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Abstract: When taking photos in dim-light environments, due to the small amount of light entering, the shot images
are usually extremely dark, with a great deal of noise, and the color cannot reflect real-world color. Under
this condition, the traditional methods used for single image denoising have always failed to be effective.
One common idea is to take multiple frames of the same scene to enhance the signal-to-noise ratio. This
paper proposes a recurrent fully convolutional network (RFCN) to process burst photos taken under extremely
low-light conditions, and to obtain denoised images with improved brightness. Our model maps raw burst
images directly to sRGB outputs, either to produce a best image or to generate a multi-frame denoised image
sequence. This process has proven to be capable of accomplishing the low-level task of denoising, as well
as the high-level task of color correction and enhancement, all of which is end-to-end processing through our
network. Our method has achieved better results than state-of-the-art methods. In addition, we have applied
the model trained by one type of camera without fine-tuning on photos captured by different cameras and have
obtained similar end-to-end enhancements.

1 INTRODUCTION

In recent years, consumer electronics products have
been changing with each passing day and, as a result
of this rapid and steady increase in available technol-
ogy and customers expectations, smartphones are es-
sentially necessary for everyone (Decker and Trusov,
2010) . People are becoming accustomed to using
mobile phones instead of professional cameras to take
pictures in various environments because of the porta-
bility of mobile phones. One of the special photo sce-
narios that was once reserved for professional cam-
eras, but is increasingly important to non-professional
photographers, occurs when smartphone users take
pictures in extremely dark environments, usually un-
der 3 lux (Hasinoff et al., 2016). For example, when
taking a photo under the light of the full moon, the
light is usually about 0.6 Lux. Another example,
which is even more common among amateur photog-
raphers, comes when users take a photo in a dark in-
door environment without lights (in which the light
level is roughly 0.1 lux). We are interested in this
kind of extremely dark scene because in this kind of
dim environment, taking pictures with a portable mo-
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bile phone can help us “see” things that are difficult
to see with the naked eye.

Compared with single-lens reflex (SLR) cameras,
using a mobile phone to get good pictures in this kind
of dark environment is extremely difficult. This is
due to the fact that smartphones, by their very de-
sign, preclude the possibility of large aperture lens
designs, which makes it impossible to collect enough
light when taking pictures. Due to the small amount
of light entering the aperture, the shot images are usu-
ally extremely dark with a great deal of noise; further-
more, the color in the photos cannot reflect the real-
world color of the image (Remez et al., 2017).

Theoretical deduction has proven that increasing
the photon counts can effectively improve the image
signal-to-noise ratio (SNR) (El Gamal and Eltoukhy,
2005). There are many ways to increase the pho-
ton counts, one of which is to increase the exposure
time. However, this is usually done by mounting the
camera on a tripod. During the long exposure time,
any movement of the camera and any moving ob-
jects in the scene will cause objects to become blurry
in the picture. An additional problem of increas-
ing the exposure time occurs when one takes photos
of high dynamic range scenes; the darkest areas of



the image will likely still have a lot of noise, while
the brightest areas will tend to be saturated (Seetzen
et al., 2004). Another way to increase the exposure
time in the industry is through the multi-frame fu-
sion method which combines many short exposure
frames together. It is equivalent to increasing the ex-
posure time to achieve the purpose of improving the
SNR (Hasinoff et al., 2016).

Traditional denoising methods based on single-
frame images have matured and the performance is
slowly approaching saturation (Ghimpeţeanu et al.,
2016)(Irum et al., 2015)(Jain and Tyagi, 2016). Fur-
thermore, in extremely dark scenes, all the current
traditional denoising methods have failed to be effec-
tive (Plotz and Roth, 2017)(Chen et al., 2018). Chen,
et. al., has proven that a fully-convolutional network,
which operates directly on single-frame raw data can
replace the traditional image processing pipeline and
more effectively improve the image quality (Chen
et al., 2018). However, after further investigation, it
turns out that in a great deal of dark cases, using Chen,
et. al.’s network processing on single-frame results
may miss a lot of details; additionally, sometimes the
color cannot reflect the real color. This is because,
under dark environments, the SNR of the shot’s im-
age is quite low. A great deal of useful information
will be concealed by strong noise and cannot be fully
recovered through a single image.

