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Abstract: We present a new nature-inspired approach based on the Focus Group Optimization Algorithm (FGOA) for 
solving Constraint Satisfaction Problems (CSPs). CSPs are NP-complete problems meaning that solving 
them by classical systematic search methods requires exponential time, in theory. Appropriate alternatives 
are approximation methods such as metaheuristic algorithms which have shown successful results when 
solving combinatorial problems. FGOA is a new metaheuristic inspired by a human collaborative problem 
solving approach. In this paper, the steps of applying FGOA to CSPs are elaborated. More precisely, a new 
diversification method is devised to enable the algorithm to efficiently find solutions to CSPs, by escaping 
local optimum. To assess the performance of the proposed Discrete FGOA (DFGOA) in practice, we 
conducted several experiments on randomly generate hard to solve CSP instances (those near the phase 
transition) using the RB model. The results clearly show the ability of DFGOA to successfully find the 
solutions to these problems in very reasonable amount of time. 

1 INTRODUCTION 

A wide variety of real world applications, including 
scheduling, planning (Mouhoub, 2003), 
configuration (Mouhoub & Sukpan, 2012) and 
timetabling (Hmer & Mouhoub, 2016), can be seen 
as constraint problems. Over the last four decades, 
researchers have focused on developing effective 
algorithms including systematic and approximation 
methods for tackling these problems modeled using 
the Constraint Satisfaction Problem (CSP) 
framework (Dechter, 2003). A CSP includes a finite 
set of variables, ܺ ൌ ሼݔଵ,… ,  ௡ሽ, for every variableݔ
 ௜ሻ, and a finiteܦ ௜, a finite set of values (or domainݔ
set of constraints ܥ ൌ ሼܿଵ, … , ܿ௞ሽ that restrict the 
values that variables can simultaneously take. A 
CSP solution, ܵ ൌ ሼݔଵ ൌ ݀ଵ,… , ௡ݔ ൌ ݀௡ሽ where 
	݀௜ ∈  ௜,   is the assignment of values to eachܦ
variable such that all constraints are satisfied. When 
solving a CSP, we might be looking for one, many 
or all solutions (Solnon, 2002). In the case where a 
solution does not exist, the problem is inconsistent. 
As a matter of fact, many of the real world problems 
are over-constrained and do not have a solution. In 
this particular case, the goal is to look for an 
assignment satisfying the largest number of 

constraints. This latter notion is the generalized 
definition of CSPs which is called Max-CSPs 
(Freuder, 1992).     

The most well-known systematic search 
algorithm for solving CSPs is Backtracking 
(Dechter, 2003). This algorithm incrementally 
attempts to extend a partial solution toward a 
complete one by assigning values to variables in a 
particular sequence. Given that CSPs are NP-hard 
problems, solving them with systematic search 
methods requires an exponential time, O(dn), where 
n is the number of variables and d their domain size. 
Despite this limitation, the running time, in practice, 
of Backtracking can be improved through constraint 
propagation (Dechter, 2003). However this latter 
algorithm has limitations for those hard to solve 
problems (Solnon, 2002).  

An alternative is to use incomplete methods like 
metaheuristic algorithms. Although these algorithms 
do not guarantee to find a solution to a CSP (nor 
they can prove the inconsistency of over-constrained 
problems), they are often capable solving CSPs in a 
reasonable amount of time. Metaheuristics explore 
search spaces, using a compromise between 
exploitation and exploration in order to find a 
solution. The main inspiration sources of these 
algorithms are swarm intelligence, biological 
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processes as well as chemical and physical systems. 
Over the last two decades, these algorithms have 
become very popular due to their   successes in 
dealing with combinatorial problems and CSPs in 
particular.  

For instance, in (Solnon, 2002) a new approach 
based on Ant Colony Optimization (ACO) is 
presented for solving CSPs. The basic idea of this 
work was to keep track of promising areas by laying 
pheromone on them. This pheromone information is 
used then as a heuristic for assigning appropriate 
values to the problem variables. The performance of 
the proposed ACO algorithm is boosted using local 
search methods.  

