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Abstract: For a strong, collective defense in the digital domain we need to produce, consume, analyze and share cyber
threat intelligence. With an increasing amount of available information, we need automation in order to be
effective. We propose a strict data model for cyber threat intelligence which enables consumption of all
relevant data, data validation and analysis of consumed content. The main contribution of this paper is the
strictness of the data model which enforces input of information and enables automation and deduction of new
knowledge.

1 INTRODUCTION

In recent years we have seen several initiatives to
structure and streamline Cyber Threat Intelligence
(CTI). Organizations share CTI, and most of the
CTI in an average organization comes from external
sources. Consuming, normalizing and analyzing CTI
from heterogeneous sources are major challenges for
CTI analysts. Successful defense against threats de-
pends on automation and to make available CTI more
useful. Big data analysis and advanced reasoning may
be applied, but these rely on consistent and structured
data. We propose the ACT data model to address
these challenges.

1.1 Research Motivation

Threat intelligence is served in several formats and
channels, and with a varying degree of structure. Hav-
ing worked with threat intelligence and incident re-
sponse we had a need for a data model that enabled
automation and analysis of our available threat intel-
ligence. Combining all available data in one place, al-
lowing for different data sources to be combined and
analyzed, will increase the analysis capability of an
analyst and remove repetitive tasks.

We find import and export of CTI from a system
to be trivial given the data is stored in a consistent and
structured manner, covering all relevant data. How we
model our data is hence the foundation for everything
else.

A key requirement for automation and analysis is
data quality. Data quality is both content and for-
mat. We cannot enforce quality of content, but we
can enable an analyst to evaluate this. Format con-
sistency can be enforced by a strict data model. This
means that a computer knows where to find a certain
data type in a data set, and that the data found in that
place always is the same type of data. With flexibility
within the schema of a data model, this requirement
will not be met, removing the ability to automate con-
sumption and analysis across different platforms.

Threat intelligence analysis traditionally requires
a large amount of knowledge from the analyst.
Adding knowledge into the data model will make the
knowledge available to more analysts.

Threat intelligence depends on collaboration be-
tween a range of organizations and communities.
Any tool or system used by collaborators should
be openly available to the community without re-
strictions, which has been a key motivation for this
project.

2 RELATED WORK

There are several attempts at structuring cyber threat
intelligence (CTI). The motivations for the different
approaches seems to differ and these influence the re-
sults.

Barnum et al suggested the Structured Threat
Information Expression (STIX) (Barnum, 2012) in
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2012. This was created with the motivation of shar-
ing CTI, preferably as more than just data. STIX was
intended as a data exchange format and not a sugges-
tion for how to store the data. STIX was published
in version 2.0 in 2017 (OASIS CTI TC, 2017) and ar-
gued to be the de facto standard for representing CTI
(Sauerwein et al., 2017). At the same time, critics of
STIX argue that the flexibility of STIX makes it less
useful for automation. As there are different possibil-
ities of expressing the same data and information in
addition to a fair amount of data included in custom
fields or as comments using English prose (Polzunov
and Abraham, 2019), automating consumption and
further analysis is difficult.

The Malware Information Sharing Platform
(MISP) (Wagner et al., 2016) is a platform for rapid
sharing of indicators of compromise and sightings of
indicators. The MISP data model is under continu-
ous development (MISP, 2019). The data contained
within MISP platforms correspond well with the sug-
gested data model in this paper, however the popular-
ity of the platform and loose data governance has led,
in our experience, to a decrease in the consistency of
the data.

ATT&CK (MITRE, 2019) is a framework and
knowledge base for describing adversary behavior
through enumerating adversary groups, tactics, tech-
niques and tools and the relationships between them.
The knowledge base is maintained by MITRE, and it
is published online. ATT&CK uses a data model with
defined relationships for structuring their knowledge
base.

