
Evaluation of Reinforcement Learning Methods for a Self-learning 
System 

David Bechtold, Alexander Wendt, and Axel Jantsch 
TU Wien, Institute of Computer Technology, Gusshausstrasse 27-29, A-1040 Vienna, Austria 

Keywords: Reinforcement Learning, Machine Learning, Self-learning, Neural Networks, Q-learning, Deep Q-learning, 
Replay Memory, Artificial Intelligence, Rewards, Algorithms. 

Abstract: In recent years, interest in self-learning methods has increased significantly. A challenge is to learn to survive 
in a real or simulated world by solving tasks with as little prior knowledge about itself, the task, and the 
environment. In this paper, the state of the art methods of reinforcement learning, in particular, Q-learning, 
are analyzed regarding applicability to such a problem. The Q-learning algorithm is completed with replay 
memories and exploration functions. Several small improvements are proposed. The methods are then 
evaluated in two simulated environments: a discrete bit-flip and a continuous pendulum environment. The 
result is a lookup table of the best suitable algorithms for each type of problem. 

1 INTRODUCTION 

The interest in machine learning research has 
exploded in recent years. Nowadays, it helps us to 
accomplish tasks that could not be implemented from 
scratch because of the immense state space. These 
methods learn from experiences just as humans do, 
but compared to us, much more additional data is 
necessary. Human beings immediately recognize 
which impact their actions have on the environment. 
Machines lack that understanding. Due to the large 
state space, the function to be learned is usually 
approximated. 

In a project, a self-learning agent shall be 
developed that learns from scratch what its sensors 
and actuators are doing and how to use them to reach 
a certain goal. The overall purpose is to develop one 
software that can adapt to an application, where the 
interfaces to the environment are unknown at design 
time. 

A good approach to handle large state spaces is to 
let the system learn to solve the task completely 
independent. For scalability, the task should not be 
tied to any assumptions about the environment. 
Therefore, the agent should start with little prior 
knowledge about the task, the environment, and the 
meaning of the in- or outputs. In order for a new task 
to be learned, only a reward function has to be 
designed, which rewards the agent for performed 
actions. With that in mind, a robot-like application is 

appealing. For this, the following constraints should 
be considered: 

 Continuous state space, because sensory outputs 
are continuous 

 Work only with a partial part of the environment 
perceived 

 Deal with sparse rewards since real numbers are 
uncountable 

 Have as little knowledge about itself, the task and 
the environment as possible 

The agent has to predict which action to perform 
next to receive a high amount of reward. Deep Q-
learning (DQN) performed well on several Atari 2600 
games. DQN outperformed a linear learning function 
in 43 out of 49 games and human game tester in 29 
out of 49 games (Minh, 2013). Therefore, algorithms 
from the area of reinforcement learning algorithms 
are selected. 

To prepare for a self-learning agent, the main 
research objective of this paper is to address the 
question: which combination of reinforcement 
learning algorithms is most suitable for discrete and 
continuous state spaces and action spaces. 

The focus of this paper is to analyze, improve and 
compare different Q-learning algorithms, replay 
memories, and exploration functions to determine 
which combination of algorithms to choose for each 
task setting. The algorithms are being evaluated in 
two simulation environments: a discrete bit-flip 
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environment (Andrychowicz, 2017) and a continuous 
pendulum environment1. 

2 AVAILABLE ALGORITHMS 

Reinforcement Learning does not use labels for 
datasets in the same way as supervised learning does. 
There is no ground truth present. Instead, the agent 
receives a reward or punishment signal through 
exploration of an environment. It is attempted to 
maximize this reward signal in the long-term because 
the amount of reward describes how good or bad the 
agent performed. Learning is described as finding 
actions that result in a higher reward. Therefore, the 
reward signal is transferred to an expected reward for 
each state (Sutton, 1998). 

There are two groups of methods: model-free or 
not model-free. Not model-free methods require prior 
knowledge about the environment in the form of state 
transition probabilities. As this agent shall start from 
scratch, only model-free methods are of interest. 

A policy is a function, which maps states to 
actions. The agent perceives a state. The policy 
determines which action it will perform. In most 
cases, the policy aims to maximize the cumulative 
reward. On-Policy methods are based on known 
policies. Off-Policy methods are based on learned 
content. 

Immediate rewards are given directly after an 
action and no future rewards need to be considered. 
To maximize the reward, only the selected action and 
the current state of the agent are essential. Delayed 
rewards mean that an action can generate immediate 
rewards, but the future must be considered, at least 
the next state of the environment. These problems are 
more challenging to solve because the agent has to 
choose actions that pay off in the future. Pure-delayed 
rewards are the same for all states except the last state 
of an environment. Playing chess, for example, could 
be such a problem because the environment only 
gives the agent a reward for winning or losing the 
game.  

Finally, the reward function can be designed to be 
shaped or non-shaped. Non-shaped reward functions 
usually provide only a positive reward for the main 
goal of the task. Shaped reward functions are 
typically designed to guide the learner towards the 
main goal by providing rewards for getting closer to 
the goal. 