The Firefly Algorithm (FA) is another powerful 
metaheuristic which has been successfully adopted 
to CSPs as shown in (Bidar, 2018) and (Bidar, 
Mouhoub, & Sadaoui, 2018). In these works, 
discrete version of FAs (called discrete FA or DFA) 
were proposed and evaluated on different CSP 
instances generated using the model RB. In (Fister, 
2013) the applicability of FA for solving graph 
coloring problems has been investigated. In this 
work, a heuristic swap local search has been 
employed to improve the overall search.  

In (Breaban, 2007), a new discrete Particle 
Swarm Optimization algorithm (PSO) is proposed 
for solving CSPs. The new algorithm is obtained 
after transforming a continuous PSO into its discrete 
version as well as adopting important features such 
as velocity and new positions of the particles. In 
(Bidar & Mouhoub, 2019), a new discrete PSO was 
proposed for solving CSPs in dynamic environment 
(Dynamic CSPs (DCSPs)). In this work all the 
features of the standard PSO redefined to be able to 
deal with discrete problems like CSPs. This method 
successfully applied to DCSPs and achieved very 
promising results. 

In (Eiben, 1994), Genetic Algorithms (GAs) 
have been investigated for solving CSPs and their 
applications including, Graph Coloring Problems 
(GCPs) and N-Queen problems. In this regard, 
several experiments have been conducted and their 
results reported in the paper. 

In (Abbasian, 2016) a new parallel architecture, 
called Hierarchical Parallel Genetic Algorithm 
(HPGA) has been proposed for solving CSPs. In 
addition to exploring the search in parallel, through a 
set of Islands of Parallel GAs (PGAs), this proposed 
algorithm uses a new operator, called the Genetic 
Modifier (GM) that injects good solutions to these 
islands. These good solutions are obtained after 
gathering useful information from constraint 

violations in previous runs and ordering variables 
according to (Mouhoub, 2011). 

Other attempts for solving variants of CSPs have 
also been proposed, such as in (Salari, 2008) where 
ACO has been proposed for tackling GCPs. Here, 
the authors present a new Max-Min ACO where at 
each iteration Kempe Chain local search is applied 
to boost the search. In (Mouhoub & Wang, 2008) 
and (Mouhoub & Wang, 2006), the authors adopted 
the ACO algorithm to quadratic assignment 
problems using CSPs framework. In these works 
they proposed new random walks strategies to 
improve the stochastic local search of the standard 
ACO in order to address the weakness of the ACO 
in getting stuck in local optimum solution and 
immature convergence. They also proposed a new 
forward look ahead strategy to improve the 
exploitation feature of the algorithm. 

In (Cui, 2008), an improved PSO algorithm is 
reported for solving GCPs. In this regard, a 
disturbance factor is used in order to improve the 
performance of the solving algorithm. The idea 
behind the disturbance factor is to help the algorithm 
escape local optimum by choosing some particles 
(according to a probability function which 
corresponds to the hardest problems to solve) and 
resetting their velocities. This addresses one of the 
main shortcomings of PSOs which consists of 
immature convergence. 

Recently, Fattahi and Bidar have proposed a new 
metaheuristic, namely the Focus Group 
Optimization Algorithm (FGOA) based on human 
collaborating behavior in finding the best solution 
for a problem through group discussion (Fattahi, 
2018). The results of the experiments conducted on 
different benchmarking functions including the 
constrained and unconstrained ones, have shown the 
high performance of FGOA and the potential it has 
to dealing with problems under constraints. This has 
motivated us to develop a discrete version of FGOA 
that we call, Discrete FGOA (DFGOA), in order to 
deal with CSPs.  

