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White-box cryptography was first introduced by Chow et al. in 2002 as a software technique for implementing

cryptographic algorithms in a secure way that protects secret keys in an untrusted environment. Ever since,
Chow et al.’s design has been subject to the well-known Differential Computation Analysis (DCA). To resist
DCA, a natural approach that white-box designers investigated is to apply the common side-channel counter-
measures such as masking. In this paper, we suggest applying the well-studied leakage detection methods to
assess the security of masked white-box implementations. Then, we extend some well-known side-channel
attacks (i.e. the bucketing computation analysis, the mutual information analysis, and the collision attack) to
the higher-order case to defeat higher-order masked white-box implementations. To illustrate the effectiveness
of these attacks, we perform a practical evaluation against a first-order masked white-box implementation.
The obtained results have demonstrated the practicability of these attacks in a real-world scenario.

1 INTRODUCTION

1.1 White-box Implementations and
Computational Attacks

In 2002, Chow et al. introduced the first white-
box implementations of AES and DES block ci-
phers (Chow et al., 2003a; Chow et al., 2003b). The
main idea behind was to embed the secret key in
the implementation using a network of precomputed
Look-Up Tables (LUTs) composed with some linear
and non-linear random encodings to protect the inter-
mediate states between the LUTs. The knowledge of
one or all of these LUTs shall not give any informa-
tion about the embedded secret key. To implement
this design, two types of encodings shall be consid-
ered:

e Internal Encodings: are non-linear bijections ap-
plied to the input and/or the output of each LUT
to hide its entries and/or its outputs. This cate-
gory encompasses the so-called mixing bijections
which are linear transformation applied to the in-
put and output of each LUT to add more confu-
sion to the implementation and ensure the crypto-
graphic diffusion property.

e External Encodings: are bijective mappings ap-
plied to decode the plaintext from the sending pro-
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cess and to encode the resulting ciphertext to the
receiving process.

To defeat white-box implementations, Bos ef al.
proposed in (Bos et al., 2016) the Differential Com-
putational Analysis (DCA). This attack is the soft-
ware adaptation of the well-known Differential Power
Analysis (DPA) (Kocher et al., 1999). Specifically,
the idea of the DCA consists in monitoring the mem-
ory addresses (as well as the stack, the CPU instruc-
tions, .. .) accessed during the encryption process and
recording them in the so-called computation traces
(aka software execution traces). Then, a statistical
analysis is performed to compute the correlation be-
tween a prediction of the targeted sensitive variable
(that depends on a key guess) and each sample of the
collected computation traces. The secret key corre-
sponds to the key guess for which the highest correla-
tion peak is obtained.

Since the publication of the DCA, several re-
searchers have investigated the adaptation of either
the well-studied side-channel attacks (Rivain and
Wang, 2019) or the algebraic cryptanalysis tech-
niques (Zeyad et al., 2019) to perform computational
attacks in the white-box context. For instance, au-
thors in (Rivain and Wang, 2019) proposed a soft-
ware version of the collision attack and the Mutual
Information Analysis (MIA). The experimental re-
sults performed on several publicly available white-
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box AES implementations have shown significant im-
provements in terms of trace complexity compared to
the DCA. Recently, Zeyad et al. have suggested the
Bucketing Computation Analysis (BCA) in (Zeyad
et al., 2019). This attack is inherently inspired by
a cryptanalysis technique named statistical bucketing
attack. The authors have demonstrated that this attack
is very efficient to defeat some sophisticated white-
box AES implementations (e.g. the WhibOx 2016
contest) with a fixed amount of traces (precisely 1024
traces to break a white-box AES implementation).

1.2 Masking and Higher-order
Computational Attacks

Obviously, the well-studied side-channel countermea-
sures can be adapted and applied to protect white-
box implementations. One common countermeasure
is to apply masking which consists in sharing the
intermediate variable into several mutually indepen-
dent shares. In (Bogdanov et al., 2019), Bogdanov et
al. investigated the approach of applying higher-order
masking to resist DCA. Furthermore, the authors in-
troduced, for the first time, the extension of the DCA
to the higher-order case and analyzed the security of
the masking countermeasure against these attacks in
the context of white-box implementation.