                                                                                                 
1 Open AI Gym; Pendulum, 2019.  

https://gym.openai.com/envs/Pendulum-v0/ 

Reinforcement learning techniques try to solve 
finite Markov Decision Processes (MDP). MDPs 
describe the agent’s interaction with the environment 
and vice versa. At each time step, the agent is located 
in a state and performs an action selected by a policy 
that leads to a successor state and receives a reward. 

The goal is to optimize the total discounted 
rewards over time. It requires a scalar number that 
estimates how good it is to be in a specific state, or 
which action should be performed next to receive a 
high amount of reward. It can be achieved with the 
help of the so-called state-value function and the 
action-value function. The state-value function 
provides the expected cumulative discounted reward 
(expected return) for a state of a policy. The action-
value function provides the expected return for a state 
executing the action of a policy. 

2.1 Q-learning 

Q-learning calculates Q-values, i.e. the expected 
reward, which shows how much reward to expect by 
performing a particular action from a certain state. 
Deep Q-learning means that a neural net is used as a 
function approximation for predicting the Q-values. 

As a model-free algorithm is required, at least two 
policies are usually used: one for exploring the 
environment, e.g. a random policy, which updates the 
Markov Decision Process of the agent. With this 
knowledge, the second policy is used after training to 
exploit the environment. When the state visits reach 
towards infinity, the trained policy converges to the 
optimal policy. At this point, the agent can stop 
performing random actions and start to act according 
to the trained policy. 

An agent using the Q-learning approach updates 
the corresponding Q-value after each observed 
transition. A transition is a 4-tuple ሺݏ௧, ܽ௧, ,௧ାଵݎ  ௧ାଵሻݏ
that consists of the current state ݏ௧ , the performed 
action ܽ௧ , the resulting state ݏ௧ାଵ  and the earned 
reward ݎ௧ାଵ. 

A method of updating the Q-values is the 
Temporal Differences (TD) method (Dayan, 1992). A 
problem with Temporal Difference Q-learning is that 
Q-values must be stored in a lookup Q-table. For a 
large continuous state space, it suffers from the Curse 
of Dimensionality (Kober, 2012) and cannot be used 
here. The team of Google DeepMind (Minh, 2015) 
overcame this issue by using a neural network to 
approximate the action-value function. Instead of 
using a state and an action to update the Q-table with 
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a Q-value, they only feed the Q-network with a state 
and obtain a Q-value prediction for each action. The 
highest Q-value represents the best action that can be 
performed from a particular state. The Deep Q-
learning network (DQN) is trained with a loss 
function that determines the error and allows the 
weights to be changed. Further, a replay memory is 
used to store the last n states, which are used as a 
mini-batch for training. 

A problem with DQN is that small changes in the 
Q-values can lead to fast policy changes and thus, the 
policy can begin to oscillate. It leads to an unstable of 
the Q-values, which harms the task solving 
performance. To prevent this particular case, the 
Double DQN (DDQN) (van Hasselt, 2015) uses two 
Q-networks: The first Q-network that is used for 
action selection only and the second Q-network that 
evaluates actions. It is attempted to keep the Q-
network as stable as possible over several transitions 
by slowly updating its weights. 

For robotic control, it is essential to consider 
continuous action spaces. The predicted Q-values 
only determine which action leads to the highest 
amount of reward, but not with how much force this 
action should be performed. (Lillicrap, 2015) 
introduced the Deep Deterministic Policy Gradient 
(DDPG), which introduces an actor-critic (AC) 
algorithm to deal with continuous action spaces. 
DDPG uses two Q-networks, of which one learns to 
act (actor), while the other learns to criticize the taken 
action (critic). 

2.2 Replay Memories 

All Deep Q-learning algorithms need to store 
transitions in a replay memory. If this were not the 
case, the Q-network would have to be trained by 
successive transitions. It is like learning based only 
on immediate experiences, without considering the 
past. Experiences have to be considered to enable a 
successful learning approach. It is done by saving 
transitions in a so-called replay memory. However, 
successive transitions are very inefficient due to the 
strong correlation between them. 

To break up these correlations, the transitions are 
usually sampled randomly. Further, as the memory 
gets full, the oldest transitions are deleted (Minh, 
2013). The collaboration of the environment, Q-
learning method, and replay memory can be observed 
in Figure 1. 

An issue with this type of memory is catastrophic 
forgetting (Kirkpatrick, 2017). Either it means that 
the Q-network has learned a task correctly but forgets 
about it by simply being trained with many useless 

transitions, or it was not trained with transitions that 
solve the task at all, i.e. in a sparse rewarding 
environment. 

 

Figure 1: Collaboration of the replay memory with the Q-
learning method and environment. 

Experience Replay (EXPR) (Minh, 2013) is the 
simplest and most widely used one. Transitions are 
stored one after another in a memory of size N. The 
most recent transitions experienced are always stored 
at the end of the memory. Mini-batches are sampled 
randomly distributed from the whole memory. As the 
memory grows full, the oldest transitions, which are 
the transitions at the beginning of the memory, are 
deleted. Intuitively, this memory is the most 
susceptible to catastrophic forgetting. 