The OpenCTI platform (ANSSI et al., 2019) was
published in late spring 2019 and is a platform aiming
at consuming, analyzing and sharing cyber threat in-
telligence. The OpenCTI platform is including STIX
observables and STIX relationships in its data model.
Grakn1 is used to enable graph querying of the data
and includes rule-based reasoning to infer new rela-
tionships. To the best of our understanding, OpenCTI
is limited to the scope of STIX and thus limits the
possibilities of consumption and analysis within the
platform.

An ontology, in the field of computer science, is
a formal description of concepts and how they are re-
lated to each other, often referred to as classes and
properties. In turn, ontologies provide computational
meaning to data by building relations to the logic in
the ontology and thus enables us to use reasoning
methods (such as induction or deduction) on our data
in our knowledge base. While there are many imple-
mentations of knowledge bases and ontologies, the
World Wide Web Consortium (W3C) chose a triple

1https://grakn.ai/

model for facts and calls this the Resource Descrip-
tion Framework (RDF). RDF also allows us to im-
plement the RDFS schema language2 and OWL3, the
ontology language which builds upon RDFS.

There are several ontologies built with the aim to
structure security relevant data. They cover a range
of data and motivations like data validation, transfor-
mation or logical reasoning. An overview of available
ontologies may be found in (Mavroeidis and Broman-
der, 2017). To the extent of our knowledge, none of
the available ontologies are suitable for solving our
problem alone, however the UTIM4 ontology is being
developed in parallel with this model and it is hoped
that one day data from the ACT model will be freely
interchangeable with data modeled with UTIM.

The rest of the paper is structured as follows: First
we describe the methodology of our work in Section
3. Then we explain the details of the data model, with
argumentation for our choices in Section 4, which in-
cludes a graph representation of the data model. We
discuss our findings in Section 5, and conclude in Sec-
tion 6.

3 METHODOLOGY

We developed the model using an iterative process
basing our design on the relevant threat intelligence
data we had available and then testing and updating
as needed.

The platform we have used to implement the data
model for prototyping and testing has been developed
using agile development principles. This is a good fit
for our iterative process of data model development.

3.1 Limitations

While the data model is an ontology, it is not imple-
mented in RDFS or OWL, but all content can be ex-
ported as triplets. Initial testing of implementing the
data model using Protégé5 has been done in order to
find improvements, but the desired reasoning capabil-
ities lead to the need for rule based reasoning, which
can be performed on top of the proposed data model
with other tools as well.

We need a strict data model to avoid bad data
in the knowledge base. The proposed data model
requires a certain amount of work to consume new
sources of data because of this chosen strictness.

2https://www.w3.org/TR/rdf-schema/
3https://www.w3.org/TR/owl2-overview/
4Unified Threat Intelligence Model. See: http://www.

ti-semantics.com
5https://protege.stanford.edu
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4 RESULTS

We have created a data model and implemented it us-
ing an Apache Cassandra6 and Elasticsearch7 back-
end. We have implemented an Apache TinkerPop8

graph engine which enables graph querying with the
use of the graph query language Gremlin9.

Note that a graph view is not the same as a graph
database. You can display any kind of data, even a flat
text file, as a graph, but you cannot use graph queries
unless you have a graph engine interfacing with your
data.

An implementation of the data model can be found
on GitHub10 under the ISC license. An openly avail-
able instance of the same implementation can be
found online11.

We have divided the results section into three: The
foundation of our data model and the discussion lead-
ing to it, the schema improvement due to additional
data, and the choice of allowing placeholder objects.

4.1 Foundation: Objects and Facts

The foundation for our work has been a data model
consisting of objects and facts. We can define dif-
ferent object types and different fact types. Thinking
of graphs, objects are the vertices and facts are the
edges. Objects can be described as nodes and facts
may be described as relationships. In the following
we use the terms objects and facts.

fqdn:www.examples.com
resolvesTo−−−−−−→ ipv4:192.168.1.2

Figure 1: Objects and fact.

The specifications and restrictions to this model is
given in the next sections.

