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Abstract: Although the number of outstanding but highly complex Visual SLAM systems which are published as open
source has increased in recent years, they often lack a systematic evaluation of their weaknesses and failure
cases. This work systematically discusses the key differences of two state-of-the-art Visual SLAM algorithms,
the indirect ORB-SLAM2 and the direct LDSO, by extensive experiments in varying environments. The
evaluation is principally focused to the trajectory accuracy and robustness of the algorithms in specific situ-
ations. However, details about individual components used for the estimation of trajectories in both systems
are presented. In order to investigate crucial aspects, a custom dataset was created in a 3D modeling software,
Blender, to acquire the data for all experiments. The experimental results demonstrate the strengths and weak-
nesses of the systems. In particular, this research contributes insight into: 1. The influence of moving objects
in a usually static scene. 2. How both systems react on periodicly changing scene lighting, both local and
global. 3. The role of initialization on the resistance to dynamic changes in the scene.

1 INTRODUCTION

A robust localization and mapping in unknown envi-
ronments is a highly desirable ability of autonomous
robots. Visual Simultaneous Localization And Map-
ping (SLAM), as a realization using only cameras,
gains increasing attention due to its simple configu-
ration and low cost. Visual SLAM (VSLAM) can be
classified into monocular, stereo, and RGB-D SLAM
based on the type of camera used. At each time step,
a monocular camera provides only a single frame, a
stereo camera two frames from different lenses, and a
RGB-D camera usually can capture a RGB image and
a depth image. It is worth mentioning that a monoc-
ular SLAM, though with the simplest hardware con-
figuration, should be performed more carefully due to
the scale ambiguity (i.e., it can only retrieve the cam-
era pose and the environment to an unknown scale).

A well designed sensor fusion approach is able to
solve some of the fundamental problems of monoc-
ular VSLAM. For example, it can cooperate with
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Global Positioning System (GPS) in an autonomous
car or robot to provide a more accurate localization or
with other sensors in a GPS-denied area (Schleicher
et al., 2009)(Shi et al., 2013).

However, the requirement on the accuracy of es-
timations in VSLAM’s varies depending upon appli-
cations. Even though there has been a remarkable de-
velopment over the last 30 years and many existing
SLAM systems have already achieved fulfilling accu-
racy, studies such as (Cadena et al., 2016), (Huang
and Dissanayake, 2016), and (Taketomi et al., 2017)
have pointed out that there are still challenges and
possible improvement directions.

Comparing the current development of VSLAM
can provide a guide for specific future improvements
which can be useful for any VSLAM system. In this
work, we systematically analyze two state-of-the-art
SLAM systems, Oriented FAST and rotated BRIEF
(ORB)-SLAM2 (Mur-Artal and Tardós, 2017) and
Direct Sparse Odometry with Loop Closure (LDSO)
(Gao et al., 2018). ORB-SLAM2 is a newer ver-
sion of ORB-SLAM (Mur-Artal et al., 2015) with im-
proved feature extraction and a global optimization
as well as new interfaces for stereo and RGB-D in-
put. LDSO is extended based on DSO (Engel et al.,
2018) by modifying feature extraction and adding a
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loop closure functionality. There are three reasons
for choosing these two systems. Firstly, their core
ideas are different. ORB-SLAM2 is a feature-based
(indirect) method, while LDSO is a direct method.
Through the comparison, insight into these mecha-
nisms is expected to be obtained, which benefits the
future development in the two directions or a hybrid
one. Secondly, they are both sparse and real-time ca-
pable methods, ensuring a fair comparison. Thirdly,
both algorithms have achieved high accuracy on sev-
eral benchmark datasets. Despite many kinds of im-
provement proposed for these two systems so far, they
still represent the current state of monocular Visual
SLAM and deserve a more systematic analysis. To
the best of our knowledge, there is still no systematic
analysis of ORB-SLAM2 and LDSO for a monocular
camera.

