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Multi-team formation has received considerable attention in the last decade. Most existing approaches for
team formation assume complete knowledge of the environment, and the problem is reduced to a combina-
torial optimization problem. In a dynamic environmnt, the agents may be spatially distributed, have limited
information, lack global knowledge, and update their knowledge by communicating with each other. In such
a setting, it would be more appropriate for the agents to form teams by themselves in a distributed manner.
In this paper, we suggest a distributed algorithm for multi-team formation (DMTF). The implementation of
a distributed algorithm is quite challenging, and traditionally such algorithms are presented in a theoretical
way. We implemented the proposed algorithm using a multi-robot simulator. The experimental results show

the efficacy of the approach.

1 INTRODUCTION

Task execution in a dynamic environment may re-
quire cooperation among agents. In accomplishing
missions like waste retrieval and disposal, demining,
or objects manipulation in environments where di-
rect human intervention is impossible or impractical,
multi-agent systems are highly recommended. In a
dynamic environment, a task may require multiple
agents for its execution, the time and location of the
task’s arrival, the number of robots required to exe-
cute a task may not be known in advance. More-
over, a task execution may require all the members
of a team to be present at the location of the task. In
this paper, we consider the execution of such tasks in
a dynamic environment formally defined in Section 3.
Hence, the multi-team formation becomes essential in
such situations to accomplish a mission. Henceforth,
agents refer to physical agents, i.e., robots, and the
terms agents and robots are used interchangeably.

To accomplish a mission, multiple teams are to be
formed. This necessitates the design of a distributed
algorithm (Lynch, 1996) that can handle multi-team
formation at runtime. The robots need to communi-
cate with each other to acquire relevant information
to form a suitable team. Moreover, in such a dynamic
environment, explicit coordination is preferred over
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implicit coordination as it provides a better and re-
liable way of multi-robot coordination over implicit
communication (Yan et al., 2013). Implicit coordi-
nation (e.g., stigmergy behavior) is a way of coordi-
nation on a large scale of homogeneous robots, i.e.,
swarm robotics (Sahin, 2004).

Team formation has received a lot of attention in
the MAS community. Existing approaches such as
(Okimoto et al., 2016; Faliszewski et al., 2016; Lap-
pas et al., 2009; Gutiérrez, 2016) reduce the team for-
mation problem to combinatorial optimization prob-
lem, where the objective is to select k agents from
a set of N agents, where each agent has some skills,
such that a given cost criterion is optimized. These
approaches (Okimoto et al., 2016; Faliszewski et al.,
2016; Lappas et al., 2009) assume complete knowl-
edge of the environment (e.g., the total number of
agents in the environment, skill of an agent); current
state and location of an agent are irrelevant in these
approaches. Typically, in multi-agent settings, agents
have limited information about an environment and
they should coordinate among themselves (say, by ex-
changing messages) to accomplish a given task.

A novel distributed algorithm for multi-team for-
mation (DMTF) is suggested in this paper (Section 4).
The states of the robots are considered in designing
the algorithm because, at a time, a robot can par-
ticipate in one task (especially the multi-robot tasks,
where all the robots of a team are required at task’s
location), and physically can be present at one loca-
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tion. A robot cannot perform multiple activities in one
state at the same time. For example, a robot trying to
form a team with a robot cannot express its willing-
ness to be part of another team at the same time. Thus,
states of the robots are considered, which is a distin-
guishing property of our algorithm. Traditionally dis-
tributed algorithms are mostly presented in a theoreti-
cal and logical way (Lynch, 1996), and the implemen-
tation of a distributed algorithm is quite challenging.
We simulated the DMTF using ARGoS (www.argos-
sim.info); a realistic multi-robot simulator (Pinciroli
etal., 2012).

2 RELATED WORK

In (Okimoto et al., 2016), a centralized mission-
oriented robust multi-team formation problem is sug-
gested. A formal framework is defined, and two algo-
rithms are provided to form robust multi-team. How-
ever, we are interested in forming multi-team in a dy-
namic environment in a distributed manner as agents
lack global knowledge, and hence inter-robot commu-
nication is needed to form an optimal multi-teams for
the tasks.