Inspired by this work and traditional multi-frame
denoising methods, we propose a Recurrent Fully
Convolutional Network (RFCN) to process burst pho-
tos taken under extremely low-light conditions and
to obtain denoised images with improved brightness.
The major contributions of the work can be summa-
rized as follows:

1. We proposed an innovative framework which
directly maps multi-frame raw images to denoised
and color-enhanced sRGB images, all of which is
end-to-end processing through our network. By us-
ing raw data, we were able to avoid the informa-
tion loss which occurs in the traditional image pro-
cessing pipeline. We have established that using raw
bursts images achieves better results than state-of-the-
art methods under dark environments.

2. We have proven, moreover, that our framework
has high portability and cross-platform potential, i.e.,
the model trained by one mobile phone can be directly
applied to different cameras’ raw bursts without fine-
tuning and can obtain a similar level of enhancement.

3. Our framework is relatively flexible since
we can produce either a best image or generate a
multi-frame denoised image sequence. This opens up
the possibility of expanding our framework to cover
video denoising, as well.

The paper is organized as follows: The first part
consists of an introduction of the problems that oc-
cur when photos are taken under dark environments.
The second part gives a general overview of image
denoising methods and some related work. The third
part,“Methods and Materials,” describes the overall
framework, the network architecture and training de-
tails, and the data used to train and test the network.
Finally, the results, discussion, and conclusion are de-
tailed in Sections 4 and 5.

2 RELATED WORK

Image denoising is a long-established low-level com-
puter vision task. Many traditional methods have
been proposed to solve the denoising problem, such
as nonlocal filtering, Block-Matching and 3D Filter-
ing (BM3D), Weighted Nuclear Norm Minimization
(WNNM), and so on (Buades et al., 2005)(Dabov
et al., 2007)(Gu et al., 2014). Meanwhile, com-
puter vision has made rapid progress with the de-
velopment of deep neural networks (Remez et al.,
2017). One of the first attempts to use deep neural net-
works for image denosing was DnCNN (Zhang et al.,
2017). DnCNN can realize end-to-end denoising by
using neural networks, as well as by adopting resid-
ual learning strategies which can achieve blind im-
age denoising, and largely surpasses traditional meth-
ods. Residual Encoder-Decoder networks (RED) pro-
pose a residual network with skip connections (Chen
et al., 2017). RED uses a convolution and deconvolu-
tion symmetric network structure. Convolution oper-
ations extract features, while deconvolution is an up-
sampling of the extracted features; thus, the technique
completes the whole procedure from image to feature,
and then from feature to image. Similar to RED, U-
net has also been used for image denoising and has
achieved good results (Ronneberger et al., 2015). U-
net also has skipping connections, and its large recep-
tive field is capable of effectively reducing the number
of layers. We also use U-Net-like Fully Convolutional
Network (FCN) architecture in this work.

Some multi-frame denoising methods have also
been proposed and can usually achieve better re-
sults than single-image denoising (Hasinoff et al.,
2016). The fusion of multi-frame images can ef-
fectively improve SNR, hence enhancing the im-
age quality. Among the traditional multi-frame de-
noising methods, V-BM4D finds the motion trajec-
tory of the target block between the frames, regards
the series of in-motion trajectories as the target vol-
ume, and then finds similar volumes to form a four-
dimensional set. Finally, it performs filtering in



Figure 1: A conceptual illustration of the system framework.