1.3 Our Contributions

Following the investigations done in (Bogdanov et al.,
2019), we propose in this work:

e A Second-order BCA: We extend in Sec. 3 the
BCA to the second-order. Then, we demonstrate
how this attack can defeat an internally encoded
masked white-box implementation with exactly
the same low trace complexity as for the first-
order version studied in (Zeyad et al., 2019).

e A Higher-order MIA: We suggest in Sec. 4
two fashions of applying higher-order MIA in the
context of white-box implementation. Both ap-
proaches are compared through practical experi-
ments in terms of key-recovery efficiency and per-
formance.

e A Higher-order Collision Attack: We study in
Sec. 5 the higher-order version of collision attacks
to defeat masked implementations. Then, we pro-
vide in Sec. 6 a comparison of the efficiency of
the proposed attacks.

All our analyses are validated through practical
experiments on the same first-order masked white-
box AES implementation. Furthermore, we made the
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computation traces collected on this reference imple-
mentation publicly available (SM, 2019). The goal
is twofold: (1) to ease the reproduction of our re-
sults by the white-box community and (2) to provide
a commonly masked database (as no such traces from
a masked implementation are available so far). In ad-
dition, the source code of some of our proposed at-
tacks is publicly available as well.

2 PRELIMINARIES AND STUDY
FRAMEWORK

2.1 Notations and Definitions

Along this paper, we use the following notations. The
bold block capitals X denote matrices. The i column
vector of a matrix X is denoted by X[i]. The random
variables are denoted by uppercase Latin letters, like
X, while the lowercase letter x denotes a particular
realization of X. The entropy H[X] of a random vari-
able X aims at measuring the amount of information
provided by an observation of X.

The intersection of two sets of values A and B is
denoted by AN B and is defined as ANB = {x | x €
A and x € B}. Two sets are disjoint if they have no
elements in common, that is, A and B are disjoint if
ANB=0.

To perform his attack, the adversary targets an in-
termediate sensitive variable which is a function of a
plaintext x and a guessable secret key k*. Then, for
each key guess k, he computes a prediction of the
target sensitive variable denoted ¢(x,k) (or ¢(k) for
short) and measures the dependency between this pre-
diction and the acquired traces. For our practical ex-
periments, we target the Sbox output of the first round
of an AES, i.e. O(x,k) = Sbox(x&®k).

2.2 Assumptions

The analyses and conclusions drawn in this work are
done under the three following assumptions:

Assumption 1 (Nibble-encoded Naked White-box
Implementations). The targeted white-box imple-
mentations are nibble-encoded using an internal en-
coding. No external encoding is applied.

Remark 1. Nibble-encoding is the most common en-
coding size used for white-box AES implementations.
We stress the fact that Assumption 1 is mandatory (ac-
cording to (Zeyad et al., 2019)) for the study of the
BCA described in Sec. 3. However, for the other in-
vestigated attack techniques in this work this assump-



Revisiting Higher-order Computational Attacks against White-box Implementations

tion can be relaxed (i.e. the results can be generalized
to any encoding size).

Assumption 2 (Similarity Encoding). The most sig-
nificant (respectively the least significant) nibbles of
the masks used to protect the sensitive variable are
encoded with exactly the same encoding function ap-
plied on the most significant (respectively the least
significant) nibbles of the masked sensitive variable.

Remark 2. To the best of our knowledge, no masked
white-box implementation is publicly available yet.
We stress the fact that the publicly available Lee’s
CASE 1 implementation (Lee, 2018) partially involves
masking techniques to only protect the first and last
round of the implementation. Therefore, this im-
plementation was broken when applying first-order
DCA and BCA (Rivain and Wang, 2019; Zeyad et al.,
2019)'. To apply masking to protect a full white-
box implementation, several options could be inves-
tigated on how to internally encode the intermediate
masked data and mask values. From our point of view,
the most natural and straightforward way is to use
the same encoding functions to protect these sensi-
tive variables. Indeed, in (Lee et al., 2018) Lee et al.
have followed the same strategy to apply their par-
tial masking and they have justified their choice by
the fact that it makes the unmasking operation easier.
At the end, Assumption 2 is motivated by (1) the lack
of reference masked implementations and (2) the fact
that this encoding strategy is realistic (due to its sim-
plicity). We keep the study of other encoding strate-
gies in a masked context as a future work.

Assumption 3 (Perfect Synchronization). The tar-
geted white-box implementations are only protected
with higher-order masking. No shuffling or any ran-
dom delays is introduced to de-synchronize the ac-
quired computation traces.