A distributed approach for coalition or team for-
mation is given in (Shehory and Kraus, 1998; Ab-
dallah and Lesser, 2004; Coviello and Franceschetti,
2012; Tosic and Agha, 2005). The work (Shehory
and Kraus, 1998) suggest greedy distributed set parti-
tioning and set covering algorithms for coalition for-
mation that does not require considering the state and
location of an agent. In our work the team formation
algorithm is designed based on state of an agent. Type
of messages are not given in (Shehory and Kraus,
1998), whereas different types of messages with spe-
cific meaning is considered in our work.

The work (Abdallah and Lesser, 2004) proposed
an algorithm for coalition formation using an underly-
ing hierarchical organizational structure. A manager
tries to form a coalition for a given task by looking at
the capabilities of its child nodes. If it is not success-
ful, it calls a manager above her in the hierarchy, who
then creates sub-tasks and tries to solve the sub-tasks.
This process continues until no more managers can be
given a sub-task.

In (Tosic and Agha, 2005), an algorithm suggested
for group formation is based on the distributed com-
putation of maximal cliques in the underlying net-
work, where two agents are connected by an edge
if they can communicate among themselves. A
team formation strategy suggested in (Coviello and
Franceschetti, 2012) is based on two kinds of agents:
leader and follower. Agents only have local knowl-
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edge of the underlying network. A leader can commu-
nicate with only the neighbors in its visibility range by
sending a request message after looking at some sta-
bility constraints. A follower upon receipt of a request
message replies either accept or reject depending on
whether it wants to be part of the team or not.

Our strategy of team/coalition formation differs
from the above approaches (Abdallah and Lesser,
2004; Coviello and Franceschetti, 2012; Tosic and
Agha, 2005) in the following manner. Our approach
does not use any hierarchical structure among agents
as in (Abdallah and Lesser, 2004). In (Abdallah and
Lesser, 2004), the coalition formation process is del-
egated to other managers, whereas in our approach
either the initiator succeeds or fails in the team for-
mation process; delegation is not allowed. In our ap-
proach, an initiator can communicate with anyone of
agents and is not as restrictive as in (Coviello and
Franceschetti, 2012). In our approach, there are dif-
ferent types of messages whereas in (Coviello and
Franceschetti, 2012) there are only request and ac-
cept/reject messages.

Multi-robot coalition formation has been studied
by (Vig and Adams, 2006), where each robot has
some capabilities and a coalition has to perform some
task for which some capabilities are required. The
authors consider the problem of coalition formation
such that there is no coalition imbalance, which hap-
pens when a large part of resources is ascribed to any
robot in a coalition. A balance coefficient is thus de-
fined and it is used to form a suitable coalition for a
given task. In our algorithm, all the agents in a coali-
tion have required capabilities (skills) for task execu-
tion. Thus the notion of imbalance does not arise in
our case. Moreover, our algorithm is fully distributed
which is not the case in (Vig and Adams, 2006).

Auction-based approaches for team formation
(task allocation) are suggested in (Gerkey and
Mataric, 2002; Kong, 2015; Xie et al., 2018). A
bidder agent has some resources (e.g., data center,
CPU) (Kong, 2015), who may bid for multiple auc-
tioneers concurrently. This does not have any influ-
ence on software agents. However, when we move
to physical agents (eg, robots), a robot cannot be a
member of multiple teams at any point of time simply
because the tasks may be at different locations, and a
robot cannot be at two different locations at the same
time, even though a robot may have the capability to
perform multiple tasks at a time.

In our work a non-initiator robot (the bidder) will
not express its willingness to multiple initiators (auc-
tioneers) concurrently; when more than one request
message arrives, the robot stores the requests in its
local queue. Having one or more resources specified
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in the auction is a sufficient condition for an agent to
make a bid (Kong, 2015). Having the required skills
for a task is a necessary but not a sufficient condition
for a robot to express its willingness to be part of a
team, in our work. A robot’s behavior, in our work,
is determined by its current state, whereas in (Gerkey
and Mataric, 2002; Kong, 2015) states need not be
taken into consideration.

