
Is Ethereum’s ProgPoW ASIC Resistant?

Jason Orender, Ravi Mukkamala and Mohammad Zubair
Department of Computer Science, Old Dominion University, Norfolk, VA, U.S.A.

Keywords: ASIC, Blockchains, Cryptocurrencies, Ethereum, GPU, Ethash, ProgPoW.

Abstract: Cryptocurrencies are more than a decade old and several issues have been discovered since their then. One
of these issues is a partial negation of the intent to “democratize” money by decentralizing control of the
infrastructure that creates, transmits, and stores monetary data. The Programmatic Proof of Work (ProgPoW)
algorithm is intended as a possible solution to this problem for the Ethereum cryptocurrency. This paper
examines ProgPow’s claim to be Application Specific Integrated Circuit (ASIC) resistant. This is achieved
by isolating the proof-of-work code from the Ethereum blockchain, inserting the ProgPoW algorithm, and
measuring the performance of the new implementation as a multithread CPU program, as well as a GPU
implementation. The most remarkable difference between the ProgPoW algorithm and the currently
implemented Ethereum Proof-of Work is the addition of a random sequence of math operations in the main
loop that require increased memory bandwidth. Analyzing and comparing the performance of the CPU and
GPU implementations should provide an insight into how the ProgPoW algorithm might perform on an ASIC.

1 INTRODUCTION

Decentralized control is one of the founding
principles of cryptocurrency adoption (Narayanan,
A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.,
2016). However, several cryptocurrencies have been
developed that overtly discard this idea in favor of
enhanced speed and throughput, XRP (Armknecht,
2015) and Stellar (Mazieres, 2015) are two prominent
examples of these so-called “federated” models.

Among those cryptocurrencies that continue to
embrace decentralization, ensuring Application
Specific Integrated Circuit (ASIC) resistance is
becoming a popular theme (Taylor, 2017). An
Application Specific Integrated Circuit (ASIC),
essentially a custom microprocessor optimized in
hardware to run specific code, is able to calculate the
SHA-256 hashing algorithm in excess of 100,000
times faster than a top of the line CPU (Balaji, A.,
2018). Since computing SHA-256 hashes is the
primary computational effort involved in the proof-
of-work (PoW) algorithms, use of ASICs has a
significant impact on cryptocurrencies that use these
algorithms.

PoW algorithm is being used in several
cryptocurrencies and its implementation on an ASIC
is emblematic of the struggle that cryptocurrency
communities are facing to maintain decentralized
control. ASICs are expensive to create and, as a

result, miners with the most resources tend to use
ASIC rigs to mine the cryptocurrency of their choice.
This makes all other hardware used by less affluent
miners obsolete. This results in the centralization of
the hash power in significantly fewer miners than was
originally envisioned by the cryptocurrency
community (Wang W., Hu, P., Niyato, D., Wen, Y,
2019). The differences between ASIC and GPU
cryptocurrencies were summarized in a 2018 article
(ComputeNorth, 2018).

As a result of this progressive centralization of
hash power, some options are being explored by
cryptocurrency communities that would negate this
advantage. One option is the designing of algorithms
that are ASIC resistant. The other option is the
periodic change of the algorithm so that current
ASICs quickly become obsolete. This discourages
designers and manufacturers from producing new
ASICs, as it would not be cost effective or timely.
ProgPoW is an example of the first option.

One example of these efforts is Hcash, a plug-
and-play blockchain (Hcash, 2019). Another example
is HashCore, a set of proof-of-work functions
developed for general purpose processors
(Gorghiades, Y., Flolid, S., Vishwanath, S., 2019).

In this paper, we focus on Ethereum’s ProgPoW
algorithm. We look into the ASIC resistance
properties of this algorithm by exploring the
scalability of the algorithm. This is achieved by

310
Orender, J., Mukkamala, R. and Zubair, M.
Is Ethereum’s ProgPoW ASIC Resistant?.
DOI: 10.5220/0008909203100316
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 310-316
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

isolating the PoW code and comparing its
performance on a multi-threaded CPU
implementation and a GPU implementation.
Analyzing the memory access patterns and the
scalability of the algorithm will provide insights into
its claimed ASIC resistance properties. In fact, in the
completely different context of N-body simulation, a
similar study as ours was conducted earlier to
compare the efficacy of ASICs, FPGAs, GPUs, and
general Purpose Processors on specific problems
(Hamada, T., Benkrid, K., Nitadori, K., Makoto, T.,
2009). Their conclusion, measured in terms of
Mflops/$, is that GPUs far outperform their ASIC,
FPGA, and CPU counterparts. This is in line with our
conclusions, even though in a different context.