To assess the performance of the proposed 
DFGOA in practice, we conducted several 
experiments on randomly generate hard to solve 
CSP instances (those near the phase transition) using 
the RB model. The results clearly show the ability of 
DFGOA to successfully find the solutions to these 
problems in very reasonable amount of the time. 
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2 FOCUS GROUP 
OPTIMIZATION ALGORITHM 
(FGOA) 

FGOA is a new metaheuristic algorithm proposed by 
Fattahi and Bidar (Fattahi, 2018) for global 
optimization tasks. This algorithm is inspired by 
collaborative behavior of a group’s members in 
sharing their ideas on a subject in an attempt to 
develop an appropriate solution for that problem. 
The pseudo-code of FGOA is presented in 
Algorithm 1. To get the best solution to a given 
problem, FGOA works as follows. All members 
share their solutions through group communication 
and discussion, in an iterative manner, and under the 
supervision of an agent called the Note Taker.  Each 
member’s solution is getting affected by the other 
members’ solutions. This impact is calculated 
according to (1): 

௜݉ܫܲ
௞ାଵ ൌ ݓ ൈ ௜݉ܫܲ

௞ ൅ ∑ ሺܥܫ௝ ൈ ܴ݊݀ ൈ ሺܲܫܤ௝
௞ െே

௝ୀଵ

௜ܫܲ
௞ሻሻ  

(1)

where,	ܲ݉ܫ௜
௞ is the impact of other participants’ 

solutions on the solution of participant i in kth 
iteration,	ܲܫ௜

௞ is the solution of the participant i in 
iteration k, ܲܫܤ௝

௞ is the best solution of participant j 
achieved before iteration k,	 and ܥܫ௝ is the impact of 
participant j which should be calculated based on the 
cost of the best solution achieved by participant j. w 
is the inertia weight. It is a real value in the interval 
[0, 1]. 
 

Initialization 
while (termination criterion is not met) 
    for i=1 to N   // N is the population size                                                          
.       IC = getCindex (PBC)                                                                                 
.      Calculate the impact of other solutions on  Solution i:          
௜݉ܫܲ								

௞ାଵ ൌ ݓ ൈ ௜݉ܫܲ
௞ ൅ ∑ ሺܥܫ௝ ൈ ܴ݊݀ ൈ ሺܲܫܤ௝

௞ െ ௜ܫܲ
௞ሻሻே

௝ୀଵ                        

.      Apply impact limits on  ܲ݉ܫ௜
௞ାଵ                                                                  

.  .   Update ܲܫ௜
௞ାଵ  based on ܲ݉ܫ௜

௞ାଵ                                                                 
.      Apply limits on ܲܫ௜

௞ାଵ by facilitator                                                             

.      Evaluate the ܲܥ௜
௞ାଵ                                                                                      

.      Update ܲܫܤ௜
௞ାଵ based on ܲܥ௜

௞ାଵ and ܲܫܤ௜
௞                                                  

end for                                                                                                                 
Update NBCk                                                                                                      
k=k+1 
end while 

௜݉ܫܲ
௞: impact of other solutions on  Solution i in kth iteration 

௝ܫܤܲ
௞: Best Solution of ith Participant in kth iteration 

௜ܫܲ
௞: Solution of ith Participant in kth iteration 

NBCk: Best Cost in kth iteration 
ICi: Impact Coefficient belong to ith Participant 
w: Inertia Weight 
௜ܥܲ

௞: Cost of ith Participant in kth iteration 
PBC: Best Cost of all Participants 
Rnd: Random Number 
getCindex: A function that returns the Impact Coefficient based on PBC 

Algorithm 1: Pseudo code of FGOA. 

௜݉ܫܲ
௞ must be kept within the lower and the upper 

bounds of impact as shown below in (2), as we need 
to enforce some constraints to do so.   