4.1.1 Immutable Objects - Retraction of Facts

Objects are defined globally and are immutable.
There are no properties linked to an object, everything
you know about one object is stored as facts. A fact
may connect to one or two objects. A fact is directed,
and can be bidirectional.

Deleting a fact is also not possible, however a new
fact can be added that retracts the old one. In this way
we make sure nothing is deleted and we can prevent
repudiation. This way, we also preserve history and
check the history of the data set.

6http://cassandra.apache.org/
7https://www.elastic.co/
8http://tinkerpop.apache.org/
9https://tinkerpop.apache.org/gremlin.html

10https://github.com/mnemonic-no/act-platform
11https://act-eu1.mnemonic.no/

4.1.2 Time

Because facts cannot be deleted, we are able to tra-
verse the available data back and forth in time. Us-
ing the available threat intelligence in an incident re-
sponse setting, this is useful for two reasons:

Firstly, knowing exactly what we knew at a given
point in time. In situations where a range of decisions
are made within a time frame of months, it is useful
to be able to turn back time in order to know what
information were available at the time when the deci-
sion was made. When incorrect decisions have been
made, the ability to go back in time and see what in-
formation was available at that time will provide the
ability to learn from mistakes.

Secondly, knowing how a threat has evolved over
time. To know what infrastructure, behavior and re-
sources a given threat actor has used at different times
is useful in order to separate threat actors from each
other, to identify copycats or impersonation and in or-
der to evaluate how advanced the threat actor is. A
threat actor using novel techniques, but abandoning
them when they become normal behavior may be con-
sidered more advanced than others.

4.2 Data Model

Based on our object/fact foundation, we have defined
a set of object types and fact types that are relevant
and necessary for our domain.

The initial selection of object types were done in-
fluenced by STIX (Barnum, 2012), the Detection Ma-
turity Model (Stillions, 2014), the Diamond Model
(Caltagirone et al., 2013), available Open Source In-
telligence extracted with the use of Natural Language
Processing (NLP) and our own experience.

Fact types were added as we found them useful,
with an increasing attention to the semantics and the
characteristics of each of them. As our use cases for
querying the data expanded, we saw the usefulness of
differentiating between fact types.

Figure 2 shows the complete data model schema
as a graph. The diamond shapes represent the values
of fact types connected to only one object type.

We have populated the data model with a range of
sources. A list of openly available sources used so far
may be found in Table 1. The data model has been
developed and improved along with introduction of
new data.

In the following we explain the background and
reasoning for the choices we have made, and include
results from importing different data sources.
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Table 1: The sources influencing the data model.

Source Relevant object types
ATT&CK Tactics, Techniques, Tools, Threat Actor
VirusTotal IPv4, IPv6, FQDN, URI, Content, Hash,

Tool, ToolType, Query, Path, Scheme, Base-
name

Shadowserver ASN IPv4, IPv4Network, ASN12, Organization,
Country

Passive DNS IPv4, IPv6, FQDN
MISP Galaxies Tool, Threat Actor, Sector
STIX vocabularies Sector
Open Source Intelligence extracted with NLP All

Figure 2: The complete data model represented as a graph.

4.2.1 Consistent Data

There are restrictions on which fact types can be used
to link which object types as seen in Figure 2. These
restrictions enforce data consistency by preventing
different representations of the same data, which is
a known problem with current attempts to model
CTI. If we allow flexibility in how different data can

be represented and introduce a range of users, then the
data quality in terms of format is quickly reduced.

The granularity of the data model is intended to
be aligned with pivot points normally used by ana-
lysts. This has been achieved by covering all sources
in the currently available models and sources of CTI,
described in the introduction of this section.
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We started with differentiation between malware,
tool and utility, all instances of software. However,
we saw that the definitions of the different groups var-
ied in different sources and became difficult to main-
tain. This is consistent with the known problem of
classifying malware, and we do not attempt to solve
this in our data model. When the content of the CTI
was not consistent we found that there was no value
of using it at all. Therefore in our platform these con-
cepts were all rolled up into tool, with the possibility
of tagging them as malware or utility as appropriate.