Figure 2: This image illustrates the network architecture, in which Frame t is taken as an example. The above part is a
single-frame network from S1 to SL, in which L is the number of the layers. It is a U-Net structure with skip connections.
The multi-frame recurrent network from M1 to ML, shown below, is also a U-Net structure with skip connections. There
is a recurrent connection in each unit of the multi-frame network. The multi-frame network takes each scale feature of the
single-frame network as an input at each recurrent connection, and the output obtained by the unit in the previous frame is
also concatenated to this unit. In contrast to common RNNs, convolution is used in place of Gated Recurrent Units (GRU) and
Long Short Term Memory (LSTM). Finally, It

s represents output from single-frame network for Frame t with It
m representing

output from multi-frame network for Frame t. They will be used for calculating the loss. It
m is also the denoised output image

of Frame t.

the four-dimensional set, which can achieve effective
video denoising (Maggioni et al., 2011). There have
been several attempts to deal with multi-frame image
denoising through deep neural networks. Godard, et.
al., uses a Recurrent Neural Network (RNN) (Godard
et al., 2018) . The use of RNN can efficiently aggre-
gate the information of the frames before and after, as
well as increasing the effective depth of the network
to enlarge the receptive field (Mikolov et al., 2010).
It is worth noting that (Godard et al., 2018) does not
use skip connections. We also use RNN, but with skip
connections to combine multi-frame image informa-
tion for denoising and enhancement.

In the case of extremely dark environments, Chen,
et. al., proposed a new pipeline to replace the tra-
ditional one, which includes several procedures in-
cluding balance, demosaicing, denoising, sharpening,
color space conversion, gamma correction, and more.
These processes are specifically tuned in the camera
module to suit the hardware. However, because of
these non-linear processes on the raw data, some in-
formation is lost. Starting from raw data can help
to improve the image quality. Previous research has
proven that using raw data instead of sRGB can ef-

fectively enhance the quality of denoising. Raw im-
ages are generally 10bit, 12bit or 14bit, and often
contain more bits of information than 8-bit sRGB im-
ages (Schwartz et al., 2019). Especially in the case of
extremely dark environments, raw image can be used
to obtain more low-brightness information. There-
fore, we will use an end to end system starting from
raw data and directly generating an output of a de-
noised and enhanced sRGB image. We handed over
all the processes that were originally handled by the
ISP to the neural network. On the one hand, the neu-
ral network can fully use the information of these raw
images, and on the other hand, it will simplify the
pipeline.

3 METHODS AND MATERIALS

In the following sections, we describe how to imple-
ment the proposed network for multi-frame denois-
ing.



3.1 Framework

Fig. 1 represents the framework of our system. Af-
ter obtaining the raw burst data, we organize multi-
frame raw images into appropriate structures as in-
put for the neural network. For the Bayer Pattern raw
image, a common practice is to pack 4 color chan-
nels with the resolution of each channel reduced by
half. Then, we subtract the black level, which is the
value produced by the dark current released by the
photodiode without light. Most of the raw image val-
ues are distributed in areas close to the black level in
extremely dark environments; different cameras pro-
duce different black level values. Subtracting black
level from the raw image can help to apply the trained
model directly to raw images from different cameras.
This linear processing does not affect valid informa-
tion. Following this, we scale the data according to
the desired amplification ratio, which is a factor that
can be tuned (Chen et al., 2018). The amplification of
brightness is difficult to acquire in the convolutional
neural network denoising task, especially in different
raw images. Instead of using neural networks to ac-
quire this coefficient, it is more appropriate to set a
separate amplification ratio outside of the network.
By tuning the amplification ratio, we can satisfy the
different needs of a variety of scenarios. When train-
ing the model, we need to multiply the amplification
ratio to get an appropriate input brightness to match
the brightness of the ground-truth. The packed and
amplified data is then fed into the RFCN. The RFCN
network has an architecture which is composed of a
U-net combined with RNN. Finally, the network gen-
erates a multi-frame denoised image sequence.