Prioritized Experience Replay (PEXPR) 
(Schaul, 2015) takes advantage of the fact that the 
temporal difference (TD) error of transitions can 
easily be calculated. The TD error shows how 
surprising or unexpected a transition is, i.e. the higher 
the TD error of a transition, the more the agent can 
learn from these transitions. Sampling only 
transitions with high TD error can make a system 
prone to overfitting, due to the lack of diversity. 
Therefore, the TD error is converted to a priority. To 
guarantee that even transitions with low priorities are 
sampled with a non-zero probability from the 
memory, multiple methods are used. One method is 
to set the priority of a transition to the maximum for 
the first insert. It ensures that these transitions are 
sampled for sure in the upcoming mini-batch. Two 
types of prioritizations are available: rank-based 
(PRANK) and proportional-based (PPROP). 

Hindsight Experience Replay (HER) is suitable in 
a sparse reward environment. Rewards are only given 
if a goal is reached (pure-delayed rewards). Usually, 
multiple entire episodes are stored in the memory 
without any positive rewards (Andrychowicz, 2017). 
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From episodes without positive rewards, the Q-
learning approach only learns which actions should 
not be performed. It is not useless knowledge, but in 
the end, it does not help to solve the task. Therefore, 
Q-learning learns little or even nothing from such 
episodes. However, these episodes contain some 
useful information, such as how non-goal states can 
be reached. This knowledge is useful and can help the 
agent to solve the task better and faster. If this state 
must be visited in order to solve the task, the 
knowledge about how to reach it can be considered as 
relevant. To enable learning, the algorithm defines a 
state as a virtual goal, rewards it with zero, and adds 
it to the memory. As Hindsight Experience Replay 
only instructs how virtual goals are generated and not 
how to save them, it is compatible with all other 
replay memory methods, like Experience Replay. To 
decide which goal the Q-network should follow, the 
state of the virtual or main goals is additionally 
provided as an input. It makes it necessary to double 
the size of the Q-network. Providing the main goals 
as an input for the Q-network is, in the authors’ 
opinion, not suitable for self-learning. The Q-network 
simply learns that it must reach the state, which is 
equal to the goal input. Another issue is that HER 
performs poorly in combination with shaped reward 
functions (Andrychowicz, 2017). 

2.3 Exploration 

To learn policies in an optimal way, an agent must 
make two far-reaching decisions: how long should the 
environment be explored and when should it be 
exploited? Exploration means that an agent performs 
actions to gather more information about the task and 
the environment. Exploitation means that an agent 
only executes the best action possible from a certain 
state. Finding out when to explore and when to 
exploit is a key challenge, known as the exploration-
exploitation dilemma (Sutton, 1998). 

Exploration methods can be divided into two 
groups: directed and undirected (Thrun, 1992). 
Directed exploration uses information about the task 
and/or the environment. One requirement mentioned 
in the introduction is that the agent should know as 
little as possible about the task and the environment 
at the start. Therefore, only undirected exploration is 
considered here. 

ε-greedy (EG) is a non-greedy exploratory 
method in which the agent chooses a random action 
with a probability of 0 ൑ ε ൑ 1 at each time step 
instead of performing the action with the highest Q-

                                                                                                 
2 https://gym.openai.com/envs/ 

value. To avoid the exploration-exploitation 
dilemma, ε is decreased at each timestep by a fixed 
scalar number. The main challenge is to find the right 
exploration decline. 

For a physical environment with momentum, an 
Ornstein-Uhlenbeck process (OU) is usually used as 
additive noise to enable exploration. This process 
models the velocity of a Brownian particle with 
friction (Lillicrap, 2015). Especially in the case of 
robot control, such a process is used, due to the 
drifting behavior of the output values. The parameters 
can be set to produce only small drift-like values. In 
general, the Ornstein-Uhlenbeck process is a 
stochastic process with medium-reversing properties 
as in equation 1. 

ሻݏሺߨ ൌ ݐܺ݀ ൌ ߠ ∙ ሺߤ െܺݐሻ݀ݐ൅ (1) ݐܹ݀ߪ	

where ܺ଴ ൌ  means how fast the variable reverts ߠ .ܽ
towards the mean. ߪ  is the degree of the process 
volatility and ߤ  represents the equilibrium or mean 
value and a is the start value of the process, which are 
usually set to zero. The Ornstein-Uhlenbeck process 
can be considered as a noise process. It generates 
temporarily correlated noise. The noise ܰሺܽ, ,ߠ ,ߪ  ሻߤ
is added to the action to enable exploration. 

3 RELATED WORK 

Although reinforcement learning is a hot topic, 
finding articles, which use real physical robots that 
learn to solve problems on their own is rare. Dozens 
of articles and simulation environments exist. For 
example, the OpenAI Gym2 offers more than sixty 
environments in which learning algorithms can be 
evaluated and compared to the results of other 
competitors. However, not many articles deal with 
few sensors and a reduced perception of the 
environmental state.  

