. Training noise level - agents were trained in 4 dif-
ferent noise levels for β ∈ [0,0.25,0.5,1].

3. Training algorithm - agents were trained in the 3
derivative-free optimization algorithms explained
above (RS, CEM, GA).

4. Reward modification - the reward function used
by the optimiser was modified to explicitly ac-
count for both the standard deviation of roll-
out rewards and the standard deviation across
policy parameter perturbations. Here we put
four kinds of modification settings: (αR,απ) ∈
[(0,0),(0.5,0),(0,0.5),(0.25,0.25)].

The CartPole environment is based on OpenAI
gym 1. Derivative-free optimisation was performed
in Numpy with Python 3.6, and the implementation
is fairly fast given the small size of the observation
and action spaces. All trained policies are then evalu-
ated on the 4 different types of observation noise lev-
els (β ∈ [0,0.25,0.5,1]). Totally, 3×4×3×4 = 144
policies were trained, and each of them were evalu-
ated in 4 testing environments. The experiments were
run by a computer with i7-8550U CPU at 1.80GHz,
taking about 2 hours.

4.3 Results

Table 1: Robustness ratio φ across all algorithms and ran-
dom seeds. The rows are testing noise, while the columns
are training noise. For example, row 1 column 2 is φ12,
which gives the mean ratio of the total reward of the agent
trained with 0.25 observation noise level and tested under 0
noise level over the rewards it had during training.

0 0.25 0.5 1
0 1 1.15 1.38 2.36
0.25 0.91 1 1.25 2.14
0.5 0.73 0.83 1 1.71
1 0.42 0.48 0.58 1

Table 2: Robustness ratio φ of Genetic algorithm (GA).
Both rows and columns are training noise as well as test-
ing noise. For example, row 1 column 2 is φ12, which gives
the ratio of the reward of the agent trained with 0.25 ob-
servation noise level and tested under 0 noise level over the
rewards it had with 0 training noise and 0 testing noise.

0,0 0.25,0 0.5,0 1,0
0,0 1 1 1 1
0,0 0.78 1 0.99 0.98
0,0 0.62 0.77 0.9 0.91
0,0 0.36 0.39 0.56 0.61

1https://gym.openai.com/envs/CartPole-v1/

Search for Robust Policies in Reinforcement Learning

425

Table 1 shows the robustness ratio φs, where the en-
try in the ith row and jth column corresponds to the
average φi j across all 3 random seeds and 3 optimi-
sation algorithms. The row headers mean the testing
noise level, while the column headers mean the train-
ing noise level. For example, row 1 column 2 is φ12,
which gives the ratio of the agent trained with 0.25
observation noise level and tested under 0 noise level.

Of course, an agent tested on the same observation
noise distribution as it was trained on will perform the
same, hence the 1s across the diagonals. It can be seen
that across the board, testing performance decreases
as the testing noise level increases, and increases as
the training noise level increases. The agent tends to
learn better and to be more robust when it is trained
in a noisy environment.

Table 2 shows the robustness ratio φ of the Ge-
netic algorithm (GA), where the entry in the ith row
and jth column corresponds to φi j. Both row head-
ers and column headers mean the training noise level
and testing noise level. For example, row 1 column
2 is φ12, which gives the ratio of the reward of the
agent trained with 0.25 observation noise level and
tested under 0 noise level over the rewards it had with
0 training noise and 0 testing noise.

It can be shown that training on noisy environ-
ments lead to better performance overall. For exam-
ple, φ44 gives the robustness ratio of the agent trained
on 1 noise level and tested on 0 noise level. The agent
is able to gain a maximum reward of 0.61. While,
φ41, the robustness ratio showing an agent trained on 0
noise level and tested on 0 noise level, shows that the
agent can only achieve a maximum reward of 0.36.

Figure 1 shows the testing rewards of different
policies (RS ,CEM, GA). Each policy was trained on
0 noise and tested on the indicated noise level on the
x-axis. Each bar and its error bar give mean rewards
and standard deviation of rewards of all evaluations
across seeds 0, 1 and 2.

It shows that training rewards decrease when ob-
servation noise rises from 0 to 1 for each algorithm.
Overall, GA gives highest rewards in all three noise
levels followed by Random search and Cross En-
tropy. However, the standard deviation of mean re-
wards for GA increases as the noise level increases,
which means that the performance is less reliable and
stable. Under noise level 0.25 and 1, RS and CEM
have roughly the same mean rewards.

Figure 2 gives training curves for all 3 algorithms
under different training observation noise levels. Each
curve is accompanied by a shaded region that denotes
the standard deviation across multiple rollouts, while
the mean is computed across the random seeds.