A work (Dukeman and Adams, 2017) also consid-
ers a similar kind of problem, i.e., multi-robots tasks
problem. However, the authors have used a central-
ized approach to solve the problem. In (Xie et al.,
2018), a decentralized approach for object transport
via implicit communication is presented. Our ap-
proach uses a distributed approach to form and assign
a team to a task at run-time via explicit communica-
tion which is different from the approaches given in
(Dukeman and Adams, 2017) and (Xie et al., 2018).
In (Hayano et al., 2016), a task consists of a finite
number of subtasks, and each subtask is assigned to
a suitable agent who has the required capability for
the subtask. A team for the task can be formed if
each subtask can be assigned to some suitable agent.
In (Hayano et al., 2016) a task is divisible which is
not the case in our work. Moreover, in our work two
or more agents execute a task.

In (Gunn and Anderson, 2015), the authors de-
scribe a framework for dynamic heterogeneous team
formation for robotic urban search and rescue. The
task discovery is made by a member of a team, and
it is sent to the team coordinator for assignment. The
team coordinator performs the task assignment, en-
suring the task will be carried out by a robot with the
necessary capabilities. However, in a distributed sys-
tem, no robot knows the states, locations, and skills of
other robots (i.e., the absence of global knowledge).
Thus, the robots should communicate among them-
selves in order to acquire relevant information for task
execution without the intervention of any central au-
thority. This necessitates the design of a distributed
algorithm for task execution in such a dynamic envi-
ronment. In our approach unlike (Gunn and Ander-
son, 2015), every robot has a similar level of priority,
and each of them can perform the task management
activities, i.e., searching, team/coalition formation by
acquiring the information from the robots available in
the environment at that moment in time.

Distributed coalition value calculation (DCVC) is
given in (Rahwan, 2007). Cost calculation of a team is
done by an initiator in our work. The work (Rahwan,
2007), however, does not consider the problem of dis-
tributed multi team formation, which is attempted in
our work. In this paper, the task arrival time (at what
time it is detected) and location are not known a pri-
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ori; hence, task searching and coalition/team forma-
tion activities are performed by a robot at runtime.
The (Skobelev et al., 2018) covers the problem of ag-
gregate and final assembly of complex technical ob-
jects at the ramp-up stage. Coalition formation tech-
niques have been implemented on some multi-agent
programming contest domains in (Rodrigues et al.,
2018). The work (Abbasi et al., 2017) suggest a feed-
back control system for motion control of the robots.

3 FORMAL FRAMEWORK

Definition 3.1. (Dynamic Environment). A global
view (snapshot) of an environment ‘E, with a set of
locations L, taken at time ¢, is given by a 3-tuple
E'=(R',T", f), where R' = {ry,...,r,} is the set
of robots present in the environment at time ¢, and
T"={1y,...,Ty} is the set of tasks (e.g., multi-robot
tasks) in the environment at time z, f: R x N+ L,
is a function that gives the location of a robot at a dis-
crete instant of time represented by the set of natural
numbers N.

In this work agents referred to physical agents,
i.e., robots. Each robot i€ R, where 1 < i < n, has
a p-dimensional skill vector, X; = [0,...,0,] and at
any instant of time it may be in any state from the set
of states S= {IDLE, READY, PROMISE, BUSY}. In
a dynamic environment, the state of a physical agent
(robot) is crucial as a robot can participate in one task,
and can be present at one location at a time. The sig-
nificance of the states are: IDLE state means that a
robot is not executing any task and it is free to take
any responsibility; BUSY state means that a robot is
engaged in executing a task (individually or jointly);
READY state indicate that a robot has detected a task
and it has started the team formation process for it;
and PROMISE state means that an robot has expressed
its willingness to be part of a team as robots are as-
sumed to be independent, autonomous and strictly
collaborative, not selfish and whenever possible they
express their willingness to be part of a team.

Definition 3.2. (Agent). An agent is defined as a 4-
tuple {S, %, id,b), where S is a set of states, y is a non-
null p—dimensional skill vector, id is the identifier,
and b is Boolean variable to denote whether or not the
agent is within the environment.