Since robotic tasks are often associated with 
complex robot motion models, poor environmental 
state resolution and sparse rewards play an important 
role. (Vecerik, 2017) introduces a new methodology 
called Deep Deterministic Policy Gradient from 
Demonstrations (DDPGfD) that should help to solve 
those issues. The idea is to store a defined number of 
task solving demonstrations in the replay memory and 
keep them forever. 

In to a 2D aerial combat simulation environment 
with near continuous state spaces (Leuenberger, 
2018), the Continuous Actor-Critic Learning 
Automaton (CACLA) is applied. They replaced 
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Gaussian noise by an Ornstein-Uhlenbeck process as 
an exploration function and introduced a modified 
version the Monte Carlo CACLA, which helped to 
improve performance. 

In (Shi, 2018), an adaptive strategy selection 
method with reinforcement learning for robotic 
soccer games was introduced. The researchers used 
Q-learning to learn which strategy small robots 
should follow in certain situations to successfully 
play football. Each team consisted of four robots and 
the game state was observed with a camera filming 
the entire football field. The main issue addressed by 
this work was that a very dynamic environment, such 
as soccer with multiple teammates, requires timely 
and precise decision-making. 

In (Hwangbo, 2017), a reinforced learning 
method was introduced for the control of a quadrotor. 
The 18-dimensional state vector of the quadrotor 
included a rotation matrix, the position, the linear 
velocity, and the angular velocity. The policy was 
optimized with three methods: Trust Region Policy 
Optimization (TRPO) (Schulman, 2015), DDPG 
(Lillicrap, 2015), and a new optimization algorithm 
developed by the authors. While TRPO and DDPG 
performed poorly, the algorithm of the authors 
performed well. However, the authors used a model-
based learning approach, which is not applicable here. 

(Tallec, 2019) analyzes how various parameters in 
DDPG can be tuned to improve the performance in 
near continuous time spaces. These are discretized 
environments with small time steps. Through a 
continuous-time analysis, where the time step is 
considered, such as discount factor, reward, learning 
rate and exploration parameters. 

4 IMPROVEMENTS 

For the particular problem of learning from scratch, 
three improvements of the analyzed algorithms are 
proposed. The aim is to achieve better results overall. 

4.1 Hindsight Experience Replay with 
Goal Discovery 

The idea behind Hindsight Experience Replay with 
Goal Discovery (HERGD) is that the main goal of the 
agent has to be discovered first and only after its 
discovery, it is provided to the Q-network. This 
approach offers more flexibility than the standard 
Hindsight Experience Replay, in which the main goal 
has to be provided to the Q-network from the 
beginning. Virtual goals are inserted as defined in the 
standard Hindsight Experience Replay algorithm. 

In environments where it is unlikely that the target 
will be reached with random exploration methods, 
HERGD will struggle in the same way as the ε-greedy 
and Ornstein-Uhlenbeck process. Although, once the 
goal is found, this approach can get to the optimal 
policy faster. 

4.2 ε-greedy Continuous 

Since ε-greedy is only applicable to integer actions, 
ε-greedy Continuous (EGC) extends the idea of 
standard ε-greedy to support continuous action spaces 
as well. The key idea behind this approach is that 
every action from the action space has its own action 
range [ܽ௟௢௪௘௥, ܽ௨௣௣௘௥]. For each action a, a random 
uniform value ߣ is drawn, for which ܽ௟௢௪௘௥ ൑ ߣ	 ൑
ܽ௨௣௣௘௥ is valid. The policy equation (2) tells when to 
use a random action or a policy action. 

ሻݏሺߨ ൌ ൜
ݕ݈݌݌ܽ ߣ ݋ݐ ݊݋݅ݐܿܽ ܽ	 ∈ ,ሻݏሺܣ ݂݅	Ϛ ൑ ߝ	
݁ݏݑ ݊݋݅ݐܿܽ ݉݋ݎ݂ ݁ݏ݅ݓݎ݄݁ݐ݋			,ሻݏሺߨ

 (2)

 ሻ is the action space and ε isݏሺܣ ,ሻ is the policyݏሺߨ
the threshold of exploration that is lowered with each 
time step. 

4.3 Ornstein-Uhlenbeck Annealed 

An issue concerning the standard Ornstein-
Uhlenbeck process is that switching from exploring 
to exploiting is done immediately. This means the 
process is outputting noise until the exploration stops 
and the exploitation begins. It can harm the learning 
process because actions, that are already optimally 
learned, can be overwritten by the outputted noise. On 
the other hand, limiting the outputted noise by 
adjusting θ or σ leads to under-exploration. 
Therefore, the idea behind Ornstein-Uhlenbeck 
Annealed (OUA) is to reduce the generated noise 
after every time step by a function similar to ε-greedy 
continuous as shown in equation 3 

ሻݏሺߨ ∶ൌ ሻݏሺߨ ൅ ܰሺܽ,ߤ,ߪ,ߠሻ ∙ ݂ሺݐሻ (3)

For this evaluation, the function ݂ሺݐሻ is selected to 
reduce the noise linearly after every timestep. 