௜݉ܫܲ
௞ ൌ ቊ

max	ሺܲ݉ܫ௜
௞, ሻݐܿܽ݌݉݅	݂݋	݀݊ݑ݋ܾ	ݎ݁ݓ݋݈

min	ሺܲ݉ܫ௜
௞, ሻݐܿܽ݌݉݅	݂݋	݀݊ݑ݋ܾ	ݎ݁݌݌ݑ

 (2)

Finally, the solution of participant i is updated based 
on the impact of the other solutions which is 
calculated using (1): 

௜ܫܲ
௞ାଵ ൌ ௜ܫܲ

௞ ൅ ௜݉ܫܲ
௞ାଵ (3)

The upper and lower bounds are enforced on the 
participants’ solutions by (4) to keep them within the 
bounds of the problem: 

௜ܫܲ
௞ାଵ ൌ ቊ

maxሺܲܫ௜
௞, ݄݁ݐ ሻ݀݊ݑ݋ܾ	ݎ݁ݓ݋݈

minሺܲܫ௜
௞, ݄݁ݐ ሻ݀݊ݑ݋ܾ	ݎ݁݌݌ݑ

   (4)

3 DISCRETE FOCUS GROUP 
OPTIMIZATION ALGORITHM 
(DFGOA) 

The basic version of the FGOA has been developed 
to deal with continuous problems (ܺ ∈ ܴ௡). To 
apply it to CSPs where search spaces are discrete 
(ܺ ∈ ܵ௡), we need a discretization of this algorithm 
as described in the following subsections.   
 
A. Potential Solution Representation 
Let us consider a CSP with 6 variables, ܸ ൌ
ሼ ଵܸ	, ଶܸ, ଷܸ, ସܸ, ହܸ, ଺ܸሽ, define on a domain ܦ ൌ
ሼ1, 2, 3, 4ሽ. A candidate solution is represented in 
Figure 1. 

 

Figure 1: Solution representation. 

B. Fitness Function 
Given that solving CSPs consists in finding a 
complete assignment satisfying all the constraints 
(or the one minimizing the number of constraints in 
the case of over-constrained problems), we define 
the fitness function as the total number of violated 
constraints, for the given potential solution. 
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C. Solution Update 
We define the impact factor parameter for each 
potential solution based on its quality according to 
(5). 

௧ାଵሺ݅ሻܨܫ ൌ ௧ሺ݅ሻܨܫ ൅

∑ ሺሺ
௥௔௡ௗሺଵሻൈ൫|ிሺௌ೔ሻିிሺௌೕሻ|൯ൈூ஼ሺ௝ሻ

ே௩௔௥
ሻ௠௡௉௢௣

௝ୀଵ ሻ  
(5)

Here, IF(i) is the impact factor of participant i 
which will take an important role in the next steps to 
affect the other participants’ solutions, ܨܫ௧ାଵሺ݅ሻ is the 
new impact factor of participant i, nPop is the 
population size, Nvar is the number of variables of 
the problem, rand(1) generates a random number in 
(0,1) and ܨሺܵ݅ሻ and ܨሺ݆ܵሻ are the qualities of solutions 
i and j respectively. 

 ሺ݆ሻ, the impact coefficient, is a randomܥܫ
number in (0,1) and is assigned to each solution. In 
this regard, a set of nPop random numbers is 
generated and is based on the quality assigned to 
each solution (the more quality a solution has, the 
larger the value will be assigned to).  

As an example, Table 1 shows this process for a 
minimization problem for a set of given solutions 
with associated qualities. 

Table 1: Assignmnet of Impact Coefficient ��ሺ�ሻ  to 
each Solution for Given Instance Problem (RD are 
generated random numbers). 

 S1 S2 S3 S4 S5 S6 S7 S8 

F(࢏ࡿ) 2 8 7 10 14 18 20 21 

RD 0.71 0.51 0.07 0.18 0.40 0.59 0.24 0.14 

IC(i) 0.18 0.21 0.24 0.40 0.51 0.63 0.59 0.71 

 
D. Affecting other participants’ Solutions 
In a discrete problem space, affecting a solution can 
be interpreted as replacing its variables’ values with 
the corresponding values of the better solution with 
an appropriate probability. This is done in order to 
avoid the immature convergence of the algorithm. In 
our proposed algorithm, this replacement is done by 
considering IF() as the probability of this 
replacement. In our experimentation, we normalize 
the Impact Factor between 0 and 1 according to (6).  