3.2 Network Architecture

Fig. 2 shows the network architecture. We propose
to use the RNN method to fully process multi-frame
images; the multi-scale features can be fused in a re-
current manner to obtain context information and per-
form sequential processing. As a network for pro-
cessing sequential data, RNN is relatively flexible and
easy-to-expand. For our entire network, all param-
eters are shared, with each frame using the same pa-
rameters. Parameter sharing enables a reduction in the
number of parameters, which results in a shortened
training time and a reduced possibility of overfitting.
For CNN, parameter sharing is cross-regional, while
for RNN, parameter sharing is cross-sequence; thus,
parameters are shared by deep computational graphs.
The convolution kernel for any position in any frame
is the same. Therefore, the entire network can be ex-
tended to sequences of any length.

Similar to the technique used in (Godard et al.,
2018) , we use the overall network architecture of a
dual network, which is divided into a single-frame
network and a multi-frame RNN network. The single-
frame network is U-Net, which is a fully convolu-
tional neural network that is suitable for any size of in-
put. U-net’s different scale features are fed separately
to the corresponding scale recurrent connections in
the multi-frame network. These features are prelimi-
nary processed feature information and are more ef-
ficient for multi-frame networks. The multi-frame
network takes each scale feature of the single-frame
network as input at each recurrent connection. The
single-frame network first processes each frame of
image separately, and then inputs the multi-scale fea-
tures into the multi-frame recurrent network. Since
the basic structure we use is U-net, for single-frame
networks and multi-frame networks the process from
the front to the back of the network is downsampling
and upsampling. Moreover, the single-frame network
and the multi-frame network are consistently sampled
up and down, thereby ensuring that the scale of the
features is consistent. Compared to the structure used
in (Godard et al., 2018), we can use the U-net to bet-
ter extract information.

For the entire network, there are F frames of raw
images as input and F frames sRGB of images as out-
put. The latter output frame indirectly utilizes all of
the previous information. More output information
can be aggregated in the later frame. It is equivalent
to a very deep network. In general, the later the frame,
the more denoising has been performed, and therefore
the higher the image quality obtained.

3.3 Data

There are very few datasets for extremely dark en-
vironments. The most related one is the See-in-the-
Dark (SID) dataset (Chen et al., 2018). This dataset
contains different sets of raw short-exposure burst im-
ages. Each set has a corresponding long-exposure ref-
erence image which captures the same scene, which
will be used as ground-truth. They were all obtained
by real life phone camera shots under very dark en-
vironments. Outdoor photos were taken at night un-
der moonlight or streetlights, with illumination rang-
ing from 0.2 lux to 5 lux; and indoor photos’ illu-
mination ranges from 0.03 lux to 0.3 lux. There-
fore, the images were taken under extremely dark en-
vironments, but nothing out of the ordinary for nor-
mal cell phone camera users. Each group contains
up to 3 types of short exposure bursts of different ex-
posure times: 0.033s, 0.04s, and 0.1s, respectively.
The corresponding ground-truth is a long exposure



Figure 3: Four images: (a) was produced using the traditional image processing pipeline; (b) is the ground-truth, taken using
long exposure; (c) was produced using a single-frame enhanced network, as per (Chen et al., 2018); (d) was produced using
our multi-frame network. It can be clearly seen from the enlarged portion of (c) as compared with (a) that (c) is less noisy;
however, the wall color is uneven and does not correspond to the ground-truth and, furthermore, the details of the magazine
covers are lacking. In contrast, in (d) the enlarged portion shows that the wall color is much closer than (c) to ground-truth,
and more details have been recovered. The PSNR and SSIM of (c) are 21.82 and 0.889 respectively, while the PSNR and
SSIM of (d) are 24.93 and 0.903 respectively.

image. Its exposure time is 10s or 30s; although there
is still some noise, the quality can be considered high
enough. All photos were remotely controlled by a tri-
pod and did not require alignment. We chose the Sony
camera Bayer pattern raw images with a resolution of
4240 ∗ 2832 as our main training datasets. In addi-
tion, we collected data from extremely dark situations
taken by other mobile phones as a generalized test of
trained models.