5 EVALUATION 

The algorithms are being tested for suitability and 
being compared in different environments. 

5.1 Experiment Environments 

A discrete and continuous state environment is 
provided to evaluate the algorithms. For both 
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environments shaped and non-shaped rewards are 
analyzed. 

5.1.1 Discrete Bit-flip Environment 

The basic idea of this environment is based on the bit-
flip environment (Andrychowicz, 2017). The goal is 
to flip the bits in a bit vector ܤ ௡ܸ of length n in the 
same way that it matches a target bit vector ܸܤ ௡ܶ 
within n tries. The state ܵ ൌ ൛ܤ ௡ܸబ ܤ… ௡ܸ೙షభൟ is the 
bit vector ܤ ௡ܸ ൌ ܵ. The action a is the number of the 
bit to flip and it can be chosen from the action space 
ܣ ൌ ሼ0, 1, … , ݊ െ 1ሽ. For instance, an action a = 2 
means that the bit ܤ ௡ܸభ  in bit vector ܤ ௡ܸ is flipped. 
To make the algorithms and methods comparable, bit 
vector ܤ ௡ܸ is always reset to zero and the target bit 
vector ܸܤ ௡ܶ is taken from a look-up table.  

Minor adjustments had to be made to use this 
environment for this application. Since DDPG 
outputs continuous values and the bit to be flipped 
must be an integer number, a conversion from real to 
natural numbers has to be made. Therefore, the output 
of DDPG is divided into n equal sections, each 
representing one bit in the bit vector.  

Because this is a discrete process, the Q-learning 
method DDPG does not use an OU process for 
exploration. Thus, only continuous ε-greedy 
exploration is used. 

In the non-shaped reward function, the reward for 
reaching the goal is set to 1, and all other rewards are 
set to -1. It simulates a delayed and sparse rewards 
problem, since the probability of finding the target bit 
vector ܸܤ ௡ܶ  is drastically decreasing with the bit 
vector length n. 

The shaped reward function simply counts the 
equal bits of a bit vector ܤ ௡ܸ  and target bit vector 
ܸܤ ௡ܶ. Then, the counted number is divided by n-1. 

5.1.2 Continuous Pendulum Environment 

To be able to evaluate the RL methods within a 
continuous action and state-space environment the 
pendulum environment from open AI Gym was 
chosen. The goal is to swing a frictionless pendulum 
upright, so that it stays vertical, pointing upwards.  

Figure 2 shows the pendulum near the maximum 
reward position. The perceived state of this 
environment is a three tuple ܵ ∈
ሺܿݏ݋ሺ߶ሻ , sin	ሺ߶ሻ, ሶݒ ሻ. This state is generated by the 
pendulum angle ߶  and vertical velocity ݒ  of the 
pendulum. To its state, a torque െ2 ൑ ߬ ൑ 2 can be 
provided as an action a. However, to make this 
environment more difficult to solve, the torque is 
limited to െ1 ൑ ߬ ൑ 1 here. Therefore, the pendulum 

must gain velocity through swinging to reach a 
rewarding position. After a reset, the pendulum starts 
in a random position and with a random torque. 

 

Figure 2: The pendulum environment with the pendulum 
position near the maximum reward position. 

Non-shaped rewards are set to 1 if the pendulum 
points upwards and its angle is in range of െ1° ൑
߶ ൑ 1°. If not, the reward is set to -1. 

For shaped rewards, this environment uses 
equation 4 with െߨ ൑ ߶௡௢௥௠ ൑ and െ8 ߨ ൑ ሶݒ ൑ 8. 
Therefore, the reward is in the range of െ16.27 ൑
ܴ ൑ 0. 

ܴ ൌ െሺ߶௡௢௥௠ଶ ൅ 0.1 ∗ ሶݒ 2 ൅ 0.001 ∗ 	߬ሻ (4)

Since Q-learning algorithms output discrete 
actions, conversion from natural numbers to real 
numbers is done. The output layer of DQN and 
DDQN are extended to 21 nodes. Each of them 
represents a specific torque value, starting from -1.0, 
with a step size of 0.1, to 1.0 including zero. 

5.2 Test Setup 

A Q-learning method requires the following methods 
to work: A Q-algorithm, an exploration method, a 
replay memory, and a reward function. The Q-
learning algorithm can be considered as the brain. 
Learning and decision making is done here. DQN and 
DDQN use standard feed-forward multilayer neural 
networks. Important parameters are the number of 
layers and neurons, the activation functions, the 
optimizer, the learning rate, the discount factor, and 
the soft target update factor. The soft target factor is 
only required for DDQN and DDPG because DQN Q-
networks do not include a second neural net. 
According to (Lillicrap, 2015), all Q-networks in this 
work use the Adam optimizer (Kingma, 2014). 