ሺ݅ሻே௢௥௠௔௟௜௭௘ௗܨܫ ൌ 1 െ
ிሺௌ೔ሻିிሺ஻௦௢௟௨௧௜௢௡ሻ

ிሺௐ௦௢௟௨௧௜௢௡ሻିிሺ஻௦௢௟௨௧௜௢௡ሻ
  (6)

Here, ܨሺ݊݋݅ݐݑ݈݋ݏܤሻ and ܨሺܹ݊݋݅ݐݑ݈݋ݏሻ are the 
expected qualities of the best and the worst 
solutions. In fact, the larger IF(i), the more chance 

participant i ( ௜ܵ) has to impact the other participant’ 
solutions. This replacement is done according to (7).  

൫݌ܴ݁ ௜ܵ, ௝ܵ൯ ൌ ൛ ௝ܵሺ݇ሻ ← ௜ܵሺ݇ሻ,
݂݅ ௝ܵሺ݇ሻ ് ௜ܵሺ݇ሻ	and	݀݊ݎ ൏ ሻ (7)ܫሺܨܫ

൫݌ܴ݁ ௜ܵ, ௝ܵ൯	is the replacement equation, rnd is a 
random number in (0,1). Figure 2 indicates the steps 
through which ܵଶ is being affected by ଵܵ.	 According 
to this figure, the corresponding variables in two 
solutions with equal values remain unchanged. 
However, the other variables’ values of ܵଶ are 
replaced with probability IF(1)=0.3, by the 
corresponding variables’ values of ଵܵ . 

 V1 V2 V3 V4 V5 V6 

ଵܵ: 1 3 2 4 1 1 

ܵଶ: 3 1 3 4 2 3 

ଵܵ → ܵଶ 
 

      

1st step → 3   4   

2nd step→ 3 1  4   

3rd step→ 3 1 2 4   

4th step→ 3 1 2 4 2  

5th step→ 3 1 2 4 2 1 

Figure 2: Steps showing how participant 2 (S2) is affected 
by participant 1 (S1). 

At the first, second and forth steps above, the 
variables’ values of ܵଶ	remained unchanged. 
However, in third and fifth steps, ܵଶ variables values 
are replaced by those of ଵܵ,	 resulting in ܵଶ 	ൌ
ሾ3	1	2	4	2	1ሿ.  
 
E. Solutions Diversification 
One of the main challenges when searching for a 
solution is the risk of being trapped in a local 
optimum. This immature convergence is caused by 
the lack of diversity in potential solutions. To 
overcome this issue, diversification via 
randomization is adopted to enable the algorithm to 
search problem spaces more efficiently. 

In this regard, solutions that are different from 
the current ones are generated which results in 
higher probability of escaping local optimum and, 
hopefully, get optimal solutions. 

In this regard, we use a controlling parameter, 
called CP, to detect if the FGOA has been trapped in 
local optimum, and this happens when it cannot 
make further improvements. This parameter, through 
(8), monitors the progress trend of the algorithm and 
if, for some iterations, not enough progress has been 
made by the algorithm, this parameter enables a 
randomization method to diversify the solutions.  
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ܲܥ ൌ
∑ 		ሺܤܩሺ݅ሻ െ ሺ݅ܤܩ െ 1ሻሻூே	
௜ୀூேିௐௌ

ܹܵ
 (8)

IN is the current iteration number, WS is the 
window size, and GB(i) is the global best solution in 
iteration i. Here, window size determines the number 
of iterations to be considered to determine if an 
acceptable progress has been made by the algorithm. 
If CP is less than the user-defined threshold value, 
the algorithm activates a new randomization method 
called IF Randomization (IFR). 
 