The paper is organized as follows. In section 2,
we look into the background and related work that
prompted the current work. Section 3 highlights some
of the important aspects of ProgPoW that make it
suitable for GPUs. In section 4, we discuss the
adopted methodology. Section 5 describes some of
the implementation details. In section 6, we discuss
the results from our experiments. Finally, section 7
summarizes the contributions of the paper and
discusses some future work.

2 BACKGROUND

The cryptocurrency and blockchain revolution started
with the Bitcoin proposal by the pseudonymous
Satoshi Nakomoto in 2008. The primary motivation
for this proposal was to introduce an electronic
monetary system with decentralized control. To this
end, it is based on a peer-to-peer system of nodes that
together maintain Bitcoin and its underlying
blockchain infrastructure. A Proof-of-Work (PoW)
algorithm is used here to discourage malicious actors
from inundating network nodes with denial of service
attacks, thereby damaging the trustworthiness of the
Bitcoin network. This is also an integral part of the
Bitcoin consensus algorithm. Here, the suggested
proof-of-work algorithm requires computing the hash
of a block header that is restricted to be within certain
bounds. A field in the block header, called a nonce, is
a 4-byte random integer that could be chosen by a data
miner to produce a 32-byte hash for a block within the
given bounds. The range, expressed in terms of the
number of leading zeros in a hash, dictates the
computational difficulty in mining a block. Bitcoin
uses Hashcash as its PoW algorithm. Ethereum has
also adopted proof-of-work as its consensus
algorithm; Ethash is the PoW algorithm used by
Ethereum.

To give a short overview of how the Ethash PoW
works, the following generalized procedure applies:

1. Calculate the seed, which is generated by
scanning through all block headers up to that
point.

2. Compute a 16MB pseudorandom cache based on
that seed.

3. Generate a 1GB Directed Acyclic Graph (DAG)
based on the cache. This DAG will grow linearly
with time as the blockchain expands.

4. The mining algorithm will systematically select
pseudorandom slices of the DAG and hash them
together.

5. Specific pieces of the DAG can be regenerated at
will from the cache for quick verification of the
resultant hash.

With the increasing popularity and price of
cryptocurrencies, data mining activity has become
very attractive for miners. Since the first data miner
who mines the next block in the blockchain gets the
reward for mining the block, there is a competition
among the miners to be the first one to mine. In the
context of PoW, this translates directly to having
more computational power. The crux of mining
difficulty with the PoW used in Bitcoin lies with the
SHA-256 hash function. Similarly, Ethereum uses the
Keccak-256 algorithm for its proof-of-work. This
algorithm is related to the widely used SHA3. Once
again, the difficulty lies with the hash computation.
Since these computations require manipulating 32-bit
words, performing 32-bit modular additions, and
some bitwise logic, it is easy to implement them in
hardware.

The first generation of mining used CPUs with
ability to compute about 20 million hashes/second.
The second generation replaced CPUs with GPUs.
These are designed with parallelism in mind, so
several of the hash computations can be done
simultaneously. The third generation started with the
advent of FPGAs, or Field Programmable Gate
Arrays. With a careful configuration, one can obtain
1 Ghash/second hash rates. The fourth generation is
the Application-Specific Integrated Circuits, or
ASICs. These are ICs designed, built, and optimized
for a specific purpose. But the cost of ASIC mining,
due to the expense of developing and manufacturing
the ASIC, is not friendly to small miners. They are
primarily used by professional mining centres, also
termed “mining farms” (Narayanan, A., Bonneau, J.,
Felten, E., Miller, A., Goldfeder, S., 2016). This has
completely changed the original intent of
decentralized peer-to-peer data mining attributed to
Satoshi Nakomoto, as well as other early developers
of cryptocurrencies.

Is Ethereum’s ProgPoW ASIC Resistant?

