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Abstract: Cryptocurrencies are more than a decade old and several issues have been discovered since their then.  One 
of these issues is a partial negation of the intent to “democratize” money by decentralizing control of the 
infrastructure that creates, transmits, and stores monetary data.  The Programmatic Proof of Work (ProgPoW) 
algorithm is intended as a possible solution to this problem for the Ethereum cryptocurrency. This paper 
examines ProgPow’s claim to be Application Specific Integrated Circuit (ASIC) resistant. This is achieved 
by isolating the proof-of-work code from the Ethereum blockchain, inserting the ProgPoW algorithm, and 
measuring the performance of the new implementation as a multithread CPU program, as well as a GPU 
implementation.  The most remarkable difference between the ProgPoW algorithm and the currently 
implemented Ethereum Proof-of Work is the addition of a random sequence of math operations in the main 
loop that require increased memory bandwidth. Analyzing and comparing the performance of the CPU and 
GPU implementations should provide an insight into how the ProgPoW algorithm might perform on an ASIC. 

1 INTRODUCTION 

Decentralized control is one of the founding 
principles of cryptocurrency adoption (Narayanan, 
A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S., 
2016). However, several cryptocurrencies have been 
developed that overtly discard this idea in favor of 
enhanced speed and throughput, XRP (Armknecht, 
2015) and Stellar (Mazieres, 2015) are two prominent 
examples of these so-called “federated” models.  

Among those cryptocurrencies that continue to 
embrace decentralization, ensuring Application 
Specific Integrated Circuit (ASIC) resistance is 
becoming a popular theme (Taylor, 2017).  An 
Application Specific Integrated Circuit (ASIC), 
essentially a custom microprocessor optimized in 
hardware to run specific code, is able to calculate the 
SHA-256 hashing algorithm in excess of 100,000 
times faster than a top of the line CPU (Balaji, A., 
2018).  Since computing SHA-256 hashes is the 
primary computational effort involved in the proof-
of-work (PoW) algorithms, use of ASICs has a 
significant impact on cryptocurrencies that use these 
algorithms. 

PoW algorithm is being used in several 
cryptocurrencies and its implementation on an ASIC 
is emblematic of the struggle that cryptocurrency 
communities are facing to maintain decentralized 
control. ASICs are expensive to create and, as a 

result, miners with the most resources tend to use 
ASIC rigs to mine the cryptocurrency of their choice. 
This makes all other hardware used by less affluent 
miners obsolete.  This results in the centralization of 
the hash power in significantly fewer miners than was 
originally envisioned by the cryptocurrency 
community (Wang W., Hu, P., Niyato, D., Wen, Y, 
2019). The differences between ASIC and GPU 
cryptocurrencies were summarized in a 2018 article 
(ComputeNorth, 2018). 

As a result of this progressive centralization of 
hash power, some options are being explored by 
cryptocurrency communities that would negate this 
advantage. One option is the designing of algorithms 
that are ASIC resistant. The other option is the 
periodic change of the algorithm so that current 
ASICs quickly become obsolete. This discourages 
designers and manufacturers from producing new 
ASICs, as it would not be cost effective or timely.  
ProgPoW is an example of the first option.  

One example of these efforts is Hcash, a plug-
and-play blockchain (Hcash, 2019). Another example 
is HashCore, a set of proof-of-work functions 
developed for general purpose processors 
(Gorghiades, Y., Flolid, S., Vishwanath, S., 2019). 

In this paper, we focus on Ethereum’s ProgPoW 
algorithm. We look into the ASIC resistance 
properties of this algorithm by exploring the 
scalability of the algorithm. This is achieved by 
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isolating the PoW code and comparing its 
performance on a multi-threaded CPU 
implementation and a GPU implementation. 
Analyzing the memory access patterns and the 
scalability of the algorithm will provide insights into 
its claimed ASIC resistance properties. In fact, in the 
completely different context of N-body simulation, a 
similar study as ours was conducted earlier to 
compare the efficacy of ASICs, FPGAs, GPUs, and 
general Purpose Processors on specific problems 
(Hamada, T., Benkrid, K., Nitadori, K., Makoto, T., 
2009). Their conclusion, measured in terms of 
Mflops/$, is that GPUs far outperform their ASIC, 
FPGA, and CPU counterparts. This is in line with our 
conclusions, even though in  a different context. 

The paper is organized as follows. In section 2, 
we look into the background and related work that 
prompted the current work. Section 3 highlights some 
of the important aspects of ProgPoW that make it 
suitable for GPUs. In section 4, we discuss the 
adopted methodology. Section 5 describes some of 
the implementation details. In section 6, we discuss 
the results from our experiments. Finally, section 7 
summarizes the contributions of the paper and 
discusses some future work. 