Throughout this article we are investigating their
robustness and accuracy in challenging environments
which we can fully control. Due to the fact that LDSO
only accepts monocular frames, our work is limited to
the case with a monocular camera.

2 RELATED WORK

In the past work, the experimental comparison was
usually based on the benchmark datasets such as
TUM-monoVO (Engel et al., 2016), TUM RGB-D
(Sturm et al., 2012), EuRoC MAV (Burri et al., 2016),
and KITTI (Geiger et al., 2013) as well as ICL-NUIM
(Handa et al., 2014).

Earlier research compared version one of ORB-
SLAM with other existing algorithms (Huletski et al.,
2015)(Li et al., 2016). In addition to the experimen-
tal comparison, a theoretical comparison of numer-
ous monocular VSLAMs was made in (Younes et al.,
2017).

This was extended by a quantitative comparison
of the former versions of both methods ORB-SLAM
with DSO in (Engel et al., 2018). Engel et al. ran
DSO and ORB-SLAM on the TUM-monoVO, the
EuRoC MAV and the synthetic ICL-NUIM dataset.
In the experiments with TUM-monoVO and ICL-
NUIM, DSO outperformed ORB-SLAM regarding
the trajectory accuracy and robustness. In the other
experiments, ORB-SLAM achieved a better accu-
racy but showed worse robustness. Besides, they
also studied the tracking accuracy on the TUM-
monoVO dataset with artificial geometric and photo-
metric noise. As expected, ORB-SLAM is more ro-
bust to the geometric noise and DSO is more robust
to the photometric noise.

(Yang et al., 2018) investigated special aspects of

ORB-SLAM and DSO including photometric calibra-
tion, motion bias and rolling shutter effect. DSO has
proven to be more sensitive to the photometric cali-
bration and the rolling shutter effect. Besides, both
methods showed a large performance bias when run-
ning forward and backward on a dataset.

The first comparison of LDSO with ORB-SLAM2
was made by (Gao et al., 2018). In their work, LDSO
and ORB-SLAM2 have achieved comparable trajec-
tory accuracy on the KITTI dataset. While running
on the EuRoC MAV, ORB-SLAM2 showed better ac-
curacy and LDSO better robustness.

Finally, we would like to note, that this work is the
extension of our own open source evaluation pipeline.
A brief investigation of DSO using synthetic data was
performed by the authors in (Particke et al., 2018)
and the datasets in this work have been generated us-
ing the B-SLAM-SIM framework from (Kalisz et al.,
2019).

3 SYSTEM OVERVIEW OF
ORB-SLAM2 AND LDSO

This section theoretically compares ORB-SLAM2
and LDSO from the overall system overview to their
individual strategies in each module.

Generally, they consist of three parts: Firstly, the
tracking to predict the current camera pose and de-
cide if a new keyframe is necessary. Secondly, the
mapping to optimize several but not all keyframes and
map points, and eliminate some of them when nec-
essary. Thirdly, the loop closing to correct drift of
the camera pose by loop detection and pose graph op-
timization. Accurate trajectories and maps are only
possible after a careful initialization, which is intro-
duced specifically when discussed. Two special tech-
niques in ORB-SLAM2 are the relocalization, namely
recognizing a place where the camera was, and the
global bundle adjustment to optimize the whole tra-
jectory and map. The relocalization occurs after the
tracking is lost, while the global BA is only performed
if the initialization or loop closure is finished. The key
differences in their architecture and design ideas are
summarized briefly in Table 1.

In contrast to ORB-SLAM2 computing the ge-
ometric error, LDSO takes the geometric error into
account only when closing loops, and calculates the
photometric error in its tracking and mapping parts.
Instead of directly computing the intensity difference,
LDSO attempts to compute the irradiance (the energy
falling onto a small patch of the imaging sensor) dif-
ference. In order to convert between a brightness in-
tensity and an irradiance value, LDSO expects a pho-
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Table 1: Overview about the main differences in both SLAM systems.