F. IF Randomization (IFR) 
We have employed IF Randomization method for 
diversifying the solutions. According to this method 
based on the Impact Factor (IF) of a solution, a 
variable value of a given solution is replaced with 
another value which is randomly chosen from its 
domain with probability ሺ1 െ  ሻଶ (as shown inܨܫ
Figure 3). 

The probability ሺ1 െ  ሻଶ causes more qualityܨܫ
solutions to be subject to less changes in their 
variables values. The procedure of IF Randomization 
is presented in Figure 4.  
 

 V1 V2 V3 V4 V5 V6 

ଵܵ: 1 3 2 4 1 1 
       

Select variables with 
probability ሺ1 െ  ሻଶ.  3 2   1ܨܫ

Assign new values for 
the selected variables. 4 3 2 2 3 1 

Figure 3: Process of diversification of a solution 
considering probability ሺ1 െ  .ሻଶܨܫ

Procedure IF Randomization    

b    If CP<Threshold                                                            
a       For k=1:Nvar    
A            rnd=rand()                                                             
b            if  rnd<(1-IF(k))2                                                    
m               Temp← randomly choose value d ∈ D୧            
g                S୧ሺkሻ←Temp                                                     
h            Endif                                                                     
a       Endfor                                                                        
1  Endif  

Figure 4:  IF Diversifier scheme.  

4 EXPERIMENTATION 

To assess the performance of our DFGOA, we use 
the model RB (Xu, 2000) to randomly generate 
binary CSP instances (CSPs with constraints 
involving only pair of variables).  

The model RB is based on the model B and has 
the advantage of generating those hard instances that 
are close to the phase transition.  

The model RB has two controlling parameters p 
and r, and two critical values ௖ܲ௥ and ݎ௖௥.	The relation 
between these two parameters and their 
corresponding critical values determines if a 
generated CSP instance is solvable or not. More 
precisely, if  ܲ ൏ ௖ܲ௥ and ݎ ൏  ௖௥, a random CSPݎ
instance generated using the model RB is solvable 
with a high probability (close to 1) as the number of 
the variables approach the infinity. If  ܲ ൐ ௖ܲ௥ and 
ݎ ൐  ௖௥, a CSP instance is unsolvable withݎ
probability close to 1.  

Each CSP instance is generated as follows using 
the parameters n, p, α and r where n is the number of 
CSP variables, p (0 < p < 1) is the constraint 
tightness (ratio of the number of eligible tuples over 
the Cartesian product of the domains of the involved 
variables), and r and α (0 < r, α < 1) are two positive 
constants used by the model RB.   
1. Select with repetition ݐ ൌ ݎ ൈ ݊ ൈ ݈݊	ሺ݊ሻ random 
constraints. Each random constraint is formed by 
selecting k of n variables (without repetition). r is the 
number of constraints for each CSP. 
2. For each constraint, we uniformly select without 
repetition q=pൈdk incompatible pairs of values, 
where d = nα is the domain size of each variable and 
each constraint involves ሺ1 െ ሻ݌ ൈ ݀௞ compatible 
tuples of values (݇ ൌ 2 for binary CSPs). 

All the variables have the same domain 
corresponding to the first d natural numbers (0 ... 
d−1). According to (Xu, 2000), the phase transition 
௖ܲ௥ is calculated as follows: ௖ܲ௥ = 1 − e −α/r. Solvable 

problems are therefore generated with P< ௖ܲ௥.  
The proposed method and Model RB have been 
implemented by MATLAB R2013b and all 
experiments have been performed on a PC with Intel 
Core i7-6700K 4.00 GHz processor and 32GB RAM. 

We compare our algorithm with the DFA 
presented in (Bidar, 2018) on the same test bed in 
terms of population size (30) and considering the best 
tuned parameters for both algorithms. 