The value of a particular skill o; (wherei=1...p)
€ %i, may be 1 or 0 depending on whether a robot i
possess a particular skill or not. A robot can enter
the environment ‘£ at any point in time, but can leave
only if it is in IDLE state. In an environment, we can
assume that for the execution of any task, one or more



skill/s may be required. One way of expressing a set
of skills is by using a p-dimensional vector, where p
is the number of skills, a robot may possess. The i
component of the vector represents a particular skill,
say griping.

Definition 3.3. (Task). A task t is specified by a 4-
tuple T = (v,[,t,¥) where, v is the name of a task
(e.g., transferring or transporting a box B from loca-
tion [ to location [’, lift desk D) etc., where [ € L is
the location where the task is arrived/detected, ¢ is the
time at which the task arrived, and ¥ is a non-null p-
dimensional skill vector required to execute the task.

When a robot detects a task T, it acquires the
information about T, i.e., p-dimensional skill vector
W: = [Bi,...,Bp], needed to execute the task. We
use two binary operators © and @ that evaluate to
true/false. Let v; and v, be the skill vectors of a robot
and task respectively. The intuitive meaning of the
operators are: v; © v, holds, when a robot possess at
least one skill for a given task; which signifies that a
robot can be a member of a team to execute the task;
vi © v holds, when a robot possesses all the skills
and possibly more for a given task. (Definition 3.4).

Definition 3.4. (SKkill Vector). Let vi,v, be two
p-dimensional skill vectors, vi = [0,...,0p], V2 =
[B1,...,Bp], where o;, B; is either O or 1. Let v;[i] = B;
denote the i th component of v;. We define the fol-
lowing operations on the skill vectors as: (i) (vi =
vo) holds iff (Vi, i€ {1,...,p}, vi[i] = v2[i])
holds; (i) (vi®v,) holds iff (3i, i€ {1,...,p},
s.t. wli] Avi[i] holds; (iii) (viOvp) iff (Vi, i€
{1,...,p}, st. (»a[i] = v1[i])) holds; (iv) vi op vo =
[vi[l] op va[1],...,v1[i] op vai],

—.vi[p] op wp]]; where op € {v,A} de-
notes Boolean operations on the vectors; and (v)
op (Vi,y-..,vp) = (c..((vi op v2) op v3) ... op vy).
Definition 3.5. (Skill Vector of a Team). Let ' =
{x1,-..,x;} be a team of k robots, where x1,...,x; are
the variables and they are place-holders for ry,...,r,.
We define a p-dimensional skill vector of the team I,
Yras, 't = V(Xxl yeen aXxk>'

Definition 3.6. (Cost of a Task Execution). Let
I' = {x1,...,x,} be a team that can execute a task
T = (v,l,t,¥) where each member of the team was
located at loc(x;,t'), t' > t. The cost of a team I for
executing Tis Cirzy = D ,.cr Mix,ry Where

oy =P, T) X g= + d(loc(x;,'),1) x 0, where,
0y,,6;, € (0,1] denote remaining battery backup and
battery consumption rate respectively of x;, p(x;,T) is
the basic price of x; for T, d(/;,1») is the Euclidean dis-
tance between /1 to /. A robot with higher 6 ensures
that it will not fail due to its more remaining battery
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backup. A robot with lower 8 ensures that it will last
for a longer period of time.

Definition 3.7. (Dominant Team). Let I'y,...,.T,/
be the possible teams for executing a task *.
We call T, a dominant team if Crin <
Crim Ve {1,...,/" \{i}.

Definition 3.8. (Conditions for Multi-team Forma-
tion). Tasks t; = (vy,[1,1,'¥1) and Ty = (v, 15,1, ¥2)
can be executed simultaneously if the following con-
ditions hold:

e There exists a set &, of available robots at some
time t{ > t, such that Tg, © ¥, holds, and at some
time ¢ >t{, loc, =) forall r € R;.

e There exists a set &, of available robots at some
time té > t, such that Tgb © ¥, holds, and at some
time 5 > t}, loc, = I, for all r € R».

o RinR=g.

Problem Statement: We assume that there is a finite
number of agents, situated at different locations of an
environment E. No agent knows the total number of
agents in the environment. No agent knows the skills,
current state and current location of another agent.
The only way for an agent to update its knowledge
is via sending messages to another agent(s). Design a
distributed algorithm for dominant multi-team forma-
tion simultaneously.