4.2.2 Enrichment and Query/Analysis Across
Sources

One of our first observations was that our graph ended
up being a series of subgraphs, and we wanted to be
able to connect them. The simple solution was en-
richment. As we added more enrichment sources,
the graph gradually became more and more intercon-
nected, and we could find new connections between
clusters of information that were originally separate.

Pivoting on an object is useful, as it lets you find
related information and give you a more comprehen-
sive context. One simple example is from DNS: start
with a domain name, find all of the IP addresses that it
has resolved to, and then find all other domain names
that have resolved to those IP addresses.

Passive DNS (pDNS) data is a historic record of
DNS lookup resolutions and is important for an inves-
tigation. From 2013 mnemonic has collected pDNS
data. By 2017, when we had the initial version of
the platform ready for data consumption, we had a
TLP:White data set of approximately 100 GB of data.
By analyzing super nodes in the data set, we have dis-
covered new and unknown sinkholes. We tag known
sinkholes with a fact connecting to the object in order
to filter them out when traversing the graph further.

A more advanced solution was to use classifiers
to bridge technical, tactical, operational and strate-
gic threat intelligence. An example of this is using
VirusTotal to bridge technical indicators to tactical
information in MITRE ATT&CK. We extracted the
malware family name from anti virus signatures and
normalized it. We then normalized the Software en-
tries from MITRE ATT&CK, e.g. “TrickBot” became
“trickbot”. Automated enrichment with VirusTotal
then connects file hashes and network infrastructure
to the “trickbot” object, which is again linked to the
tactical threat intelligence in ATT&CK.

We also observed that we could create uncommon
pivot points, and our URI object type is an example of
this. A URI object is just a UUID connecting different
components to each other for a complete URI. Fig-
ure 2 shows the facts connecting to a URI in red and

blue color. Given a URL, we split it into the host (do-
main/IP) part, the path and the query parameters. Piv-
oting on query parameters proved useful when track-
ing spam campaigns with specific phishing kits, as all
of the other pivot points changed for each spam run,
but the query parameter stayed the same.

4.2.3 Aliasing

Our data model allows for aliasing different names for
the same object.

Instead of giving a threat actor a primary name,
like in MISP Galaxy, we use alias as a fact type be-
tween threat actor names that are known or suggested
to be the same. This may also be seen in Figure 2 with
green color. Adding information on any threat actor’s
name is then done by linking to the name given at the
source. In this way, if an alias turns out to be wrong,
you only need to retract that one alias, and the rest of
your information is still correct.

The problem of different names for the same ob-
ject is a common situation in CTI. Often, we find
different providers of CTI gives a primary name for
the object, and connect all information about this ob-
ject to that name. For instance, if selecting “APT28”
as the main name for a threat actor, and receive in-
formation about “Fancy Bear” (an alias for APT28),
then such a solution will connect the information to
“APT28”. This information can be wrong. If you at
some point in the future decide that “Fancy Bear” is
not an alias for “APT28”, then you would have a large
manual task in correcting your data.

The alias fact type is used between threat actors
and tools and might be applied to other object types
in the future.

4.2.4 What is Content?

The concept of content is an example of where we
need to be precise in order to enable automation. In
the context of CTI, we handle not just files, but also
stream segments, text strings and parts of content that
has been found in memory. This is all “content”, but
should not all be classified as files. Furthermore, even
in the case of a file, we find that it is seen as unique
based on more than one property. We argue that the
file name, the actual content, and the location of the
content together is what we refer to when we describe
something as a unique file.

To illustrate the above we use the example of two
files with the file system path /etc/hosts on two dif-
ferent Linux machines. In a given situation, the name
and content may be the same, but they are still not
the same file due to the fact that they reside on dif-
ferent machines. In a different scenario you can find
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two files with the same name on the same machine,
but with completely different content. In both cases,
everyone agrees on the files being different from each
other.