311

In order to reduce the cost of mining, which is
quite exorbitant with the current proof-of-work
algorithms, Ethereum has plans to shift to Proof-of-
Stake (PoS). As part of this transition, Ethereum
developers are proposing solutions to ward off the
professional mining centres from taking over the
network and to maintain a truly peer-to-peer mining
environment. ProgPoW, or programmatic proof-of-
work, is an attempt to eliminate the gap between the
GPU miners and the ASIC miners by making ASIC
mining less efficient and tailoring the algorithm to be
more easily exploitable by GPUs. This is achieved by
introducing the following changes which are intended
to make mining with ASICs impractical. The first
change is adding a random sequence of calculations
which make it impossible to create an ASIC chip with
a fixed workflow. Second is adding reads from a
small low-latency cache that supports random
addresses, which limits ASIC’s capabilities and
performance. Third, the dynamic random access
memory (DRAM) read size is increased from 128 to
256 bytes to favor GPUs.

In the rest of the paper, we look into the
operational efficiency aspects of ProgPoW measured
through experimentation.

3 KEY FEATURES OF ProgPoW

Ethereum uses the Keccak-256 algorithm for its proof
of work. This algorithm is related to the widely used
SHA3 algorithm and has numerous technical
advantages over the previously mentioned SHA-256
hashing algorithm, including enhanced collision
resistance and preimage resistance. This preimage
resistance has been explicitly quantified between
SHA-256 and SHA3 for the purpose of evaluating
each algorithm for implementation on quantum
computers (Amy 2016), and the multiple advantages
of Keccak over SHA-256 are spelled out in great
detail in the original paper detailing the comparison
and analysis study of SHA3 finalists (Alshaikhli,
2012).

The ProgPoW uses the same Keccak-256 hashing
algorithm, but splits up the words into 32 bit chunks
instead of 64 bit chunks to make the algorithm more
GPU friendly and reduce total power consumption.

The Ethereum PoW uses a large Directed Acyclic
Graph (DAG) to direct the PoW calculation, and
ProgPoW increases the so-called “mix state” of this
DAG. This governs the complexity of how the DAG
is utilized to process the block and produce the
arguments that are submitted to the hash function.
This ultimately results in more off-chip memory

The following pseudocode gives a general idea
regarding how the algorithm functions:
progPowHash(nonce, header, DAG, block):

// initializing 256 bit digest
dgst[8] <- 0 // 8 4-byte integers

// use keccak hashing algorithm to
// generate seed
seed <- keccak(header, nonce, dgst)

// use pseudorandom numbers based on
// seed to fill mix table
mix[16 x 32] <- rand(seed)

// cycle through the inner loop
 for (i in 1:64):

innerLoop(mix, DAG, block)

// initializing lanes array
l[16] <- 0

BASIS <- 0x811c9dc5
PRIME <- 0x1000193
// using the mix to generate lane digest
for (i in 0:15):

l[i] <- BASIS
for (j in 1:dim(mix)):

l[i] <- (l[i] ^ mix[j])*PRIME

// creating 256 bit digest from the
// lane digest array
for (i in 0:7):

dgst[i] <- BASIS
for (j in 0:15):

dgst[j%8] <- (dgst[j%8]^l[j])*PRIME

hash <- keccak(header, nonce, dgst)

 return(hash)

innerLoop(mix, DAG, block):

initilizePoW(mix)
n1 <- 0
n2 <- 0
m <- dim(mix)
for (i in 1:18):

for (j in 1:11):
src <- mix[(n1++)%m]
dst <- mix[(n2++)%m]

for (k in 1:16):
o <-
mix[k*src]%CacheSize

mix[k*dst] <-
mix[k*dst] ⊕ DAG[o]

for (i in 1:18):

r <- rand(m^2)
src1 <- r%m
src2 <- r/m
sel <- rand(block)
dst <- mix[(n2++)%m]
for (j in 1:16):

d <- randmath(mix[j*src1],
mix[j*src2], sel)

mix[j*dst] <- mix[j*dst] ⊕ d

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

312

// ⊕	= merge operation
// CacheSize = 16KB
// rand(x) = random int in the range 0:x
// randmath(x,y,n)= random combination of
// x and y using the nth arrangement
// of arithmetic operators defined
// separately

//___ = notable difference between
// ProgPoW and standard Ethereum PoW

// initialize the mix
initilizePoW(mix):

for (i in dim(mix)):
mix[i] <- i

for (i in dim(mix)):
n <- rand(i)
swap(mix[n],mix[i])

retrievals and increases the bandwidth required to
complete a calculation.