3.4 Training Details

We used the TensorFlow framework. The single-
frame denoising network regresses denoised image
It
s = fs(Nt ,θs) from noisy raw input Nt , given the

model parameters θs, while the multi-frame denoising
network regresses each noisy frame, It

m = f t
m(N

t ,θm),
given the model parameters θm. We train the net-
work by minimizing the L1 distance between the pre-
dicted outputs and the ground-truth target images as
follows (Godard et al., 2018):

E =
F

∑
t

∣∣It − fs(Nt ,θs)
∣∣+ ∣∣It − f t

m([N
t ],θm)

∣∣
The patch size is 512*512. We used a relatively

large patch size because, when using U-Net, the im-
age quality of the patch edge is not as good as the
middle after downsampling and upsampling. A large
patch size ensures that the training would be satis-
factory. We also performed data augmentation on
the dataset. We set the Adam with learning rate
to 0.5 ∗ 10−4, then decay it by one half every 1000
epochs. 137 sequences (10 burst images, 4240∗2832)
were used for training, while 41 were reserved for
testing.

4 RESULTS AND DISCUSSION

To begin with, we use one example from the SID
dataset to compare three images to the ground truth:
first, the image produced by the traditional image
processing pipeline; second, the image produced by
(Chen et al., 2018), which is a single-frame enhanced
network; and third, our result. We can see from Fig. 3
that, compared with the traditional image processing
pipeline-generated image, the single-frame enhanced
network has already greatly improved the image, with
greatly reduced noise when compared with ground-
truth (the long exposure image). However, the result
still lacks many details; additionally, sometimes the
colors in the image do not reflect the real color. This
is due to the fact that the SNR of the shot’s image
is quite low under dark environment. Strong noise
conceals a substantial amount of useful information,
which cannot be recovered completely through a sin-
gle image. In contrast, use of our multi-frame net-
work permits more effecitive recovery of the details
and corrects the colors to make them more in line with
the ground-truth.

For fair comparison, each frame of the 10 bursts
of the same scene in the SID dataset was input to the
network for denoising and then averaged. This works
as a baseline for comparison. We compared our 10-
frame denoised results with the baseline and found
that our network can obtain more details, less noise,
and better enhancement. Some of the resulting im-
ages can be seen in Fig. 4. As is clear from these im-
ages, in the first example, the average processed im-
age cannot clearly identify the writing on the sticky
note, while the images obtained by our network are



Figure 4: In Column (a), the images were obtained via a traditional image processing pipeline. In Column (b), the images are
the ground-truth, as obtained by long-exposure. In Column (c), the images represent the baseline for fair comparison, which
is calculated by inputting each burst into (Chen et al., 2018) network for denoising, after which the output is averaged. In
Column (d), the images represent our results. As can be seen, in Column (d), the colors and details are more accurate and
correspond better to the ground-truth. This can best be seen on a screen, where the images can be magnified.

significantly closer to the ground-truth. Furthermore,
the color of the apple in our image is also closer to the
ground-truth. Similarly, in the second row, the images
obtained by our network clearly show the details of
the leaves, while the leaves in the average processed
image are blurred. Continuing to the third row, the
image obtained by our network reveals the outline of
the house and the texture of the ground, which can-
not be seen in the average processed image. In the
fourth row, the image obtained by our network shows
the texture of the trees trunk and branches, while in
the average processed image these things cannot be
seen clearly. Finally, in the fifth row, the text in the
image obtained by our network is clearer than the
text in the average processed image. We have cal-
culated the corresponding Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity (SSIM). On aver-
age, the PSNR and SSIM of our results are 30.75 and
0.822 respectively, while the PSNR and SSIM of the
baseline are 30.06 and 0.808 respectively. The PSNR

of our results can exceed 0.69dB, while the SSIM has
increased by 0.014 from the baseline.