Component ORB-SLAM2 LDSO

Point
Management

Image pyramid
Uniform Grid
FAST detector
ORB descriptor
Triangulation
Survival of the fittest

Uniform Grid
Large gradients
Shi-Tomasi score
Inverse depth
Status label

KeyFrame
Management

Covisibility graph
Survival of the fittest
Observation test

Sliding window
Optical flow
Camera translation
Exposure time

Initialization Homography
Fundamental matrix

First frame is fixed
Photometric error
Converged optimization

Tracking Indirect
Constant velocity
Relocalization (BoW)

Direct
83 motion hypotheses
Photometric error

Mapping Local bundle adjustment Sliding window bundle adjustment

tometric calibration of images, and builds a photomet-
ric model as explained in (Engel et al., 2016). The pa-
rameters of this model will also join in optimization
processes. The purpose of this photometric model is
to enhance the robustness of the system, because the
irradiance constancy, as compared to the brightness
constancy, more easily holds in the real world consid-
ering the automatic exposure changes and non-linear
response functions in modern off-the-shelf cameras.
If the images are not photometrically calibrated previ-
ously, predefined parameters will be used. Generally,
ORB-SLAM2 can be considered as a fully feature-
based method, whereas LDSO is basically a direct
method.

As an indirect method, ORB-SLAM2 can handle
large baseline motions thanks to the feature matching.
Due to the implementations, ORB-SLAM2 can main-
tain a global consistency of the trajectory by relocal-
ization and loop closure, and speeds up the bundle ad-
justment and pose graph optimization by means of the
innovative covisibility graph and essential graph. Fur-
thermore, ORB-SLAM2 builds two geometric mod-
els, the homography and fundamental matrix, to en-
sure an accurate and robust initialization. Neverthe-
less, these two models still require a sufficient par-
allax to reduce the uncertainty and some degenerate
cases are still not avoidable, e.g. degenerate homog-
raphy happens when one of the camera center lies in
the world plane. Also, this feature-based method-
ology demands an environment with prominent fea-
tures. Although LDSO also extracts features from

images, it can better cope with a texture-less environ-
ment due to an adaptive threshold for high-gradient
pixel detection. Because of the trait of the direct
approach, LDSO can achieve a sub-pixel accuracy.
However, the deficiency in the relocalization function
limits the global localization capability of LDSO in
spite of integrating the loop closure function. Despite
a coarse-to-fine tracking, LDSO is still less efficient
at handling large camera motions than ORB-SLAM2.

4 EXPERIMENTAL SETUP

This chapter describes the preparation for a system-
atic evaluation in order to make this process transpar-
ent to the reader.

For a systematic evaluation, datasets used should
cover as many cases as possible. Two difficulties
arise here, namely, how to keep control variables con-
stant and how to obtain the ground truth trajectory.
Many existing real-world datasets such as KITTI were
recorded in a dynamic environment and have trans-
lational and rotational motion, sometimes even mo-
tion blur, which makes a systematic evaluation in-
tractable. Other synthetic datasets such as ICL-NUIM
were recorded in static scenes, but they only cover
limited cases. Based on these limitations, we decided
to create new datasets to benchmark ORB-SLAM2
and LDSO using the open source software Blender1.

1https://www.blender.org/
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Visual SLAM usually creates a world coordinate
system with the first tracked frame as its origin, where
camera poses are expressed relative to it. However,
the ground truth trajectory is usually extracted from
a different coordinate system. In order to quantita-
tively compare the estimated path with the ground
truth, we first align both trajectories with support for
the collinear case as discussed in (Barfoot, 2017).

After trajectory alignment, appropriate error met-
rics should be used to evaluate the difference between
the estimated trajectory and ground truth. Two fre-
quently applied metrics are the Absolute Trajectory
Error (ATE) and Relative Pose Error (RPE). Advan-
tages and disadvantages of ATE and RPE are already
discussed in (Kümmerle et al., 2009), (Sturm et al.,
2012), and (Zhang and Scaramuzza, 2018). The fol-
lowing evaluations use ATE as the error metric.