2 BACKGROUND 

The cryptocurrency and blockchain revolution started 
with the Bitcoin proposal by the pseudonymous 
Satoshi Nakomoto in 2008. The primary motivation 
for this proposal was to introduce an electronic 
monetary system with decentralized control. To this 
end, it is based on a peer-to-peer system of nodes that 
together maintain Bitcoin and its underlying 
blockchain infrastructure. A Proof-of-Work (PoW) 
algorithm is used here to discourage malicious actors 
from inundating network nodes with denial of service 
attacks, thereby damaging the trustworthiness of the 
Bitcoin network. This is also an integral part of the 
Bitcoin consensus algorithm. Here, the suggested 
proof-of-work algorithm requires computing the hash 
of a block header that is restricted to be within certain 
bounds. A field in the block header, called a nonce, is 
a 4-byte random integer that could be chosen by a data 
miner to produce a 32-byte hash for a block within the 
given bounds. The range, expressed in terms of the 
number of leading zeros in a hash, dictates the 
computational difficulty in mining a block.  Bitcoin 
uses Hashcash as its PoW algorithm. Ethereum has 
also adopted proof-of-work as its consensus 
algorithm; Ethash is the PoW algorithm used by 
Ethereum.  

To give a short overview of how the Ethash PoW 
works, the following generalized procedure applies: 

1. Calculate the seed, which is generated by 
scanning through all block headers up to that 
point. 

2. Compute a 16MB pseudorandom cache based on 
that seed. 

3. Generate a 1GB Directed Acyclic Graph (DAG) 
based on the cache.  This DAG will grow linearly 
with time as the blockchain expands. 

4. The mining algorithm will systematically select 
pseudorandom slices of the DAG and hash them 
together. 

5. Specific pieces of the DAG can be regenerated at 
will from the cache for quick verification of the 
resultant hash. 

With the increasing popularity and price of 
cryptocurrencies, data mining activity has become 
very attractive for miners. Since the first data miner 
who mines the next block in the blockchain gets the 
reward for mining the block, there is a competition 
among the miners to be the first one to mine. In the 
context of PoW, this translates directly to having 
more computational power. The crux of mining 
difficulty with the PoW used in Bitcoin lies with the 
SHA-256 hash function. Similarly, Ethereum uses the 
Keccak-256 algorithm for its proof-of-work.  This 
algorithm is related to the widely used SHA3. Once 
again, the difficulty lies with the hash computation. 
Since these computations require manipulating 32-bit 
words, performing 32-bit modular additions, and 
some bitwise logic, it is easy to implement them in 
hardware. 

The first generation of mining used CPUs with 
ability to compute about 20 million hashes/second. 
The second generation replaced CPUs with GPUs. 
These are designed with parallelism in mind, so 
several of the hash computations can be done 
simultaneously. The third generation started with the 
advent of FPGAs, or Field Programmable Gate 
Arrays. With a careful configuration, one can obtain 
1 Ghash/second hash rates. The fourth generation is 
the Application-Specific Integrated Circuits, or 
ASICs. These are ICs designed, built, and optimized 
for a specific purpose. But the cost of ASIC mining, 
due to the expense of developing and manufacturing 
the ASIC, is not friendly to small miners. They are 
primarily used by professional mining centres, also 
termed “mining farms” (Narayanan, A., Bonneau, J., 
Felten, E., Miller, A., Goldfeder, S., 2016). This has 
completely changed the original intent of 
decentralized peer-to-peer data mining attributed to 
Satoshi Nakomoto, as well as other early developers 
of cryptocurrencies.  
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In order to reduce the cost of mining, which is 
quite exorbitant with the current proof-of-work 
algorithms, Ethereum has plans to shift to Proof-of-
Stake (PoS). As part of this transition, Ethereum 
developers are proposing solutions to ward off the 
professional mining centres from taking over the 
network and to maintain a truly peer-to-peer mining 
environment. ProgPoW, or programmatic proof-of-
work, is an attempt to eliminate the gap between the 
GPU miners and the ASIC miners by making ASIC 
mining less efficient and tailoring the algorithm to be 
more easily exploitable by GPUs. This is achieved by 
introducing the following changes which are intended 
to make mining with ASICs impractical. The first 
change is adding a random sequence of calculations 
which make it impossible to create an ASIC chip with 
a fixed workflow. Second is adding reads from a 
small low-latency cache that supports random 
addresses, which limits ASIC’s capabilities and 
performance. Third, the dynamic random access 
memory (DRAM) read size is increased from 128 to 
256 bytes to favor GPUs.  