The learning rate is multiplied by the values 
computed by the optimizer. Therefore, it determines 
how fast the Q-network learns. Since some of our 
evaluations have to deal with sparse rewards, which 
means that the past experiences are important, the 
discount factor is chosen to be 0.98, which is close to 
1.0. The learning rate and soft target update factor are 
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chosen to be small, i.e. 0.001, because solving sparse 
reward problems requires many transitions, since the 
rewarding state is not often experienced. All hidden 
layers use RELU units as activation function, as they 
are currently the most successful and widely used 
(Ramachandran, 2017). 

For the replay memory, the most essential 
parameter is its size. It determines how many 
transitions can be stored. While large memory sizes 
can only slow down learning, too small memory sizes 
can drastically reduce learning success or even make 
it impossible. Sizes from 16 to 128 state transitions 
will be tested. 

For the Hindsight Experience Replay, 
additionally, the sampling method and the quantity of 
new goals to sample has to be chosen. Based on 
(Andrychowicz, 2017), the sampling method future is 
selected because it gives the best overall results 
together with the best value for parameter k = 4. For 
PPROP, (Schaul, 2015) mentioned that a good value 
for the prioritization factor is 0.6. 

When exploring, it is sometimes necessary to 
carry out already learned actions to be able to refine 
them further and finally to solve the task in the best 
way possible. For the exploration function, the most 
critical parameter here is the exploration rate, which 
determines after how many actions performed the 
exploration ends and the exploitation begins. It is 
common practice to place this value at the end of the 
entire learning procedure, i.e. ݁ ൌ ݏ݁݀݋ݏ݅݌݁ ∗
 .௘௣௜௦௢ௗ௘ݏ݌݁ݐݏ	

The evaluations are carried out with Keras 3 
framework, which is programmed with Python. It is 
used to model neural networks and runs on top of the 
symbolic math library TensorFlow4. 

5.3 Results 

The measurements are performed in two separate 
environments: a discrete bit-flip and a continuous 
pendulum environment  

5.3.1 Discrete Bit-flip Environment 

The evaluation starts with a bit vector length of n = 1. 
At the end of each episode, which is exactly after 200 
bit flips, it is checked if the current method solves the 
bit vector with length n within n bit flips. If so, the 
current attempt t is considered as successful. An 
attempt t is assumed to be failed if a method fails to 
solve a certain bit vector within 50 episodes. After 
determining whether the bit vector length n has been 

                                                                                                 
3https://keras.io 

solved successfully or the attempt has failed, the 
method is reset and the next attempt t = t+1 is started.  

After five tries, it is checked if the current method 
has at least one successful attempt. If this is the case, 
the next bit vector of length n := n + 1 can be 
performed. The success rate of a reinforcement 
learning method can be calculated by dividing the 
total successful attempts by the number of attempts. 

Figure 3 shows representative results of the non-
shaped reward function. With raising bit vector 
lengths, the target bit vector ܸܤ ௡ܶ  is more 
challenging to discover. Only HER has the advantage 
that the Q-network knows the goal state of the 
environment right from the beginning. HERGD first 
has the same discovery issue as PPROP and EXPR 
until the goal is experienced once. In general, larger 
batch sizes in combination with HER, HERGD or 
PPROP helps when dealing with sparse rewards. 
Between the batch size 16 and 128, only a difference 
of 3 bits was measured, i.e. 21% better results. 

 

Figure 3: Bit-flip environment with non-shaped rewards for 
different batch sizes and combinations of Q-Learning, 
replay memories and exploration methods. 

In the comparison of DQN with DDQN, it can be 
observed that DDQN solves a bit vector length n more 
consistently, even with smaller batch size like 16. 
One reason that DDQN behaved in this evaluation 
pretty much like DQN is the low number of episodes 
and bit flips to solve for a bit vector length n. Since 
the target network used by DDQN is updated slowly 
to avoid divergence, this method requires more 
training steps than DQN. For DDGP, the environment 
was even more challenging to solve because a 

4https://www.tensorflow.org 
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continuous action space has to be searched, while 
DQN and DDQN only have to search a discrete action 
space. 

The average training time increases with larger 
batch sizes. Also, methods using PPROP or DDPG 
require a lot more training time as depicted in 
Figure 4. One reason is that the DDPG Q-network 
architecture is more complex than the others because 
it consists of four neural networks. PPROP internally 
uses a sum-tree to store transitions, which increases 
training durations. 

 

Figure 4: Training time in the bit-flip environment of 
PPROP with non-shaped rewards 

The evaluation results of the bit-flip environment 
with a shaped reward function can be observed in a 
subset of representative results in Figure 5. It can be 
noticed that DQN and DDQN were able to solve a 
much larger number of bit vector lengths. Reward 
shaping drastically improved performance. Only 
DDPG performed worse with non-shaped rewards, 
which was expected as DDPG is designed for 
continuous spaces. 