5 RESULTS AND EVALUATION

This chapter describes experiments and evaluation
with respect to different factors. The results of run-
ning ORB-SLAM2 and LDSO on an ideal synthetic
dataset is the reference for the investigation of dif-
ferent aspects including dynamic environments with
moving objects as well as the change of image bright-
ness. It is noteworthy that both SLAM systems run on
each dataset 100 times to mitigate the impact of ran-
domness, which arises from non-deterministic algo-
rithms such as RANSAC (Fischler and Bolles, 1981)
used to reject outliers in the pose prediction stage. Re-
sults are primarily represented in the form of cumu-
lative plots, where the x-axes depict the percentage
of tracked frames, root mean square translational er-
ror, and root mean square rotational error respectively,
while y-axes denote the number of runs, in which a
value, less than or equal to a certain x-value, was ob-
tained. Ultimately, all observations and indications
from the research are summarized.

5.1 Static Scene

We evaluate both algorithms on an environment called
Polygon World which is built from blob, corner and
edge features. It contains 81 polygons with no texture
but the same solid color. The environment is designed
to be static, which means there are no moving objects
and no illumination change. It is deliberately kept as
simple as possible, which however makes it only suit-
able to generate image sequences with camera move-
ments in a small area.

From Polygon World, a reference sequence of 250
frames was generated as illustrated in Figure 1. The

(a) Polygon World. (b) Camera view. (c) Top view.
Figure 1: An illustration of the reference sequence from the
synthetic world named Polygon World. It contains 81 dif-
ferent polygons ranging from 3 to 83 vertices. The camera
is highlighted in the various perspective views and the top
view shows a yellow line which represents the ground truth
trajectory in the evaluation.

camera moves straightforward with a constant veloc-
ity towards polygons and captures 20 frames per sec-
ond. In total, the camera moves a distance of 5 m.
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Figure 2: Results on the reference dataset from Polygon
World. In the total 100 runs, ORB-SLAM2 failed once, in
which it did not initialize. Due to no detected loops, the
sliding-window-related trajectory of LDSO is evaluated.

Figure 2 demonstrates the results of 100 runs on
the reference dataset from Polygon World. It can be
observed that with this sequence, LDSO outperforms
ORB-SLAM2 regarding the root mean square transla-
tional and rotational error. In addition, LDSO shows
much less randomness as opposed to ORB-SLAM2.

The reason for these is the initialization. As dis-
cussed before, an accurate initialization is vital for the
subsequent tracking. To initialize, ORB-SLAM2 ap-
plies the RANSAC algorithm to select detected fea-
ture correspondences for the computation of a homog-
raphy or a fundamental matrix, while LDSO performs
a joint optimization, which is more deterministic.

In this sequence, although the camera views dif-
ferent polygons, it does not mean the detected corners
have distinct feature descriptors. Due to the inherent
descriptor computation algorithm and the resolution
of the images, numerous features are seen similar to
each other. As a result, ORB-SLAM2 cannot discard
incorrect correspondences between frames (see Fig-
ure 3). If the erroneous correspondences are picked
for the initialization, there can be two consequences:
On the one hand, ORB-SLAM2 is very likely to ob-
tain an invalid homography or fundamental matrix
and needs to iterate the picking process, causing a
slow initialization and further fewer tracked frames.
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Figure 3: Erroneous correspondences detected by ORB-
SLAM2. The figure is the concatenation of frame 1 (left)
and 2 (right). A red dot is a detected feature and a red
line linking two features represents an incorrect match-
ing, which is empirically detected by checking if a feature
moves more than 10 pixels between two frames. The num-
ber of erroneous matches takes up 14 percent of the total
matches.

On the other hand, ORB-SLAM2 happens to initial-
ize, but the recovered relative pose is probably inac-
curate, leading to a larger error in the estimated tra-
jectory.