In the rest of the paper, we look into the 
operational efficiency aspects of ProgPoW measured 
through experimentation. 

3 KEY FEATURES OF ProgPoW 

Ethereum uses the Keccak-256 algorithm for its proof 
of work.  This algorithm is related to the widely used 
SHA3 algorithm and has numerous technical 
advantages over the previously mentioned SHA-256 
hashing algorithm, including enhanced collision 
resistance and preimage resistance.  This preimage 
resistance has been explicitly quantified between 
SHA-256 and SHA3 for the purpose of evaluating 
each algorithm for implementation on quantum 
computers (Amy 2016), and the multiple advantages 
of Keccak over SHA-256 are spelled out in great 
detail in the original paper detailing the comparison 
and analysis study of SHA3 finalists (Alshaikhli, 
2012). 

The ProgPoW uses the same Keccak-256 hashing 
algorithm, but splits up the words into 32 bit chunks 
instead of 64 bit chunks to make the algorithm more 
GPU friendly and reduce total power consumption. 

The Ethereum PoW uses a large Directed Acyclic 
Graph (DAG) to direct the PoW calculation, and 
ProgPoW increases the so-called “mix state” of this 
DAG.  This governs the complexity of how the DAG 
is utilized to process the block and produce the 
arguments that are submitted to the hash function.  
This   ultimately   results   in   more   off-chip  memory  

The following pseudocode gives a general idea 
regarding how the algorithm functions: 
progPowHash(nonce, header, DAG, block): 

// initializing 256 bit digest 
dgst[8] <- 0 // 8 4-byte integers 

 

// use keccak hashing algorithm to 
// generate seed 
seed <- keccak(header, nonce, dgst) 
 
// use pseudorandom numbers based on 
// seed to fill mix table 
mix[16 x 32] <- rand(seed) 

// cycle through the inner loop 
 for (i in 1:64): 

innerLoop(mix, DAG, block) 
 

// initializing lanes array 
l[16] <- 0 
 
BASIS <- 0x811c9dc5 
PRIME <- 0x1000193 
// using the mix to generate lane digest 
for (i in 0:15): 

l[i] <- BASIS 
for (j in 1:dim(mix)): 

l[i] <- (l[i] ^ mix[j])*PRIME  
 

// creating 256 bit digest from the 
// lane digest array 
for (i in 0:7): 

dgst[i] <- BASIS 
for (j in 0:15): 

dgst[j%8] <- (dgst[j%8]^l[j])*PRIME 
 

hash <- keccak(header, nonce, dgst) 

 return(hash) 

 
innerLoop(mix, DAG, block): 

initilizePoW(mix) 
n1 <- 0 
n2 <- 0 
m <- dim(mix) 
for (i in 1:18): 

for (j in 1:11): 
src <- mix[(n1++)%m] 
dst <- mix[(n2++)%m] 

for (k in 1:16): 
o <-  
mix[k*src]%CacheSize 

mix[k*dst] <- 
mix[k*dst] ⊕ DAG[o] 

 
for (i in 1:18): 

r <- rand(m^2) 
src1 <- r%m 
src2 <- r/m 
sel  <- rand(block) 
dst  <- mix[(n2++)%m] 
for (j in 1:16): 

d <- randmath(mix[j*src1], 
mix[j*src2], sel) 

mix[j*dst] <- mix[j*dst] ⊕ d 
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// ⊕	= merge operation 
// CacheSize = 16KB 
// rand(x) = random int in the range 0:x 
// randmath(x,y,n)= random combination of 
//     x and y using the nth arrangement  
//     of arithmetic operators defined  
//     separately 
 
//___ = notable difference between 
// ProgPoW and standard Ethereum PoW 
 

 
// initialize the mix 
initilizePoW(mix): 

for (i in dim(mix)): 
mix[i] <- i 

for (i in dim(mix)): 
n <- rand(i) 
swap(mix[n],mix[i]) 

 

retrievals and increases the bandwidth required to 
complete a calculation. 

A set of pseudorandom mathematical operations 
was also added in the main loop, which would 
increase the complexity of any ASIC design in 
addition to requiring more off-chip memory accesses 
since the results of the random math govern where the 
next memory access might occur. 

In addition, the DRAM read size was increased 
from 128 bytes to 256 bytes, also increasing the 
bandwidth required to complete a calculation. 

The inputs to the progPowHash function 
essentially consist of a header generated from block 
data (zeroes were used in this case for 
experimentation), a nonce, and a pointer to the DAG.  
There is an additional “seed” argument in the C++ 
code that is not shown here.  This argument is 
deterministic and is based on the block number. 