A set of pseudorandom mathematical operations
was also added in the main loop, which would
increase the complexity of any ASIC design in
addition to requiring more off-chip memory accesses
since the results of the random math govern where the
next memory access might occur.

In addition, the DRAM read size was increased
from 128 bytes to 256 bytes, also increasing the
bandwidth required to complete a calculation.

The inputs to the progPowHash function
essentially consist of a header generated from block
data (zeroes were used in this case for
experimentation), a nonce, and a pointer to the DAG.
There is an additional “seed” argument in the C++
code that is not shown here. This argument is
deterministic and is based on the block number.

4 METHODOLOGY

In order to carry out our study of ProgPoW’s
effectiveness in making effective use of GPUs but not
so effective for ASICs, we have followed the below
methodology in five steps.

4.1 Extract the PoW Code

First, the code from the GitHub site hosting proposed
ProgPoW code (Ifdefelse, 2019) was cloned.
Elements of this code that were solely used for the
proof of work algorithm were extracted and
implemented in a stand-alone version that only ran
the PoW algorithm with specific inputs for

experimental repeatability. There were several
dependencies that were required from the main cpp-
Ethereum code (Ethereum, 2019), and those were also
extracted and placed in the stand-alone version. The
goal was to create a simple version whose only
purpose was to run the PoW algorithm for a specific
block number. This would allow more accurate
analysis of memory access patterns and
benchmarking.

4.2 Test the Extracted PoW Code

To ensure that the assembled pieces of code
performed in the same manner as the original code,
test vectors provided on the ProgPoW GitHub site
(Ifdefelse, 2019) were utilized. All code produced
output identical to the test vectors page.

4.3 Generate the Directed Acyclic
Graph

As previously introduced, the Ethereum PoW uses a
Directed Acyclic Graph (DAG) to govern the process
of the PoW calculation. In addition, ProgPoW uses
the DAG to generate pseudorandom mathematical
operations in an attempt to make any ASIC design
more complex and less efficient, as well as require
that the algorithm request randomized blocks of
memory from the DAG which increases memory
bandwidth (this element is not present in the current
Ethereum PoW algorithm). The DAG is
approximately 1 GB in size at the 30,000th block (as
analyzed), though that size changes as the number of
blocks in the blockchain increases. The code for
generating the DAG was extracted from the Ethereum
project and implemented in isolation. It takes several
hours on current state of the art machines to generate
this DAG.

4.4 Implement the PoW Code on
Multithreaded CPU

Once the code was tested to ensure that it produced
the same results as expected, a version was created to
run multi-threaded on a CPU. OpenMP was used as
the programming standard, and it performed as
expected, meaning that as the number of threads
doubled, the time required to calculate a hash very
nearly halved. More details will be explored in the
results section.

Creation of this version had a dual use both as a
stepping-stone to get familiar with the code before
attempting a GPU implementation, and as a point of

Is Ethereum’s ProgPoW ASIC Resistant?

313

comparison for how an ASIC might manage memory
accesses.

4.5 Implement the PoW Code on GPUs

The final coding step was to implement the program on
a GPU. CUDA was used as the programming
standard, and this was a straightforward
implementation. No extra optimization was attempted
using local memory or cooperative groups, though that
could be considered as a next step if desired. To get a
general idea of the performance difference between a
single (simple) GPU core and a single (more complex)
CPU core, the hashing algorithm when run on a single
GPU core takes about 92 seconds to complete given a
specific set of inputs using the hardware described in
Section 5. Given the same inputs, the CPU finished in
about 3 seconds. The advantage of using the GPU is
clearly the large amount of parallelization possible.
The CPU was about 30 times faster on a core for core
basis with the specific machine used for this test,
however the GPU had 1280 cores available on the
machine tested and this algorithm is highly
parallelizable, creating a vastly scalable
implementation.

5 IMPLEMENTATION

The parallelized implementation of the algorithm
described consisted of creating multiple threads that
run the progPowHash function in its entirety with the
only difference being the nonce that is supplied. A
sequential number was used for the nonce to ensure
that no threads calculated a hash using the same nonce.