CSP instances are generated with different 
tightness value ranging from 0.1 to 0.6. We consider 
CSPs with 100 variables. The results are compared in 
terms of Success Rate (SR), Running Time (RT) and 
the Number of the Violated Constrained (NVC). The 
window size for our DFGOA is 3 and the threshold 
value is 0. Therefore, if for 3 successive iterations no 
improvement has been made, DFGOA activates the 
IF Diversifier. To normalize IF (see (6))  the worst 
solution (the one that violates all the constraints) has 
a fitness value equal to the total number of 
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constraints and subsequently the best solution is the 
one with fitness equal to zero.  Figure 5 compare the 
convergence trend of the proposed DFGOA+IFR and 
DFA on CSPs with 100 variables. From the figures, 
we can see how both metaheuristic algorithms 
converge to the best solutions in a very good amount 
of the time. 

We also compare the results of the experiments 
achieved by DFGOA, DFA and variants of 

systematic search methods, namely, Backtracking 
(BT), Forward Checking (FC), and Full Look Ahead 
(FLA) (Dechter, 2003). The results are reported in 
Tables 2. 

Since all methods achieved the best solution in all 
experiments, this table only report the running time 
of different methods for achieving the best solution. 

 

Tightness=0.35, DFGOA+IFR Running Time=20.2440, DFA 
Running Time=24.7091 

Tightness=0.4, DFGOA+IFR Running Time=26.1065, DFA 
Running Time=29.9511 

Tightness=0.45, DFGOA+IFR Running Time=36.9663, DFA 
Running Time=36.5480 

Tightness=0.5, DFGOA+IFR Running Time=25.3553, DFA 
Running Time=40.2505 

Tightness=0.55, DFGOA+IFR Running Time=39.1651, DFA 
Running Time=42.9272 

Tightness=0.60, DFGOA+IFR Running Time=67.2543, 
DFA Running Time=58.2602 

Figure 5: Comparing convergence trend of the DFGOA and DFA on CSPs with 100 variables and a tightness from 0.3 to 0. 
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FC and FLA have been developed to improve the 
performance of BT, in practice, by reducing the 
domain sizes (and consequently the search space) 
through constraint propagation (Dechter, 2003). 

Table 2: Achieved Results (RT) by DFGOA and 
Systematic Methods on CSPs with 100 Variables. 

P 
DFGOA 

+IFR 
DFA BT FC FLA 

0.1 2.694 6.0216 9.370 9.433 5.1778 

0.15 9.012 8.418 20.321 16.428 15.3742 

0.2 12.273 17.628 40.067 39.443 26.3828 

0.25 14.483 14.026 49.523 47.175 39.3856 

0.3 18.001 15.416 91.067 61.410 56.7726 

0.35 19.830 21.849 141.969 101.679 100.783 

0.4 19.903 30.539 158.854 149.838 124.532 

0.45 26.443 31.810 196.688 148.484 145.761 

0.5 34.699 38.109 306.486 198.877 165.945 

0.55 39.739 43.627 296.960 239.307 213.962 

0.6 46.565 55.126 416.111 323.019 252.535 

The results show that although all methods are 
successful in getting the complete solutions, DFA 
and DFGOA outperform the systematic search 
techniques.  

DFGOA shows however better performance than 
DFA and this is mainly due to its ability in 

diversifying the solutions thanks to our IF 
Randomization.  

For further investigations, we compared the 
results achieved by FGOA and DFA with those 
achieved by the following GA variants (Abbasian, 
2016). These comparisons are based on success rate 
(SR) and number of violated constraints (NVC).   
 MPC: GA with multi parent crossover 

(Abbasian, 2016). 
 OPC: Standard Genetic Algorithm with one 

point crossover (Abbasian, 2016). 
 PSC: GA with Parental Success Crossover 

proposed in (Abbasian, 2016). 
 HPGA+PSC: Hierarchical Parallel Genetic 

Algorithm.  
 HPGA+GM+PSC: Hierarchical Parallel Genetic 

Algorithm with proposed GM operator in 
(Abbasian, 2016) and PSC crossover. 