4 METHODOLOGY 

In order to carry out our study of ProgPoW’s 
effectiveness in making effective use of GPUs but not 
so effective for ASICs, we have followed the below 
methodology in five steps. 

4.1 Extract the PoW Code 

First, the code from the GitHub site hosting proposed 
ProgPoW code (Ifdefelse, 2019) was cloned.  
Elements of this code that were solely used for the 
proof of work algorithm were extracted and 
implemented in a stand-alone version that only ran 
the PoW algorithm with specific inputs for 

experimental repeatability.  There were several 
dependencies that were required from the main cpp-
Ethereum code (Ethereum, 2019), and those were also 
extracted and placed in the stand-alone version.  The 
goal was to create a simple version whose only 
purpose was to run the PoW algorithm for a specific 
block number.  This would allow more accurate 
analysis of memory access patterns and 
benchmarking. 

4.2 Test the Extracted PoW Code 

To ensure that the assembled pieces of code 
performed in the same manner as the original code, 
test vectors provided on the ProgPoW GitHub site 
(Ifdefelse, 2019) were utilized.  All code produced 
output identical to the test vectors page. 

4.3 Generate the Directed Acyclic 
Graph 

As previously introduced, the Ethereum PoW uses a 
Directed Acyclic Graph (DAG) to govern the process 
of the PoW calculation.  In addition, ProgPoW uses 
the DAG to generate pseudorandom mathematical 
operations in an attempt to make any ASIC design 
more complex and less efficient, as well as require 
that the algorithm request randomized blocks of 
memory from the DAG which increases memory 
bandwidth (this element is not present in the current 
Ethereum PoW algorithm).  The DAG is 
approximately 1 GB in size at the 30,000th block (as 
analyzed), though that size changes as the number of 
blocks in the blockchain increases.  The code for 
generating the DAG was extracted from the Ethereum 
project and implemented in isolation.  It takes several 
hours on current state of the art machines to generate 
this DAG.  

4.4 Implement the PoW Code on 
Multithreaded CPU 

Once the code was tested to ensure that it produced 
the same results as expected, a version was created to 
run multi-threaded on a CPU.  OpenMP was used as 
the programming standard, and it performed as 
expected, meaning that as the number of threads 
doubled, the time required to calculate a hash very 
nearly halved.  More details will be explored in the 
results section. 

Creation of this version had a dual use both as a 
stepping-stone to get familiar with the code before 
attempting a GPU implementation, and as a point of 
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comparison for how an ASIC might manage memory 
accesses. 

4.5 Implement the PoW Code on GPUs 

The final coding step was to implement the program on 
a GPU.  CUDA was used as the programming 
standard, and this was a straightforward 
implementation.  No extra optimization was attempted 
using local memory or cooperative groups, though that 
could be considered as a next step if desired.  To get a 
general idea of the performance difference between a 
single (simple) GPU core and a single (more complex) 
CPU core, the hashing algorithm when run on a single 
GPU core takes about 92 seconds to complete given a 
specific set of inputs using the hardware described in 
Section 5.  Given the same inputs, the CPU finished in 
about 3 seconds.  The advantage of using the GPU is 
clearly the large amount of parallelization possible.  
The CPU was about 30 times faster on a core for core 
basis with the specific machine used for this test, 
however the GPU had 1280 cores available on the 
machine tested and this algorithm is highly 
parallelizable, creating a vastly scalable 
implementation.   

5 IMPLEMENTATION 

The parallelized implementation of the algorithm 
described consisted of creating multiple threads that 
run the progPowHash function in its entirety with the 
only difference being the nonce that is supplied.  A 
sequential number was used for the nonce to ensure 
that no threads calculated a hash using the same nonce. 

When each group of threads was executed, the 
results were compared, and the hash that met the 
criteria (14 leading binary zeroes, in the example case) 
was selected as the result.  If more than one hash met 
the criteria, the hash associated with the lowest nonce 
was selected as the result.  This ensured that results 
were repeatable and therefore comparable, since there 
is an element of randomness to this process.  In an 
actual cryptocurrency mining setting, this would be 
irrelevant. 