Additionally, ORB-SLAM2 suffers from pixel
discretization artifacts as mentioned in (Yang et al.,
2018). That is, features’ locations are represented by
integers. This kind of representation is inexact and
could severely affect the estimate’s accuracy.

Furthermore, the camera moves very slowly in
this sequence, causing only small parallax between
adjacent frames. However, ORB-SLAM2 expects a
noticeable change in perspective when initializing.
Hence, ORB-SLAM2 waits for more frames until a
large parallax and thus tracks fewer frames.

5.2 Dynamic Environment

An ideal environment for ORB-SLAM2 and LDSO
should be static, which means no moving objects and
no brightness change. However, the real world is al-
ways dynamic. For example, a landmark could move
during the tracking, and the light intensity in the en-
vironment could change gradually resulting in a vari-
ation of the final image brightness.

5.2.1 Moving Object

There are many factors related to dynamic objects
which can be delved into. We primarily focus on three
of them, the number of moving objects and their mov-
ing directions as well as the time they start to move.
The number of moving objects in our experiments is
1 or 40. The objects move forward with the same ve-
locity as the camera, or they move in the direction
which is perpendicular to the camera’s moving direc-
tion. We investigate either all objects starting to move
from the first frame or after 125 frames separately to

evalute the influence of the initialization process in
each SLAM system.
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Figure 4: Results of ORB-SLAM2 where dynamic objects
all start to move from the first frame.

Figure 4 depicts that ORB-SLAM2 cannot initial-
ize when there are 40 objects moving from the begin-
ning as the respective graph remains tiny. One mov-
ing object has only slight influence on the trajectory
accuracy.
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Figure 5: Results of ORB-SLAM2 where the dynamic ob-
jects all start to move after 125 frames.

If objects start to move after the system is initial-
ized, ORB-SLAM2 can still track as depicted in Fig-
ure 5. However, the moving objects affect the trajec-
tory accuracy. Compared with a single moving object,
more moving objects lead to a less accurate trajectory.
Furthermore, if the objects move together perpendic-
ularly to the camera, the rotational error will increase
significantly. Objects that are moving in the same di-
rection as the camera influence the translational error
of the camera.
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Figure 6: Results of LDSO where the dynamic objects all
start to move from the first frame.

Similar conclusions can also be drawn from the re-
sults of LDSO depicted in Figures 6 and 7. One differ-
ence from ORB-SLAM2 is that LDSO was also able
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Figure 7: Results of LDSO where the dynamic objects all
start to move after 125 frames.

to initialize when 40 objects started to move at the
beginning, but the estimation contains larger transla-
tional and rotational errors.

5.2.2 Illumination Change

Regarding the illumination change, two situations
should be considered, namely local and global vari-
ation. These variations in the real world lead to
pixel intensity changes in images. Therefore, new
sequences were generated directly by modifying the
pixel intensities in the reference dataset from Poly-
gon World. Like in the last section, the illumina-
tion change can also happen from the beginning or
after a successful initialization. Based on the pre-
vious results, we assume ORB-SLAM2 and LDSO
must have initialized in the first 125 frames of the ref-
erence dataset.

(a) t = 1. (b) t = 2. (c) t = 3. (d) t = 4. (e) t = 5.
Figure 8: An illustration of global (top row), 1/4 local (mid-
dle row) and 1/2 local (bottom row) illumination variation.

To model a global variation, the pixel intensity
values in an image were added with 0, 16, 32, 64,
128 periodically across the whole image, whereas for
a local variation only a quater or half of the image was
altered as demonstrated in each row of Figure 8. The
results of ORB-SLAM2 are demonstrated in Figures
9 and 10. For comparison, LDSO is summarized in
Figures 11 and 12.