To be able to describe these things in a precise
manner, and to identify similarities and identical ob-
jects, we saw the need for splitting them. The result
was content linked to uri with the fact types as seen in
Figure 2 with blue color. Basename (which includes
the filename) is included within the URI.

The at fact found connecting a content object to
a uri object is in the meaning of seen at and down-
loaded from. The general at was selected so as to not
exclude any of the terms. The additional connectsTo
fact represents a content which has been seen con-
necting to a uri and show the two very different sce-
narios where there is a link between the two object
types. This is an example of the importance of se-
mantics when handling CTI.

4.3 Placeholders to Preserve
Information

In the ACT data model, you cannot link objects with-
out a defined fact type between the object types. From
adding new sources in various structures and formats,
we found ourselves in need of adding more fact types
based solely upon the information we wanted to con-
sume. This resulted in a vast amount of fact types, and
no consistency in representation of information. This
is one of the most commonly mentioned weaknesses
of the structure given in STIX, where there are sev-
eral ways of representing the same CTI, resulting in
problems digesting all information, especially with-
out manual work and deduplication.

Looking for solutions we found the need for de-
scribing “things we know exist, but know little about”.
Blank nodes has been a solution for this problem in
the field of ontologies (Hogan et al., 2014) and is
part of the standardized W3C RDF Semantics (W3C,
2014). We introduced the same thought in our data
model, by using what we called “placeholders”. The
idea is that the user may find information about the
object in the future, and then replacing the place-
holder with an actual object through a new fact. In
this way, we were able to strictly define how the data
are truly connected to each other, without worrying
about having all data in a chain in order to consume
it.

As an example, Figure 3 - 5 explains a typical sce-
nario when working with CTI.

After implementing placeholders in our data
model and restricting the fact types’ possible connec-
tions, we found that adding and searching the data

threatActor tooluses

Figure 3: A typical piece of information received as CTI.

incident threatActor

event content tool

attributedTo

attributedTo

observedIn classifiedAs

Figure 4: The information needed to give the statement in
Figure 3.

incident threatActor

event content tool

attributedTo

attributedTo

observedIn classifiedAs

Figure 5: The need for placeholders: the information we
know exist in gray, but is often not available for sharing.

gave us an easy overview over what data is miss-
ing. This is a very interesting benefit for security an-
alysts receiving or searching data on a relevant inci-
dent, both to know what data you do not have, but also
to know what data others will need to be in possession
of when sending you data. In evaluation of different
CTI sources, this is a relevant analysis to perform.

5 DISCUSSION

The data model that we propose is strict: it restricts
which relationships may be added to connect two ob-
jects, and it enforces that objects may not be added
directly but through facts. The main benefit from this
is a consistent data set which enables automation and
improves data quality. It reduces the computational
load of graph queries. It also provides for easier graph
queries as there is no need to know the data you query
so long as the user understands the data model. As an
example there is a limited amount of traversals of the
graph between threat actor and technique. Knowing
this makes it trivial to find all connections between
known threat actors and the techniques we know it
has used without missing any available data. With
this, we argue that building the data model has trans-
ferred some of the advanced knowledge from CTI
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professionals into the model itself, which enables less
skilled professionals to analyze the same data with
consistent results.

In the course of developing this model we have
discussed various solutions, implemented them and
been surprised by some of the findings. The following
discourse will look into the most relevant insights.

5.1 Data Validation

Large data sets often include some data that does not
comply to the given specification. Adding data to our
model, data outside specifications will be identified
fast as they will fail upon consumption.

Bad CTI may lead to bad results when analyz-
ing both as they may cause incorrect conclusions but
also because they may ruin some of the other data.
Most times errors exists due to mistakes entered at the
source, because of the complexity of the subject mat-
ter or because multiple authors use different methods
or terminologies.

We have found that the model allows for data
validation. As an example, when querying the data
from ATT&CK using our data model, we found that
there actually was one technique called Shared Web-
root without a link to any threat actors or any tools,
which in threat intelligence is an interesting observa-
tion. Knowing that ATT&CK only includes data they
have a reported observation of, means that this tech-
nique has been observed, but not described by openly
available sources. This was obvious when we applied
our model.