Comparing DQN with DDQN as in Figure 5, 
shows that DDQN solves the same bit vector length 
more consistently, even with smaller batch sizes, as it 
was the case with the non-shaped reward function. 
HER and HERGD performed similar but worse than 
the EXPR or PPROP. This is not surprising since the 
HER (Andrychowicz, 2017) performs badly with 
shaped rewards. PPROP performed a little bit better 
than EXPR. Average training times do not differ 
much from the non-shaped ones. 

 

Figure 5: Success rates in the bit-flip environment of 
PPROP with shaped rewards. 

5.3.2 Ornstein-Uhlenbeck Process 
Parameter Evaluation 

In this section, different parameter settings for an OU 
and the introduced OUA process are evaluated to 
determine which values are useful in certain 
environments. All Q-networks use an output range of 
െ1 ൑ ݐݑ݌ݐݑ݋ ൑ 1. An OU process consists of four 
parameters to adjust: θ, σ, μ and a. μ, the mean value 
and the starting value are set to 0.0. θ indicates how 
fast the process reverts towards the mean. σ 
determines the maximum volatility. The evaluation 
only records the noise generated by the OU or OUA 
process. 

 

 

 

Figure 6: The Ornstein-Uhlenbeck process. 

Figure 6 shows the evaluation of the standard OU 
process with different settings for θ and σ. In the top 
graph (θ = 0.15, σ = 0.3), it can be observed that 
setting θ < σ will cause the process to output many 
values near to the range boundaries. It can be useful 
for agents where abrupt control of the actuators is 
required. For instance, if a robotic arm is used to 
control a heavy mass object, abrupt controlling can be 
useful. If θ > σ like in the middle graph, it results in 
many output values being close to zero. For agents, 
where fine steering is necessary, this setting is useful. 
If θ = σ like in the bottom graph, the output values are 
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concentrated close to zero and at the boundaries of the 
range. This setting might be useful for environments 
where the entire output range must be covered. 

 

Figure 7: The Ornstein-Uhlenbeck Annealed process. 

Results of the introduced OUA process is shown 
in Figure 7. Linear decreasing can be observed. 
Unfortunately, since an OU process uses the previous 
outputted value, the output value increases over some 
time again. This behavior is contra-productive, since 
it was planned to decrease the outputted noise slowly 
to enable soft-switching from exploring to exploiting. 
Therefore, the OUA process did not improve the 
standard OU method. 

5.3.3 Continuous Pendulum Environment 

Each tested method has exactly 250 episodes to solve 
the pendulum environment. Each episode consists of 
300 steps. At each step, an action is predicted by the 
Q-network and applied as torque to the pendulum. 
After every 10th episode, the learning success is 
tested. For this purpose, the learned policy is used 
over 20 episodes, and the received rewards are 
summed up. Then the mean value is calculated from 
the sum of rewards. Also, the standard deviation is 
computed and presented as a transparent background 
in the graph. 

 

Figure 8: pendulum environment with non-shaped rewards. 

The evaluation results of the non-shaped reward 
function can be observed in Figure 8. In general, it 
can be concluded that the task solving performance is 
quite bad. Only, DDQN and DDPG in combination 
with EXPR or PPROP as replay memories and EG or 
EGC as exploration method managed to perform 

acceptably. HERGD was not able to solve the 
environment at all. HER delivers quite the same result 
as HERGD. In continuous state space environments, 
the main goal can only be defined within a small 
range. In addition, since the state of the pendulum 
environment consists of the vertical velocity, goal 
discovery is very bad since the goal is discovered with 
a non-zero velocity. This is a limit because the goal is 
to keep the pendulum upright in a vertical position. 

 

Figure 9: pendulum environment with shaped rewards. 

The evaluation results for the shaped reward 
function can be observed in Figure 9. Since HER and 
HERGD in combination with shaped reward 
functions are documented to perform poorly with 
shaped rewards, these evaluations are discarded. 
DDPG performed well, while DQN and DDQN did 
very poorly in comparison. 

Surprisingly, EXPR delivered a little bit better 
results than PPROP. Concerning the fact that the 
dimension of a discrete state space is countable, this 
is not the case for a continuous state space. PPROP 
prioritizes the transitions that are new or surprising. 
For continuous state spaces, this almost applies to 
every transition. Especially this affects the learning 
performance for small batch sizes. 

For the exploration methods, EGC performed 
better than OU, because the behavior of OU is drift-
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like. In the pendulum environment, it is better to 
switch the torque repeatedly from positive to negative 
values. This behavior increases the speed and allows 
the pendulum to move to a vertical position. Finally, 
it results show that PPROP increases the training 
times drastically. 

5.3.4 Discussion 

Based on the evaluations done with the bit-flip 
environment and pendulum environment, the best 
combinations of the reinforced learning methods are 
summarized in Table 1. 

For discrete action spaces, it is recommended to 
use the Double Deep Q-learning network (DDQN), as 
it works better in such environments than the Deep Q-
learning network (DQN) and Deep Deterministic 
Policy Gradient (DDPG). On the other side, DDPG 
works best for continuous action spaces. 