For RS, as the test noise level increases, the

Figure 1: Performance of different algorithms trained with
0 observation noise and tested under different observation
noise levels. Length of black bar means the standard devia-
tion of mean rewards across 3 random seeds.

growth of the mean rewards gained by the agent goes
down, and the final reward earned reduces. Although
the performance of this policy is not good in the noisy
environments, its variance is relatively smaller than
the other algorithms.

For CEM, under 0, 0.25 and 0.5 noise levels, the
mean rewards rise rapidly relative to that under 1
noise level. However, the mean standard deviation of
these three mean rewards under the three noise levels
are quite big, meaning that the rewards earning pro-
cess is not very stable.

For GA the agent learns to achieve optimal re-
wards rapidly when noise level is 0. Under 0.25 and
0.5 noise levels, the agent learns and is able to achieve
optimal rewards but with a high fluctuation during
learning process. When noise level becomes to be 1,
the agent learns slowly with high fluctuations and is
not able to achieve optimization.

Figure 3 illustrates the mean and standard devi-
ation of the mean reward that an agent earns in RS,
CEM, and GA. It is trained under 0 noise level with
different reward modification settings but evaluated
under 0, 0.25, 0.5 and 1 noise levels across seeds 0,
1 and 2. In terms of reward modification settings,
weights are added to the standard deviation of reward
and to that of policy.

The motivation of adding a cost term to the stan-
dard deviation across episode rollouts is to encourage
the agent to have a stable and consistent performance
in noisy environments. The motivation of adding a
cost term to the standard deviation of policy parame-
ter perturbations helps the agent to behave roughly the
same under new iterations and to decrease the possi-
bility of optimisation to be ’getting lucky’.

For all algorithms, the mean rewards decrease as
the test noise level rises. The standard deviation of
the mean rewards ascends by the noise levels, mean-

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

426

Figure 2: Comparison of training curves of three different policies for different training noise levels aggregated across 3
random seeds. CEM and GA perform better than RS at higher noise levels, but RS has the least reward variance.

Figure 3: Performance of Different reward modifications for all optimisation algorithms (left = RS, middle = CEM, right =
GA). All agents were trained at 0 noise level with the reward modifications, and the noise levels in the plot mean training
noise levels. The first number in the legend tuples refer to αR, the second is απ. It can be observed that while the reward
modifications improve performance by either higher mean or lower reward variance in some cases for CEM, in other cases it
performs worse than having no reward modification at all.

ing that the consistence of the agent’s performance
for different iterations is reduced. Under 0 test noise
level, the modification setting does not result much
difference about the mean rewards which achieved by
the agent from the first group of bars. The difference
between rewards collected by an agent under differ-
ent modification setting then rises as the noise level
increases. For CEM, the difference between mean re-
wards collected by an agent under various modifica-
tion settings is staggered at each noise level. Also,
the standard deviation of mean rewards is huge for
each modification setting, which shows that the agent
may not give consistent behaviour in noisy environ-
ments or the policy may likely to change its results
when an agent learns in new iterations. For GA, the
modification setting with 0 weight on rewards and 0.5
weight on policy does not end up with an excellent
rewards-collecting results compared to the other mod-
ification settings in noisy environments. And its mean
rewards earned by the agent stay at a relatively low
level once the noise participates. However, the stan-
dard deviation of the specific modification setting re-
duces quickly when noise is added.

In general, it is observed that the reward modifica-
tions can be beneficial for improving the performance
of CEM (higher rewards and lower reward variance)
in some noise levels, but it does worse than not having
reward modifications for RS and GA.

5 CONCLUSIONS

The paper investigates the robust agent problem for
Reinforcement Learning in the context of observa-
tion noise. Two main proposed methods were in-
troduced - training in noisy environments and mod-
ifying optimisation objectives to encourage more sta-
ble learnt policies. Extensive experiments were per-
formed on the CartPole problem via three derivative-
free parameter-space policy search algorithms: Ran-
dom Search, Cross Entropy Method, and the Ge-
netic Algorithm. Several experiments are done to
compare the performance in both noisy environment
and non-noise environment. It is observed that the
agent performance decreases further if the observa-
tion noise the agent tested on is more than the noise it
was trained on, so that training in noisy environments
helps to improve agent performance in noisy environ-
ments. The reward modifications, used to encourage
optimisers to find stable policies are also analyzed. In
the experiments, it is observed that while these modi-
fications help CEM in some cases, in other cases they
perform worse. It is likely that the decreased reward
makes the agents overly conservative, as it also dis-
courages policy exploration and obfuscates the true
reward signal. Therefore, improving the robustness of
an agent via training on noisier environments is pre-
ferred.

Search for Robust Policies in Reinforcement Learning

427

REFERENCES

Abdullah, M. A., Ren, H., Ammar, H. B., Milenkovic, V.,
Luo, R., Zhang, M., and Wang, J. (2019). Wasser-
stein robust reinforcement learning. arXiv preprint
arXiv:1907.13196.