2.3 Targeted White-box
Implementation

As introduced earlier, we study in this work the ex-
tension of some well-known side-channel attacks to
the higher-order case when applied on masked white-
box implementations. When a d"-order masking is
applied, each sensitive variable Z is split into d + 1
shares sg,s1,...,54 such that so®s| D ---Dsg = Z.
Usually, the d shares sy,...,s; (called the masks) are
randomly picked up and the last one sy (called the
masked variable) is processed such that it satisfies the
previous equality. Under assumption 3, we only focus

I'This implementation is not considered in this work for
the aforementioned reasons.

on higher-order masking as a unique countermeasure
applied to ensure protection.

For our experimental validation, we restrict the as-
sessment of our proposed higher-order attacks against
first-order masked white-box AES implementations.
That is, we only evaluated the second-order versions.
To do so, we implement a first-order masked white-
box AES implementation under the three assumptions
formulated in Sec. 2.2. This implementation is based
on the classical Chow et al.’s white-box design rely-
ing on an internal encoding but with the major dif-
ference that every Tbox input and output is protected
with an independent random mask. So, masking is
applied on the whole implementation and all rounds.
Moreover, our implementation is based on the well-
known Global Look Up table (GLUT) method (Prouff
and Rivain, 2007; Maghrebi et al., 2012). That is,
the concatenation of the encoded masked data and the
encoded mask is provided as an input to the masked
Tboxes. The resulting size of our reference imple-
mentation is 41,5 Megabytes.

Then, we collect the computation traces using an
internal tool that monitors the read memory access
during the execution of this first-order masked im-
plementation. Each collected value during the acqui-
sition phase is decomposed into several nibbles and
then stored in the computation trace (Assumption 1).
The collected traces are publicly available in (SM,
2019) to ease the reproducibility of our results. This
trace database will serve as a reference for evaluating
our proposed attacks in practice.

3 BUCKETING COMPUTATION
ANALYSIS

3.1 Background

In (Zeyad et al., 2019), Zeyad et al. introduced a new
computational attack called Bucketing Computational
Analysis (BCA) to defeat unprotected white-box im-
plementation. The core idea of BCA is that if two sen-
sitive intermediate variables for two different plain-
texts do not collide, then their encodings (using a de-
terministic bijection) should not collide as well. We
recall in Algorithm 1 the pseudo-code describing the
different steps of the BCA when applied on white-box
AES implementations (Zeyad et al., 2019).

The BCA consists of 3 phases. During the pre-
computation phase, for each key guess k, the attacker
split the 256 plaintexts x (each corresponds to a differ-
ent Sbox input) into two sets (Ipx and I ;) according
to the resulting bucketing nibble d = S'(x & k) =
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Algorithm 1: BCA on white-box AES implementations.

Inputs: a targeted AES Sbox S of the first round and
its corresponding S (s.t. Vx € GF(28), §'(x) =
S(x)&O0xF)

Output: good guess of the sub-key

* x Pre-computation phase
1: Compute a set I of 256 plaintexts each corre-
sponding to a different input of §
2: Pick two values dy and d; such that: 0 < dy <
d; <15
3: for each key guess k € [0,255] do
4: Split the plaintexts into two sets I and I
w.r.t to the nibble d of &’
5: end for
kx Acquisition phase * x

6: Acquire a set of 256 traces T = (#; j)o<i<255

0<j<n
x % x Key-recovery phase * x x

7: Initialize a result vector R with 256 zeros

8: for each key guess k € [0,255] do
9: Group the traces into Vg and V{ w.rt. to the
sorted plaintexts in Iy and 7 x
10: for each sample j in the trace do
11: if Vo[j]NV1[j] =0 then : R[k] = R[k] +1
12: end if
13: end for
14: end for

15: The good sub-key guess corresponds to k €
[0,255] that maximizes R[k]

S(x @ k)&OxF; i.e. x in Ipj (respectively in I z) if
d = dy (respectively if d = d;). Regarding the choice
of the values dy and d, the authors in (Zeyad et al.,
2019) emphasized the use of dyp = 0 and d; = OxF.
In the sequel, we will use these two values as rec-
ommended. Then, during the acquisition phase, the
attacker acquires 256 computation traces. Finally, the
key recovery phase consists in sorting the computa-
tion traces into two buckets denoted V¢ and Vy de-
pending on the bucketing nibble d (whose value de-
pend on a key guess). Then, it counts the number of
disjoint columns in V¢ and V;. The good key value
corresponds to the key guess for which the number of
disjoint columns is maximal.