When each group of threads was executed, the
results were compared, and the hash that met the
criteria (14 leading binary zeroes, in the example case)
was selected as the result. If more than one hash met
the criteria, the hash associated with the lowest nonce
was selected as the result. This ensured that results
were repeatable and therefore comparable, since there
is an element of randomness to this process. In an
actual cryptocurrency mining setting, this would be
irrelevant.

The only difference between the GPU
implementation and the CPU implementation from this
perspective is that a great many of the threads for the
GPU implementation were submitted at once, and the
GPU firmware was left to decide which threads to
execute in what order, given the number of cores
available in hardware; 64 blocks of 32 threads each, for
a total of 2048 threads were submitted in each batch.
The CPU implementation, by contrast, submitted the

threads in groups of 2, 4, 8, 16, or 32 threads, and then
the results were evaluated after completion of
execution of each group. This allowed for greater
flexibility on the CPU implementation since the
number of threads actually executed to achieve a
satisfactory result were closer to the minimal number
of threads required. The GPU implementation needed
to submit thousands of threads at a time in order to
minimize the overhead involved with communicating
results back to the CPU host; this resulted in thousands
more threads being executed by the GPU than were
absolutely required. This negative effect was largely
overshadowed by the extreme efficiency gains of the
GPU execution, however.

6 EXPERIMENTAL RESULTS

As previously stated, the OpenMP version was
completed first, and the results were as expected
(Figure 1). The execution time did not quite reduce by
half when the number of threads doubled, and this can
be attributed to the bandwidth limitations of the
processor retrieving DAG elements from main
memory.

Figure 1: Execution time on two different multithreaded CPU
architectures.

The advantage of GPUs over CPUs for this
problem becomes evident in Figure 2. Note that the
GPU becomes more efficient very early. What is
immediately noticeable from here is that the efficiency
gains on the GPU become more significant as the
difficulty increases. One of the primary reasons for the
advantage of GPU over CPUs is the memory access
dynamics in a GPU (Figure 3). This fundamental
difference is not replicable in an ASIC, which retains a
more traditional CPU type memory access (Ren, L.,
Devadas, S., 2017).

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

314

Figure 2: Comparison of execution times on a
multithreaded CPU and GPUs with increasing hash
difficulty.

What these results have not addressed thus far is
the price to performance comparison. To give an
indication of where this might lie, however, the Ivy
Bridge processor used in the comparison retails for
approximately $1350 MSRP, and about a $200 third
party reseller sale price at time of this writing (Intel
E5-1680); the GPU card used retails for about $650
MSRP, and is available for less than $200 from third
party retailers (NVIDIA GTX-970M). ASIC
development and production costs are typically much
larger than commodity CPU costs because of the
narrow applicability (Madore, P. H, 2018). Provided
a similar relationship exists for a hypothetical ASIC
executing ProgPoW, the cost differential should be
fairly large.

Figure 3: NVIDIA GPU memory architcture (Gao, H.,
2017).

This shows the cohesive nature of the GPU memory
access heirarchy. Each block of 32 cores (termed a
streaming multiproccessor - SM) shares access to the
L1 and L2 cache, which gives direct access to
DRAM; each SM has independent access to the
cache. High bandwidth memory then allows multiple
accesses to be fulfilled simultaneously from DRAM.

7 CONCLUSION

What this work shows is that for this particular
problem type, a cheaper GPU can outperform a
commodity CPU. The reasons why this disparity
exists are particularly important:

1. The memory architecture of GPUs allows much
more efficient access to on-card memory than a
CPU (and by extension an ASIC) can manage.

2. The great number of simple cores allowing
massive parallelization for an arbitrary algorithm.

The ProgPoW algorithm is a bandwidth-hard
problem. Not only does it require a great deal of off-
chip memory (as a memory-hard problem would), the
accesses to that memory are essentially random,
negating any caching that might mitigate the effect.

Additionally, the broad applicability of GPUs
across a broad spectrum of applications implies that
development of enhanced bandwidth will likely
continue to occur apace and will likely vastly outstrip
any similar developments in the ASIC space. The
highly parallelizable nature of this algorithm (as
mentioned in Section II) also lends a significant GPU
advantage when coupled with advances in bandwidth.

By enforcing bandwidth-hardness in the proof-of-
work, cryptocurrency mining using the ProgPoW
algorithm for Ethereum would likely allow
commodity hardware GPUs to retain a cost for
performance advantage over a custom ASIC.