The only difference between the GPU 
implementation and the CPU implementation from this 
perspective is that a great many of the threads for the 
GPU implementation were submitted at once, and the 
GPU firmware was left to decide which threads to 
execute in what order, given the number of cores 
available in hardware; 64 blocks of 32 threads each, for 
a total of 2048 threads were submitted in each batch.  
The CPU implementation, by contrast, submitted the 

threads in groups of 2, 4, 8, 16, or 32 threads, and then 
the results were evaluated after completion of 
execution of each group.  This allowed for greater 
flexibility on the CPU implementation since the 
number of threads actually executed to achieve a 
satisfactory result were closer to the minimal number 
of threads required.  The GPU implementation needed 
to submit thousands of threads at a time in order to 
minimize the overhead involved with communicating 
results back to the CPU host; this resulted in thousands 
more threads being executed by the GPU than were 
absolutely required.  This negative effect was largely 
overshadowed by the extreme efficiency gains of the 
GPU execution, however. 

6 EXPERIMENTAL RESULTS 

As previously stated, the OpenMP version was 
completed first, and the results were as expected 
(Figure 1).  The execution time did not quite reduce by 
half when the number of threads doubled, and this can 
be attributed to the bandwidth limitations of the 
processor retrieving DAG elements from main 
memory.  

 

Figure 1: Execution time on two different multithreaded CPU 
architectures. 

The advantage of GPUs over CPUs for this 
problem becomes evident in Figure 2. Note that the 
GPU becomes more efficient very early. What is 
immediately noticeable from here is that the efficiency 
gains on the GPU become more significant as the 
difficulty increases.  One of the primary reasons for the 
advantage of GPU over CPUs is the memory access 
dynamics in a GPU (Figure 3). This fundamental 
difference is not replicable in an ASIC, which retains a 
more traditional CPU type memory access (Ren, L., 
Devadas, S., 2017). 
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Figure 2: Comparison of execution times on a 
multithreaded CPU and GPUs with increasing hash 
difficulty. 

What these results have not addressed thus far is 
the price to performance comparison.  To give an 
indication of where this might lie, however, the Ivy 
Bridge processor used in the comparison retails for 
approximately $1350 MSRP, and about a $200 third 
party reseller sale price at time of this writing (Intel 
E5-1680); the GPU card used retails for about $650 
MSRP, and is available for less than $200 from third 
party retailers (NVIDIA GTX-970M).  ASIC 
development and production costs are typically much 
larger than commodity CPU costs because of the 
narrow applicability (Madore, P. H, 2018).  Provided 
a similar relationship exists for a hypothetical ASIC 
executing ProgPoW, the cost differential should be 
fairly large. 

 

Figure 3: NVIDIA GPU memory architcture (Gao, H., 
2017).  

This shows the cohesive nature of the GPU memory 
access heirarchy.  Each block of 32 cores (termed a 
streaming multiproccessor - SM) shares access to the 
L1 and L2 cache, which gives direct access to 
DRAM; each SM has independent access to the 
cache.  High bandwidth memory then allows multiple 
accesses to be fulfilled simultaneously from DRAM. 

7 CONCLUSION 

What this work shows is that for this particular 
problem type, a cheaper GPU can outperform a 
commodity CPU.  The reasons why this disparity 
exists are particularly important: 

1. The memory architecture of GPUs allows much 
more efficient access to on-card memory than a 
CPU (and by extension an ASIC) can manage. 

2. The great number of simple cores allowing 
massive parallelization for an arbitrary algorithm. 

The ProgPoW algorithm is a bandwidth-hard 
problem.  Not only does it require a great deal of off-
chip memory (as a memory-hard problem would), the 
accesses to that memory are essentially random, 
negating any caching that might mitigate the effect.   

Additionally, the broad applicability of GPUs 
across a broad spectrum of applications implies that 
development of enhanced bandwidth will likely 
continue to occur apace and will likely vastly outstrip 
any similar developments in the ASIC space.  The 
highly parallelizable nature of this algorithm (as 
mentioned in Section II) also lends a significant GPU 
advantage when coupled with advances in bandwidth. 

By enforcing bandwidth-hardness in the proof-of-
work, cryptocurrency mining using the ProgPoW 
algorithm for Ethereum would likely allow 
commodity hardware GPUs to retain a cost for 
performance advantage over a custom ASIC. 

Others have evaluated the level of ASIC 
resistance granted by memory-hard algorithms (Cho, 
H., 2018), and while they acknowledge that the 
general strategy has so far proved sound, they caveat 
their conclusion with the fact that there are several 
emerging memory technologies that might narrow 
this gap.  As previously stated, the implementation of 
a bandwidth-hard algorithm, which requires 
additional resources above simple memory-hardness, 
will take this concept further and might well prove 
impossible for ASIC manufacturers to counter. There 
is little data on this subject so far, since Programmatic 
Proof of Work is still a relatively new idea and no 
major cryptocurrency has yet implemented it, but if 
memory performance in GPUs continues to outstrip 
that available to CPUs, and by extension ASICs, the 
idea should have merit. 
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