The results of these experiments are presented in 
Table 3. As we can see, DFGOA and DFA achieved 
the complete solutions (solutions that satisfy all 
constraint) in all experiments. 

HPGA+GM+PSC achieved the best performance 
and was able to find the solutions with tightness 
ranging from 0.1 to 0.55 with 100% success rate. 
For those with a tightness of 0.6, the success rate is 
79%, meaning complete solutions are found 79% of 
time. 

The other versions of GA were unable to solve 
CSP instances near the phase transition.  

For example, MPC’s success rate in dealing with 
CSPs with tightness equal to 0.6 is 0% with 78 
fitness average of its best achieved solutions. 

Table 3: Achieved Results by DFGOA, DFA and variants of Genetic Algorithms on CSPs with 100 Variables. 

 DFGOA+IFR DFA HPGA+PSC HPGA+GM+PSC MPC OPC PSC 

P SR, NVC SR, NVC SR, NVC SR, NVC SR, NVC SR, NVC SR, NVC 

0.1 100%, 0 100%, 0 100%, 0 100%, 0 100%,0 100%, 0 100%, 0 

0.15 100%, 0 100%, 0 100%, 0 100%, 0 0, 4 100%, 0 100%, 0 

0.2 100%, 0 100%, 0 100%, 0 100%, 0 0, 9 27%, 0 100%, 0 

0.25 100%, 0 100%, 0 100%, 0 100%, 0 0, 17 0, 3 100%, 0 

0.3 100% ,0 100% ,0 100% ,0 100% ,0 0, 25 0, 5 100%, 0 

0.35 100%, 0 100%, 0 100%, 0 100%, 0 0, 28 0, 10 100%, 0 

0.4 100%, 0 100%, 0 100%, 0 100%, 0 0, 37 0, 12 62%, 0 

0.45 100%, 0 100%, 0 100%, 0 100%, 0 0, 45 0, 27 0, 5 

0.5 100%, 0 100%, 0 100%, 0 100%, 0 0, 53 0, 30 0, 9 

0.55 100%, 0 100%, 0 73%, 0 100%, 0 0, 69 0, 42 0, 15 

0.6 100%, 0 100%, 0 0, 3 79%, 0 0, 78 0, 62 0, 17 
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5 CONCLUSION 

We propose  the discrete version of the Focus 
Group Optimization Algorithm (FGOA) for 
solving CSPs. In this regard, we described in 
details all the necessary steps needed for DFGOA. 
Moreover, in order to deal with local optimum, we 
devised and proposed a new method for 
diversifying the potential solutions. The 
performances of DFGOA when augmented with 
this diversification method have been assessed by 
conducting experiments on random CSP instances 
generated by the model RB. Comparing to other 
metaheuristics as well as systematic search 
methods, DFGOA shows better running time even 
for the hardest instances.  

In the near future, we plan to apply the 
DFGOA for solving different variants of the CSP. 
First, we will tackle over-constrained CSPs. In this 
particular case, a solution does not exist and the 
goal is to find one that maximizes the total number 
of solved constraints. This latter problem is called 
the max-CSP.   

We will also consider the case where CSPs are 
solved in a dynamic environment. In this regard, 
the challenge is to solve the problem, in an 
incremental way, when constraints are added or 
removed dynamically.  

Finally, we will consider the case where 
constraints are managed together with quantitative 
preferences.  This problem is captured with the 
weighted CSP (Schiex, Fargier, & Verfaillie, 
1995), where two types of constraints are 
considered: soft constraint that can be violated 
with associated costs and hard constraints that 
must be satisfied. The goal here is to find an 
optimal solution satisfying all the hard constraints 
while minimizing the total cost related to soft 
constraints. 
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