If continuous state spaces are considered, it is 
recommended to use Experience Replay (EXPR) as 
replay memory, because it performs quite the same as 
Proportional Based Prioritized Experience Replay 
(PPROP) and HERGD, but requires less training 
time. On the other hand, for discrete state space 
environments, where a non-shaped reward function is 
used, it is recommended to use Hindsight Experience 
Replay With Goal Discovery (HERGD) in 
combination with PPROP. This will help to 
successfully solve sparse reward environments. 
Regarding the batch size, it is recommended to 
choose a larger value depending on how sparse the 
rewards are. The selection of the exploration method 
has to be tuned based on the environment. In all cases, 
a shaped reward function should be used, since it 
drastically improves learning performance. 

In a real world, robotic environment where the 
agent is a robotic arm, standard OU process is 
recommended. In environments, such as the 
pendulum environment, where drift-like behavior of 
the output values is not good, the introduced EGC 
performed the best. With the aid of these evaluations, 

it is possible to determine which methods should be 
used for a robot in continuous action and state space. 

5.3.5 Future Improvements 

Some issues can be addressed that emerged during 
this work. One problem with sparse reward tasks is 
that a transition with a positive reward has to be 
sampled from replay memory and has to be 
propagated back by repeatedly sampling the 
predecessor states. The Q-network slowly learns 
which actions to perform from certain states in order 
to reach the rewarding state. If the rewarding state is 
perceived only a few times, this process is disturbed. 
Considering catastrophic forgetting, successful 
learning of the task becomes unlikely. To accelerate 
the back propagating of Q-values, the Q-function 
could be applied to the transitions before saving an 
episode to the replay memory. 

In that case, a positive reward is present 
throughout an entire episode. Sampling a transition 
with positive reward would become more likely. A 
disadvantage is that the algorithm would convert 
more slowly to the ideal policy. This approach can be 
combined with the n-step loss mentioned in 
(Vecerik, 2017), which should help to propagate the 
Q-values along the trajectories. 

A great influence on the learning time and the 
learning success would be the improvement of the 
exploration methods. Only random exploration 
methods are possible because the agent should know 
as little as possible about the environment. If there is 
a memory limitation like in embedded systems, 
count-based exploration methods are not applicable. 
Count-based methods that store a counter, how many 
times a state has been visited, and what actions are 
taken to exit the state (Tang, 2016). Instead of 
applying noise only to the output neurons, it could be 
applied to the entire Q-network (Plappert, 2017). 
 
 
 

Table 1: Summary of the best reinforced learning method combinations based on reward function. 

 Reward function 
 Non shaped shaped 

cont. action space 
cont. state space 

DDPG, EXPR DDPG, EXPR 

dis. action space 
cont. state space 

DDQN, EXPR DDQN, EXPR 

cont. action space 
dis. state space 

DDPG, HERGD(PPROP) DDPG, EXPR 

dis. action space 
dis. state space 

DDQN, HERGD(PPROP) DDQN, PPROP 
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Another approach is to let the decision maker 
adaptively learn the exploration policy in DDPG (Xu, 
2018). The advantage is that this approach is scalable 
and yields to a better global exploration. The 
disadvantage is that this approach consumes more 
memory than OU or EGC. 

Finally, deep reinforcement learning in 
continuous state and time spaces is still not robust to 
small environmental changes and hyper parameter 
optimization. For DDPG, the effect of every 
individual action vanishes if the discretization 
timestep becomes infinitesimal (Tallec, 2019). For 
the pendulum environment, algorithm parameters 
could be tuned to generate better performance 
through a continuous-time analysis. 

6 CONCLUSION 

The main objective of this paper was to analyze which 
combinations of reinforcement learning algorithms, 
exploration methods and replay memories are most 
suitable for discrete and continuous state spaces as 
well as action spaces. Tests were performed in a 
simulated discrete bit-flip and continuous pendulum 
environment. 

This research introduced new techniques to the 
state-of-the-art methods, such as Hindsight 
Experience Replay with Goal Discovery (HERGD), 
ε-greedy Continuous (EGC), and Ornstein-
Uhlenbeck Annealed (OUA). While Ornstein-
Uhlenbeck Annealed did not improve performance, 
Hindsight Experience Replay with Goal Discovery, ε-
greedy Continuous proved to perform well. 

Equipped with a suitable combination of 
algorithms, the next step is to transfer it into a self-
learning robot, which is based on embedded 
hardware. The robot is supposed to start without 
knowing anything about its sensors, actuators and 
environment and gradually learn to survive. In 
embedded hardware resource constraints will be an 
important challenge to handle. 

Enabling robots to learn complex tasks through 
experience allows us to take a big step into the future. 
The applications for such self-learning robots are 
limitless. Writing complex algorithms to control 
these robots is eliminated because they learn to 
control themselves. In addition, through repetition, 
they are able to optimize their behavior. Changes in 
the environment do not affect them because they can 
adapt to them automatically. 
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