Others have evaluated the level of ASIC
resistance granted by memory-hard algorithms (Cho,
H., 2018), and while they acknowledge that the
general strategy has so far proved sound, they caveat
their conclusion with the fact that there are several
emerging memory technologies that might narrow
this gap. As previously stated, the implementation of
a bandwidth-hard algorithm, which requires
additional resources above simple memory-hardness,
will take this concept further and might well prove
impossible for ASIC manufacturers to counter. There
is little data on this subject so far, since Programmatic
Proof of Work is still a relatively new idea and no
major cryptocurrency has yet implemented it, but if
memory performance in GPUs continues to outstrip
that available to CPUs, and by extension ASICs, the
idea should have merit.

Is Ethereum’s ProgPoW ASIC Resistant?

315

REFERENCES

Narayanan, A., Bonneau, J., Felten, E., Miller, A.,
Goldfeder, S., 2016. Bitcoin and cryptocurrency
technologies: a comprehensive introduction. Princeton
University Press.

Balaji, A., 2018. A Simple Explanation of ASICs - Crypto
Simplified. https://medium.com/crypto-simplified/a-
simple-explanation-of-asics-35933d412b2d.

Taylor, M.B., 2017. The evolution of bitcoin hardware.
IEEE Computer.

Wang, W, Hu, P., Niyato, D., Wen, Y. A survey on
consesnsus mechanisms and mining strategy
management in blockchain networks. IEEE Access.
2019.

Hamada, T., Benkrid, K., Nitadori, K., Makoto, T., 2009. A
comparitive study on ASIC, FPGAs, GPUs, and general
Purpose Processors in the O(N2) gravitational N-body
simulation. In 2009 NASA/ESA Conf. Adapative
Hardware and Systems. IEEE.

ComputeNorth, 2018. What is the difference between ASIC
and GPU cryptocurrency mining?
https://www.computenorth.com/what-is-the-
difference-between-asic-and-gpu-cryptocurrency-
mining/

Hcash, 2019. Why go ASIC resistant? https:// medium.com/
@media_30378/why-go-asic-resistant-7fa1e40f50c4

Gorghiades, Y., Flolid, S., Vishwanath, S., 2019.
HashCore: Proof-of-Work functions for general
purpose processors. arXiv. 2019.
https://arxiv.org/pdf/1902.00112.pdf

Ifdefelse, 2019. Ifdefelse/ProgPOW. Retrieved July 13,
2019, from https://github.com/ifdefelse/ProgPOW.

Ethereum, 2019. Ethereum/aleth. Retrieved July 13, 2019,
from https://github.com/ethereum/aleth.

Madore, P. H, 2018. Bitmain Releases Antminer S15: How
it Stacks Up Against Competitors. Retrieved July 14,
2019, from https://finance.yahoo.com/news/bitmain-
releases-antminer-s15-stacks-131706332.html.

Gao, H., 2017. Basic Concepts in GPU Computing.
Retrieved July 14, 2019, from https://medium.com/
@smallfishbigsea/basic-concepts-in-gpu-computing-
3388710e9239

Ren, L., Devadas, S., 2017. Bandwidth hard functions for
ASIC resistance. In Theory of Cryptography
Conference. Springer.

Cho, H., 2018. ASIC-resistance of multi-hash proof-of-
work mechanisms for blockchain consensus protocols.
IEEE Access, 6, 66210-66222.

Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent,
A., & Schanck, J., 2016. Estimating the cost of generic
quantum pre-image attacks on SHA-2 and SHA-3. In
International Conference on Selected Areas in
Cryptography (pp. 317-337). Springer, Cham.

Alshaikhli, I. F., Alahmad, M. A., & Munthir, K., 2012,
November. Comparison and analysis study of SHA-3
finalists. In 2012 International Conference on
Advanced Computer Science Applications and
Technologies (ACSAT) (pp. 366-371). IEEE.

Armknecht, F., Karame, G. O., Mandal, A., Youssef, F., &
Zenner, E., 2015. Ripple: Overview and outlook. In
International Conference on Trust and Trustworthy
Computing (pp. 163-180). Springer, Cham.

Mazieres, D., 2015. The stellar consensus protocol: A
federated model for internet-level consensus. Stellar
Development Foundation, 32.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

316