4 DISTRIBUTED ALGORITHM
FOR MULTIPLE-TEAM
FORMATION (DMTF)

We consider a wireless network that is lossless, mes-
sage delay is finite, data is not corrupted during trans-
mission. Messages are delivered in a FIFO (first-in-
first-out) manner. No message is delivered to an agent
who is outside the environment. No assumption is
made on the network topology. Agents are coopera-
tive and whenever possible they expresses their will-
ingness to be part of a team.

The DMTF algorithm consists of send and receive
functions given in Algorithm 1 and 2 respectively. In
order to form a team for the execution of task T, i com-
municates with other robots. We refer to i as an initia-
tor, and the other robots as non-initiators. The overall
team formation process is given in Algorithm 1 and
Algorithm 2. To form a team, an initiator i broadcasts
a Request message {id;, v+, I, (¥r — ;) within com-
munication range and waits for some time, say A; id;
is the identifier of initiator i, /; is name of the task 7,
W, is skill of task T, and ; is skill of initiator i. Here,
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(¥ — ;) means the remaining skills required for ex-
ecuting the task.

A non-initiator j, who has at least one skill
required to execute the task (i.e., XD,
will send either a Wiling (whose format is
<idj,xj,pj,9;»76j,locj>), if it is in IDLE state or
an Engaged message if its state is other than IDLE.
The initiator increases its counter ¢ when it receives
a Willing message from non-initiator. The initiator
constructs a matrix A_S[a;;] of dimension (¢ +1) x p,
to keep the record of skills received via Willing mes-
sage. The matrix is initialized with all zero, i.e.,
a;j =0; Vien,Vje p). If a particular skill is available
in non-initiator’s skill vector ;, the value on that
cell in the matrix A_S[] is updated with value 1. The
column-wise union of each column of the matrix
A_S[] is done after computing all Willing messages
(after A time has elapsed). Eventually, initiator
checks whether the task T can be executed by this
available skill vector. If yes, a dominant team is se-
lected as per Definition 3.6, which is a combinatorial
optimization problem where k elements are chosen
from a set of size c; this problem is known to be
NP-hard (Okimoto et al., 2015). In the computation
of cost (Definition 3.6), the distance between two
locations is assumed to be the Euclidean distance.
Otherwise, the task is postponed temporarily. Thus
team formation for a task is not guaranteed any time.

The initiator sends a Confirm message to those
robots (k — 1) who are finally selected for the team
and it sends Not-required message to those robots
(¢ — (k—1)) who had sent Willing message but finally
are not selected for team. Also, i changes its state
from READY to IDLE or PROMISE depending on its
queue status. The matrix construction and updation
are illustrated by an example later in this section. The
proposed distributed algorithm is non-blocking since
a timer is used. If there was no timer, an initiator
would have waited indefinitely and thereby forcing
some non-initiators to wait indefinitely as well; thus
the system would be blocked.

The receive function of a robot is given in Algo-
rithm 2. The computations are done based on the
current state that may be IDLE (line no. 19-26),
PROMISE (line no. 27-42), BUSY (line no. 14-17
and 44-46), and READY (line no. 2-13). Within a
state, the type of message is checked and appropriate
actions are taken. For example, when state is IDLE, if
a Request message is received, it becomes PROMISE,
the identifier of the sender is en-queued, and flag is set
to true; all these actions are done atomically (denoted
by {...)). Now the robot sends a Willing message to
the sender (initiator) and flag is set to false (line no.
24-25 Algorithm 1).
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A robot j maintains a local queue Q which keeps
the identifiers of the senders, based on the incoming
Request messages. The Q is used to avoid starvation
since more than one initiator may send Request mes-
sages at the same instant in time. When a robot goes
to BUSY state, it means, it is in task execution state,
which takes considerable time. So, maintaining the Q
for this period is of no use, and thus Q is made empty.
The Boolean variables flag and flag’ are used to con-
trol the sending of Willing and Engaged messages re-
spectively.

Algorithm 1: DMTF-Send function.