As can be seen in Figure 9, ORB-SLAM2’s ini-
tialization and trajectory accuracy are not highly af-
fected by the local illumination change starting from
the beginning, but a global variation could lead to an
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Figure 9: Results of ORB-SLAM2 when the illumination
starts to change from the beginning.
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Figure 10: Results of ORB-SLAM2 when the illumination
starts to change after 125 frames.

estimated trajectory with a large error. If the intensity
starts to vary after 125 frames, ORB-SLAM2 is more
likely to estimate an inaccurate trajectory.
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Figure 11: Results of LDSO when the illumination starts to
change from the beginning.

94.2 94.4 94.6 94.8 95.0 95.2 95.4

tracked frames [%]

0

20

40

60

80

100

n
u

m
b

er
of

ru
n

s

1 2 3 4 5 6 7
ATEtrans [mm]

0

20

40

60

80

100

n
u

m
b

er
of

ru
n

s

0.05 0.10 0.15 0.20 0.25 0.30 0.35
ATErot [°]

0

20

40

60

80

100

n
u

m
b

er
of

ru
n

s

Reference (static) Local variation (1/4) Local variation (1/2) Global variation

Figure 12: Results of LDSO when the illumination starts to
change after 125 frames.

Compared to ORB-SLAM2, LDSO is more sen-
sitive to illumination change. It failed very soon af-
ter the initialization in all runs on the sequence with
global variation starting from the beginning. Addi-
tionally, a local variation in the half of images in-
creases the position error considerably.

One unanticipated finding was that if the local
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(a) Frame 107. (b) Frame 133.
Figure 13: Examples of depth maps estimated by LDSO.
These are color-coded (near: dark red, far: dark blue) depth
maps on two keyframes, which are used for the pose pre-
diction of next frames. It can be seen that those features
whose intensity values have changed greatly were discarded
by LDSO.

variation happens only in one quarter of an image,
LDSO is barely affected, which indicates LDSO still
has resistance to the brightness change to some extent.
A reason for this resistance is that LDSO can identify
the pixels with strong variation as outliers and neglect
them while tracking (see Figure 13).

6 CONCLUSIONS

Generally, a distinct feature is crucial in both systems.
Although ORB, which is utilized in ORB-SLAM2,
may outperform other existing features (Tareen and
Saleem, 2018), it was not as robust as expected in the
experiments. There were always inevitable erroneous
correspondences of features. Besides, the features’
locations are not exact due to discretization artifact.
These are important reasons for ORB-SLAM2’s ran-
domness and less accurate estimate. An improvement
in the future could be developing a more robust fea-
ture with sub-pixel accuracy. Another suggestion is
that a smoothing method should be performed as the
first step when a new frame arrives, but with the cau-
tion that the details in the image should be retained.

In the experiments about dynamic environments,
we have found out:

1. It is quite challenging for ORB-SLAM2 and
LDSO to initialize in a dynamic environment. How-
ever, if the dynamic change happens after the initial-
ization, its influence will become much smaller.

2. If the change is not apparent enough (few mov-
ing objects or a small area with illumination change),
ORB-SLAM2 and LDSO are able to identify outliers
and neglect them during the estimation.

Regarding the initialization, the techniques used
are not perfect. There are two questions which need to
be answered. The first question is which frame should
be used for the initialization. In ORB-SLAM2, two
frames are chosen according to the number of features

and correspondences. In LDSO, after the first frame is
fixed as the reference, the next frame will be directly
used for the image alignment. The second question
is how to initialize the system, namely, how to esti-
mate the relative pose and the landmarks’ positions.
ORB-SLAM2 makes use of the geometry information
to compute the relative pose and then triangulation. In
contrast, LDSO optimizes them together by providing
initial guesses, expecting a convergence of the values
in the photometric cost function. Despite the fact that
LDSO has initialized in more runs in the experiments,
the frames for the initialization should still be selected
based on certain criteria to mitigate the dependency
of the first frame, and the model should be general for
all kinds of situations. An improvement may be using
more views as introduced in (Hartley and Zisserman,
2003).

In future work we aim to investigate the differ-
ences between both SLAM systems by comparing
their motion models and loop closure capabilities.
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