Throughout several experiments, the authors have
demonstrated that this attack is an efficient alternative
to the DCA. Indeed, the required amount of traces to
recover 4 bytes of the key is fixed (256 traces for a
white-box AES implementation). However, as stated
by the authors in (Zeyad et al., 2019), when mask-
ing is properly applied as a countermeasure, then the
BCA fails to recover the key. Our goal is to extend
the BCA to the second-order case to defeat masked
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white-box implementations. We keep the study of the
generalization of BCA to an order greater than two as
a future work.

3.2 Extension to the Second-order Case

Let’s consider a first-order masked white-box AES
implementation for which ¢ computation traces of n
samples each were acquired T = (f; j)o<i<c. Then,
0<j<n

according to Sec. 4 of (Bogdanov et al., 26]15) and un-
der Assumption 3 there exists a fixed couple (j7, j5)
such that (z; gt J*) are the shares (i.e. the mask and
the masked value) of the target secret variable S(x; ®
k*) for any i in [0, c]. To check if the BCA can be ex-
tended to the second-order case, the arising question
is whether (Vo[ j{]& Volj3]) and (V1 [j]®V1[js]) are
disjoint sets only for the correct key guess k*?

To answer this question, let’s consider a couple of
plaintexts (xo,x;) such that xo € Ip s+ and x; € Ij =, B
a 4-bit encoding function, and mq and m; the masks
used during the encryption of xg and x; respectively.
Then, on one hand, we have xo € Iy + implies (under
Assumption 2) that:

Volxollji] © Vo [xol[j3]

i B(mo&()xF) @B( (xo DK) EBmO)&OxF>
(m0&0xF) @B( (x0 @ K*)&OXF) (mo&OxF)>
N—— —

=0

B (m0&0xF) @B <mo &OXF>
=0 . (D

On the other hand, x| € I} 4+ implies that:

Vilx][j7] @ Vi3]
—B m,&OxF) @B( S(x; @k*)@m,)&mF)

@ B((S(x; @ k") &OXF) & (ml&OxF)>

N————
=0xF

(

—B (ml &OxF
(
(

)5
—B ml&OXF) B<OXF€9 (m1&0xF))
) o5

— B(m &0xF) © B ml&OxF> ‘ )

Since B is bijective then Vy[x1][j] @ V1[x1][j3] is
non-null. Consequently, Eq. (1) and Eq. (2) prove
that the sets (Vo[ji] © Vo[j3]) and (Vi[ji] & V1[/3])
are disjoint for the good key guess. For a wrong key
guess k, it is obvious that these sets have common val-
ues. Indeed, for any xo € Iy (respectively x| € Iy x)
such that k # k*, S(xo @ k*) (respectively S(x; @ k*))
is a random value. Now, as the intersection between
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two sets containing random values is non-null (for
some cardinality), then the sets (Vg[jj] @ Vo[j3]) and
(V1[ji] @ V1[j3]) are only disjoint for the good key
guess k* which prove the soundness of our proposal.
It is worth noting that the same soundness proof can
be generalized to handle any value of the bucketing
nibble pair (dy,d) ).

So, the core idea of the second-order BCA is to
search for two time samples (j}, j3) in the traces such
that (Vo[ji] @ Volj3]) and (V1[j;] @ V[j3]) are dis-
joints. To further discard the false positives, we em-
phases the use of the two following additional criteria
that should be only fulfilled for the good key guess:
(1) the set (Vo[jj] @ Vo[j3]) is null and (2) the set
(V1[jf]® V1[j3]) contains non-constant values (as the
mask mj in Eq. (2) should be different from one en-
cryption to another).

The complexity of the second-order BCA (as for
any higher-order attack investigated in this work)
highly depends on the size of the targeted area of
interest to detect the leakages of the mask and the
masked variable. To reduce this complexity, we rec-
ommend filtering the computation traces (i.e. re-
moving the common constant values) as suggested
in (Zeyad et al., 2019) and applying the different hints
proposed in (Goubin et al., 2019) to reduce the dimen-
sionnality of the traces.

Finally, we suggest an improvement for the first-
order BCA reported in (Zeyad et al., 2019) to avoid
the appearance of some false positive in some practi-
cal white-box evaluations. The idea is that, for each
disjoint columns in Vg and Vi, the attacker has to
check if V and Vj are constant sets. Indeed, follow-
ing the reasoning in Eq. (1) and Eq. (2), V¢ and V;
should contain respectively B(0) and B(0xF) for the
good key guess.

3.3 Experimental Results

To check the effectiveness of the extended BCA in
a real-world scenario, we develop the second-order
BCA. The source code of our implementation is pub-
licly available in (SM, 2019). Then, we run the attack
on the acquired traces of our masked white-box AES
implementation described in Sec. 2.3.