Send function of initiator i

state := READY; broadcast Request; ;
create a matrix A_S[a;;lux p; < to keep the record of skills
start timer and wait for A unit of time;

if (team formed for task t) then

[T VR SR

for each possible team, calculate cost as per Definition 3.6
and select the team that has minimum cost, say I" of size k;

send Confirm; to (k— 1) members of T';

send Not-Required; to (¢ — (k — 1)) non-initiators;

(state := BUSY; make Q; empty);

initiate execution of T when (k — 1) members of T arrive at
L

e ® 9

10 else

11 send Not-Required; to ¢ non-initiators;

12 if O; = ( then

13 | state:=IDLE:

14 else

15 state := PROMISE;

16 send Willing; to the front element of Q;;

17 end

18 end

19 if Willing message is received in a state # READY from j then
20 ‘ send Not-Required; to j;

21 end

Send function of Non-initiator j for a task T = (v,l,7,¥):
22 case Q; # J and flag = true do

23 ‘ send Willing; to the front element of Q;; flag := false;
24 end

25 case Q; # (& and flag’ = true do

26 ‘ send Engaged; to the rear element of Q;; flag’ := false;
27 end

In PROMISE state, non-initiator robot receives
either Confirm or Not-required messages. If non-
initiator receive a Confirm message, its approach
towards initiator/task’s location (Algorithm 2, line
no. 31-33). If non-initiator receives Not-required
message, then it change its state from PROMISE to
IDLE (Algorithm 2, line no. 34-41). The non-initiator
who receives the CONFIRM message and moves
towards initiator location, sends a beacon signal to
acknowledge that it has reached. When all selected
robots reach task T location, they synchronize and
align themselves to be ready for task execution. Even-
tually, initiator commands for task execution and they



Algorithm 2: DMTF-Receive function.

Receive function of Initiator j
1 ¢:=0; //to count the number of Willing messages
2 case state = READY do

3 case msg = Request do
4 ‘ {enqueue(Qj,i); flag' := true)
5 end
6 case msg = Willing do
7 c:=c+1;
8 update available matrix A_S[a;;l,x p;
9 end
10 case msg = Engaged do
11 ‘ skip;
12 end
13 end
14 case state = BUSY do
15 case msg = Request do
16 skip;
17 end
18 end

Receive function of Non-initiator j
19 case state = IDLE do

20 case msg = Request and x;®¥: do

21 (state := PROMISE; enqueue(Q;,i) if i is not
presentin Qj; flag :=true)

22 end

23 case msg = Request and — (x;®¥;) do

24 ‘ skip;

25 end

26 end

27 case state = PROMISE and x;®¥: do

28 case msg = Request do

29 (enqueue(Q;,i) if i is not present in
Qj; flag’ := true)

30 end

31 case msg = Confirm do

32 ‘ {state := BUSY; make Q; empty; move to loc;)

33 end

34 case msg = Not-Required do

35 dequeue(Q;);

36 if 0; = (7 then

37 ‘ state = IDLE;

38 else

39 ‘ flag := true;

40 end

41 end

42 end

43 case state = BUSY do

44 case msg = Request do

45 skip;

46 end

47 end

jointly execute the task.

All the robots of the team including initiator, start
the task execution (transportation) and their state be-
comes BUSY now. After finishing the task team is dis-
solved and robots (initiator and non-initiator) changes
their state to IDLE. In this way, all the robots of the
environment behave according to Algorithms 1 and 2
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and accomplish the mission. Wherever no task is left
of a mission, the algorithm terminates.

S EXPERIMENTAL RESULTS

In the environment, prototypes in AGRoS, 5
robots and 4 different tasks (transportation of ob-
ject/obstacle) are present. The 6-dimensional skill
vector required for executing the tasks is as fol-
lows: task Wy = [1,0,1,1,0,1], task W, =
[0,0,0,0,1,1], task W, = [1,0,0,0,0,1], and task
Y., =[1,0,0,0,0,0]. The task T, T2, T3 and T4 are
represented with large disc, large box, small disk and
small box respectively. The battery back required for
executing each task is considered to be > 50%. Ini-
tially, battery backup 0 of each robot is assumed to be
100%. The details of a robot is given in Table 1.