Aksaray, D., Jones, A., Kong, Z., Schwager, M., and Belta,
C. (2016). Q-learning for robust satisfaction of signal
temporal logic specifications. In 2016 IEEE 55th Con-
ference on Decision and Control (CDC), pages 6565–
6570. IEEE.

Al-Ansari, M. A. and Williams, R. J. (1999). Robust, effi-
cient, globally-optimized reinforcement learning with
the parti-game algorithm. In Advances in Neural In-
formation Processing Systems, pages 961–967.

Anderson, C. W., Young, P. M., Buehner, M. R., Knight,
J. N., Bush, K. A., and Hittle, D. C. (2007). Robust re-
inforcement learning control using integral quadratic
constraints for recurrent neural networks. IEEE Trans-
actions on Neural Networks, 18(4):993–1002.

Gu, Z., Jia, Z., and Choset, H. (2018). Adversary a3c for
robust reinforcement learning.

Jones, A., Aksaray, D., Kong, Z., Schwager, M., and Belta,
C. (2015). Robust satisfaction of temporal logic spec-
ifications via reinforcement learning. arXiv preprint
arXiv:1510.06460.

Killian, T. W., Daulton, S., Konidaris, G., and Doshi-
Velez, F. (2017). Robust and efficient transfer learning
with hidden parameter markov decision processes. In
Advances in Neural Information Processing Systems,
pages 6250–6261.

Kinjo, K., Uchibe, E., and Doya, K. (2018). Robustness
of linearly solvable markov games employing inac-
curate dynamics model. Artificial Life and Robotics,
23(1):1–9.

Kretchmar, R. M., Young, P. M., Anderson, C. W., Hit-
tle, D. C., Anderson, M. L., and Delnero, C. C.
(2001). Robust reinforcement learning control with
static and dynamic stability. International Journal of
Robust and Nonlinear Control: IFAC-Affiliated Jour-
nal, 11(15):1469–1500.

Lim, S. H., Xu, H., and Mannor, S. (2013). Reinforce-
ment learning in robust markov decision processes. In
Advances in Neural Information Processing Systems,
pages 701–709.

Loughlin, D. H., Ranjithan, S. R., Brill Jr, E. D., and
Baugh Jr, J. W. (2001). Genetic algorithm approaches
for addressing unmodeled objectives in optimization
problems. Engineering Optimization, 33(5):549–569.

Mania, H., Guy, A., and Recht, B. (2018). Simple random
search provides a competitive approach to reinforce-
ment learning. arXiv preprint arXiv:1803.07055.

Mankowitz, D. J., Mann, T. A., Bacon, P.-L., Precup, D.,
and Mannor, S. (2018). Learning robust options. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence.

Morimoto, J. and Doya, K. (2005). Robust reinforcement
learning. Neural computation, 17(2):335–359.

Oguni., K., Narisawa., K., and Shinohara., A. (2014).
Reducing sample complexity in reinforcement learn-

ing by transferring transition and reward probabili-
ties. In Proceedings of the 6th International Confer-
ence on Agents and Artificial Intelligence - Volume 1:
ICAART,, pages 632–638. INSTICC, SciTePress.

Pattanaik, A., Tang, Z., Liu, S., Bommannan, G., and
Chowdhary, G. (2018). Robust deep reinforcement
learning with adversarial attacks. In Proceedings
of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pages 2040–2042. In-
ternational Foundation for Autonomous Agents and
Multiagent Systems.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine,
S. (2016). Epopt: Learning robust neural network
policies using model ensembles. arXiv preprint
arXiv:1610.01283.

Sami, A. and Memon, A. Y. (2018). Robust optimal control
of continuous time linear system using reinforcement
learning. In 2018 Australian & New Zealand Control
Conference (ANZCC), pages 154–159. IEEE.

Singh, S. P., Barto, A. G., Grupen, R., and Connolly, C.
(1994). Robust reinforcement learning in motion plan-
ning. In Advances in neural information processing
systems, pages 655–662.

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick,
J., Hadsell, R., Heess, N., and Pascanu, R. (2017).
Distral: Robust multitask reinforcement learning. In
Advances in Neural Information Processing Systems,
pages 4496–4506.

Tessler, C., Efroni, Y., and Mannor, S. (2019). Action robust
reinforcement learning and applications in continuous
control. arXiv preprint arXiv:1901.09184.

Zhan, Z.-H., Li, J., Cao, J., Zhang, J., Chung, H. S.-H.,
and Shi, Y.-H. (2013). Multiple populations for multi-
ple objectives: A coevolutionary technique for solving
multiobjective optimization problems. IEEE transac-
tions on cybernetics, 43(2):445–463.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

428