The obtained results demonstrate that the 16 bytes
of the AES key were recovered. It is worth noting that
thanks to the new criteria suggested in this work, no
false positives were detected for the false key guesses
(i.e. R[k] remains equal to zero when k is different
from k*).

4 MUTUAL INFORMATION
ANALYSIS

4.1 Background

In 2008, Gierlichs et al. have proposed a new
side-channel distinguisher called Mutual Information
Analysis (MIA) (Gierlichs et al., 2008). It is an at-
tractive alternative to the Correlation Power Analy-
sis as it exploits any kind of dependency (linear or
non-linear) between the leakage measurements and
the predicted data. The MIA has been largely studied
and tested on several implementations (Batina et al.,
2011; Gierlichs et al., 2008; Prouff and Rivain, 2009).
The core idea consists in estimating the mutual in-
formation between the leakage measurements L and
the predictions ¢(k) for every key guess k, that is:
Awmia (k) = H[L] — H[L|¢(k)]. The correct guess of
the key k* corresponds to the key for which Apa (k)
is maximum. Since HJ[L] does not depend on the
key guesses, then the adversary can equivalently look
for the key that minimizes the conditional entropy
H[L|d(k)]. The major practical issue of mutual infor-
mation is the estimation of the statistical distribution
of the leakages. Several methods have been proposed
in the literature: histograms, kernel density function,
parametric estimation (Prouff and Rivain, 2009). We
discuss in Sec. 4.2 how we dealt with this problematic
to conduct our practical attacks.

To the best of our knowledge, the first report on
the use of MIA in the context of white-box evaluation
was provided by Rivain et al. in (Rivain and Wang,
2019). Indeed, the authors have assessed the pub-
licly available white-box AES implementation No-
SuchCon 2013) against an improved version of the
MIA. The obtained results have proven that this attack
is efficient to break internally-encoded implementa-
tion with only few traces (60 traces) compared to the
DCA (4000 traces). This is expected as the depen-
dency between the leakage and the predictions in the
white-box context is non-linear (due to the usage of
the internal-encoding to hide the implementation in-
termediate values). In the following section, our goal
is to extend the MIA to higher-order context to target
masked white-box implementations.

4.2 Extension to the Higher-order Case

In 2009, Prouff et al. have proposed in (Prouff and
Rivain, 2009) a generalization of the MIA to higher-
orders. Let’s consider a d"-order masked implemen-
tation and assume that the adversary knows exactly
the manipulation times of the used masks and masked
data. Hence, he is able to recover the corresponding
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(d 4+ 1)-tuples of leakages L = (Lo, L1,...,L;). Then,
the higher-order MIA consists in finding the key guess
that minimizes the conditional entropy HI[L|d(k)].
It is noticeable that the probability density function
(pdf) of the variable L|¢(k) is often assumed to be a
multivariate Gaussian mixture whose entropy can be
estimated as for the first-order case using histograms,
kernel density function or parametric estimation.

To efficiently apply the higher-order MIA (Prouff
and Rivain, 2009) in the context of masked white-box
implementation, we focus on the two following prac-
tical challenges:

The Choice of the PDF Estimation Method. In
side-channel context, the estimation of the mutual
information is a major practical issue as it involves
some complex pdf estimation methods. It is worth
noting that the results of these methods have a strong
impact on the efficiency of the MIA (Batina et al.,
2011). In white-box context, the computation traces
contains non-noisy values. Hence, the estimated pdfs
are discrete which makes the practical evaluation sim-
pler (as also argued in (Rivain and Wang, 2019)). In
such context, the histogram estimation seems to be
the easier (natural) method to consider. That said,
the optimal choice of the bin width is also an issue
in statistical theory. For simple distribution, reason-
able choices of the bin width are the Scott rule and the
Freedman-Diaconis rule. However, under Assump-
tion 1, the computation traces contain values in the
range [0, 15]. Thus, the natural choice of the number
of bins we consider is 16 (i.e. bin width equals to 1)2.

The Choice of the Leakage Combination Func-
tion. To apply a d™-order MIA in the white-box con-
text, one can apply directly the side-channel approach
described in (Prouff and Rivain, 2009). That is, the
adversary has to consider d-tuples of leakages and
look for the key guess that minimizes the conditional
entropy of the multivariate pdf (L|¢(k)). Another ap-
proach, that we investigate in this work, consists in
combining the d-tuples of leakages by applying the
XOR function. Said differently, the idea is to min-
imize the conditional entropy of the uni-variate pdf

<€é; Lio(K)).