Adding MISP Galaxy for threat actors13 where
there is a range of users adding data with limited re-
strictions on data inclusion, we found that all threat
actors were listed under a main name, with all infor-
mation about them linking to this name. There are
aliases listed underneath, but with no capability of
reasoning on these aliases, the result is that a large
portion of the threat actors actually are connected and
seen as one. This meant that the value of the infor-
mation was diluted as almost all information known
about one threat actor was also stated to be valid for
a large amount of other threat actors. This is an ex-
ample of validation that may be used for evaluation
of CTI sources, and it shows the importance of the
chosen solution of aliasing as chosen in our model.

5.2 Evaluation of CTI Sources

When evaluating different sources of CTI, it is use-
ful to evaluate the quality of the offered data. Our

13https://github.com/MISP/misp-galaxy/blob/master/
clusters/threat-actor.json

data model may be used for this purpose. Firstly, by
adding context and knowledge to your data, which en-
ables you to interpret the data you receive. Extensive
aliasing, wrongful classifications or attributions may
be easily found through such evaluation. Secondly, it
helps finding data with errors, inconsistencies or bad
formatting. The strictness of the data model excludes
the possibility of importing data with errors, inconsis-
tencies or bad formatting. When working to include
new data sources these shortcomings will surface.
Thirdly, to check what data is missing. When utiliz-
ing the data model with a given data set, if there is
missing data it can be identified by identifying miss-
ing data in between data points. We can also find what
object and fact types are used in that data to evaluate
the range of CTI provided from the source.

5.3 Agreeing on Terms and
Relationships

The terms and concepts within CTI are often referred
to with different understanding. An example of this is
campaign which often is used to describe standalone
incidents and relevant threat actors in addition to the
collection of incidents by the same threat actor tar-
geting a given sector or geographical location. When
connecting each concept to other concepts in a de-
fined way, the data is given context, and with this ad-
ditional meaning to a user. In this way we argue that
ambiguity in terms and definitions will be reduced.

5.4 Differences in Object Types and
Fact Types

There is a difference between objects that may be ob-
served directly, and objects that are a result of human
decision or analysis. Example of these types are inci-
dent and tool (not content or hash). The relationships
going to and from these may also imply analysis, like
classifiedAs and attributedTo. These facts are not a di-
rectly observable link. The trust we have in the source
of these facts is thus more significant.

The differences in meaning of the different fact
types shows the importance of semantics. There are
object types which have multiple possible fact types
connecting them, and where the semantics of the cho-
sen fact type significantly differentiates.

An example of this is content connectsTo−−−−−−→ URI and
content at−→ URI as described in Section 4.2.4.
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5.5 Sharing CTI

Newer publications suggest that still about 78% of
shared CTI is unstructured (Sauerwein et al., 2019).
Without any structure, we can only automate shar-
ing of data as no relationships are present. With the
choice of only adding information as facts (relation-
ships) in ACT, we force all CTI to be stored with/as
relationships. With this baseline we can automate
sharing of triplets which is a significant improvement
from sharing data and allows for sharing of graphs.

6 CONCLUSIONS AND FURTHER
STUDY

We have proposed a strict data model based on objects
and relationships, with the ability to represent avail-
able CTI. We have populated it with relevant data, and
have identified new information through analysis en-
abled by the data model. The most prominent results
from the data model is data validation, seamless en-
richment, excellent analysis capabilities and flexibil-
ity of CTI ingest.

Future development of the data model will include
hierarchical object types and fact types (using rela-
tionships borrowed from ontologies such as subClas-
sOf and subPropertyOf ) which will enable inheri-
tance, more precision and reasoning.

In the implemention of our data model we allow
external workers to access the content and add new
facts. In this context we are exploring the use of an
OWL-implemented version of our data model to infer
new facts based on rule based reasoning using Seman-
tic Web Rule Language (SWRL) (W3C, 2004).
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