Table 1: The value of skill vector ¥, basic price p, and bat-
tery consumption coefficient 8 of each robot

Robot | Skillsset(x:) | () | ©

" [1,0,0,0,0,0] | 40
" [0,0,0,0,0,1] | 50
r [1,1,0,0,0,0] | 70

7 [0,0,0,0,1,1] | 70
rs [0,0,1,1,0,0] | 60

- - NV

5.1 Multi-team Formation Scenario

In the dynamic environment, the arrival time and lo-
cation of the task are not known a priori. In such a
situation, multiple tasks of a mission may be detected
at the same time by different robots (initiators). To
execute the tasks, multiple teams are required to be
formed simultaneously. The algorithm should be ca-
pable enough to handle this situation. The proposed
algorithm handles this situation easily as shown in
Figure 1. If a sufficient number of robots are available
in the environment (conditions for multi-team forma-
tion satisfies as given in Definition 3.8) at the time
of the team formation process, then multiple teams
can be formed successfully. The multi-team can exe-
cute multi-tasks in parallel. The illustration of multi-
team formation process is given in Figure 1 and cor-
responding formed team are presented in Tables 2 and
3.

At some moment in time, two robots r4 and r3 de-
tect two tasks T and T, respectively. The task T is
represented by large disc green in color, while the T
is shown with a large box and red color. Both robots
r4 and r3 start the team formation process simultane-
ously. Two teams are formed successfully. The mem-
bers of team 1 and 2 are given in Table 2. The results
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Figure 1: Multi-team formation and dual task execution in parallel

for another run of the algorithm are given in Table 3.
In this way, we can conclude that the proposed dis-
tributed algorithm can handle the multi-team forma-
tion.

Table 2: Team formation for the execution of tasks (11, 72),
simultaneously

Tasks Task’s initiator team Cost
T 74 {ra,ri,rs} 1353.45
T I {r3,r} 785.78

Total_Cost 1149.23
Total_Time 123.27

Table 3: Team formation for the execution of tasks (13,74),
simultaneously

Tasks | Task’s initiator team Cost
T3 r {r2,ra} 1145.85
T4 r {r| } 646.97

Total_Cost 1792.82
Total_Time 102.42
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5.2 Discussion

We present some challenges encountered during the
implementation. The implementation of the proposed
distributed algorithm (given in Section 4) consists of
challenges like how to explore, navigate, avoid col-
lision, control the speed of a robot when it comes
near other objects (robot or obstacle), rotation and
alignment to reach the exact location, grab the ob-
ject, synchronization while execution. We managed
these issues during the implementation of DMTF in
ARGoS. We have also addressed another subtle situ-
ation, where two robots are present at the location of a
task and both are eligible for executing the task. Now,
they may start the team formation process simultane-
ously for the same task, which should not happen.
This situation is handled as follows. A robot can
sense its neighbor by an omni-directional camera sen-
sor. The robots will exchange their identities and skill
vectors by Beacon signals. The robot who has more
skills will become the initiator. If their skill vectors



are same, the robot with lower identifier will become
the initiator.

6 CONCLUSION

We considered a type of multiple team formation
problem in a dynamic multi-agent setting, where
agents have limited information about an environment
(e.g., total number of agents present in the environ-
ment, skill, state and location of other robots) and they
should coordinate among themselves by exchanging
messages to accomplish a given mission composed of
multi-robot tasks. We presented a distributed algo-
rithm DMTF that can form multiple teams simultane-
ously, which to the best of our knowledge, is the first
attempt.

Implementing a distributed algorithm is nontriv-
ial. A prototype model of the proposed algorithm is
developed in ARGoS; a multi-robot simulation envi-
ronment, and it was tested through intensive simula-
tions. The simulation results are quite encouraging,
exhibit the expected behavior of the algorithm, and
illustrate how multiple teams are formed. Our algo-
rithm could be useful in real-world applications where
control is distributed, and no central entity is respon-
sible for controlling the activities of other robots, and
the roles of robots are not decided in advance. As part
of our future work, we wish to implement the proto-
type model on real robots and test the efficiency of the
system.
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