To explore how our network processes image se-
quences, we trained a 10-frame model and output the
first to last frames of the image on the test set. Figure
5 shows the results of the 10 output frames. PSNR and
SSIM generally show an increasing trend in value,
while the text in the image of each frame can be visu-
ally confirmed as becoming less blurry and clearer in
each successive frame. This is because our recurrent
architecture processes the image sequence frame-by-
frame, with each successive frame aggregating and
utilizing all of the previous information from each
preceding frame. In general, the more previous in-
formation which is aggregated and utilized, the better
the later output will be. Fig. 6 is the PSNR and SSIM
average of all output images as compared to ground
truth under different number of frames. We can see
from Fig.6 that, in the first few frames, the increase
of PSNR and SSIM is more obvious for each addi-



Figure 5: This figure shows the results of a 10-frame out-
put model, arranged from the first frame (top) to the last
(bottom). PSNR and SSIM generally increase in value over
these ten progressive frames; this can be confirmed visually
as well, with the text on the frame image generally becom-
ing clearer in each successive frame.

tional frame; when the number of frames is increased
to a certain extent, however, the the growth rate is no
longer obvious when more frames are added.

We also collected some RAW images taken with
other mobile phones. These images, too, were
taken in very dark environments. Fig.7 shows how
the trained model applies to different cameras’ raw
bursts. We used our trained model to process these
images and obtained the same good results without
fine-tuning. In theory, because of the different sen-
sors, these images could be used as datasets to train
and retest in order to achieve the best results. How-
ever, we directly used the model that was trained with
SID before and tested the different camera’s datasets,
which led to good results and makes the photos sim-
ilar to the ones in the previous experiments. This

Figure 6: Illustration of average PSNR and SSIM of all out-
put as compared to ground truth under different number of
frames.

Figure 7: This example shows how the trained model ap-
plies to different cameras’ raw bursts (Blackberry key2, 10
bursts, exposure time: 0.1s). In (a), we converted the orig-
inal raw burst data directly using traditional pipeline to an
RGB image. (b) Due to excessive darkness, we use Photo-
shop to brighten the image in order to see the content. The
detailed image clearly has a lot of noise. In (c), we ap-
plied the trained model to the bursts. It can be seen that the
trained model can be applied to different cameras’ images
and can obtain good denoising and enhancement.

shows that our network can be generalized between
different models of cameras. The model obtained
by training images captured by a camera can be ef-
fectively used on images obtained by other cameras,
and thus has good portability. It is only necessary to
repack the Bayer pattern of the model according to the
Bayer pattern of the corresponding camera, putting it
in the same order. The black level of the correspond-
ing camera is subtracted in the normalization, thus al-
lowing completion of the migration.

5 CONCLUSIONS

The proposed framework, based on an RFCN (i.e.,
a U-net combined with RNN), is designed to pro-
cess raw burst photos taken under extremely low-light
conditions and to obtain denoised images with im-
proved brightness. All of this is end-to-end process-
ing done through our network. We have illustrated
that the use of raw bursts images obtains better re-



sults than state-of-the-art methods under dark envi-
ronments. As opposed to directly inputting all the
frames into the network together, when using RNN,
the network accumulates valid information frame by
frame and through the entire upsampling and down-
sampling process. The effective information of each
frame is aggregated with the previous aggregation re-
sult.Additionally, our model maps raw burst images
directly to sRGB outputs, either producing a best im-
age or generating a multi-frame denoised image se-
quence. As a consequence, our framework has a rel-
atively high level of flexibility, and opens up the pos-
sibility of expanding our framework to cover video as
well as image denoising. Finally, we have proven that
our framework is highly portable with a great deal of
cross-platform potential; therefore, the model trained
by one mobile phone can be directly applied to an-
other camera’s raw bursts without the necessity fine-
tuning, and a similar level of enhancement can be ex-
pected.

Currently we only focus on static scenes. If there
is an object moving in the scene, blur will inevitably
occur. In future work, however, we will consider
training our network with a data set containing mov-
ing objects and using a loss function that includes mo-
tion adaptive weights. By optimizing the network ar-
chitecture and training procedure, we expect to con-
tinue to yield further improvements in image quality.
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