Indeed, under Assumption 3, the computation
traces (and hence the leakages L;) contains the ex-
act value of the manipulated variable (i.e. the com-
putation traces are noise-free). Thus, by applying the
XOR combination, the adversary converts the leak-
ages from multivariate to uni-variate context where
the pdf estimation is much easier from a computa-

2Commonly, the number of bins should be equal to
2(encoding size).
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tional complexity perspective’. In the meantime, we
could expect that both approaches should lead to the
same key recovery efficiency. Indeed, since the com-
putation traces are noise-free, then their processing
using the XOR combination function will not induce
an information loss (which is the case when perform-
ing higher-order DPA-like attacks that involve prod-
uct and absolute difference combinations in a side-
channel context where the traces are noisy (Prouff and
Rivain, 2009)).

To verify this intuition, we compare in the follow-
ing section both approaches when targeting our refer-
ence masked white-box AES implementation.

4.3 Experimental Results

We implement two versions of a second-order MIA:
the first one is based on an estimation of a bi-variate
pdf and the second one is based on the XOR com-
bination of the leakages and then an estimation of
the resulting uni-variate pdf. The pdf estimation is
based on the histogram method with a fixed number
of bins (16) as discussed previously. Then, we tar-
get our masked white-box implementation using 150
computation traces.

The obtained results have proven that both attack
versions have succeeded to recover the complete AES
key using. To compare the efficiency of both ap-
proaches, we compute the evolution of the success
rate of each method according to an increasing num-
ber of used computation traces. The outcomes of this
experiment have confirmed our claim that both meth-
ods have the same key recovery efficiency. In the
meantime, it is worth noting that the XOR combina-
tion based second-order MIA is two times faster than
the multivariate one. This behavior is quite expected
for the reasons we discussed in the previous section.
We provide the source code of our second-order MIA
in (SM, 2019).

5 COLLISION ATTACK

5.1 Background

Recently, Rivain et al. have proposed a collision at-
tack to defeat internally-encoded white-box imple-
mentations (Rivain and Wang, 2019). The proposed
attack is inspired by the DCA. The major difference

31t is obvious that the estimation of a multivariate pdf
is more time-consuming than an uni-variate one (see for in-
stance the discussions in (Prouff and Rivain, 2009; Gier-
lichs et al., 2010).
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is that the collision attack is based on the process-
ing of a pair of plaintexts (instead of one plaintext
as for DCA) to build the prediction vector and the
corresponding Collision Computation Traces (CCT).
That is, for each key guess k and each pair of in-
puts (x1,x7), the adversary computes the Pearson cor-
relation coefficient P(8y(x,)2(x,)s Oo(x, k)o(x,.k)) Where
dyy is the “vector adaptation” of the well-known Kro-
necker delta function and L(x) is the computation
trace collected while processing the input x. The se-
cret key corresponds to the key guess for which the
highest correlation peak is obtained.

So, the core idea of this collision attack is that
if some sensitive variable collides for a pair of in-
puts, so does the corresponding encoded variable in
the computation (as the encoding functions are bi-
jective). One improvement of this attack we sug-
gest from a performance perspective and which we
validate through simulation and practical experiments
is to consider the equality distinguisher instead of
computing the correlation. Indeed, the adversary can
count, for each key guess, the number of times the
prediction vector 8y, k)o(x, k) and the vector of the
targeted samples in the CCT 5L< x1)L(x) are equal. This
equality counter is maximum for the good key guess.

The authors in (Rivain and Wang, 2019) have suc-
cessfully applied this attack on some publicly avail-
able white-box implementations and have demon-
strated that the trace complexity is quite low com-
pared to DCA. In the following section, we study the
extension of this DCA-like collision attack to target
higher-order masked white-box implementations.

5.2 Extension to the Higher-order Case

Let’s assume that an adversary recovers the (d +
1)-tuples of leakages (Lo,...,L;) from a d™M-order
masked white-box implementation. Then, to apply
the (d + 1)™-order collision attack, he has to compute
for each key guess and each pair of inputs (x1,x;) the
following distinguisher:

d d

P(EPLi(x1) © P Li(x2), 8o, b)0(1at) - 3)

i=0 i=0

The soundness of our proposed d™-order collision
attack is inherently based on the soundness of the
(d+1)"-order DCA under Assumption 3. In fact, the

d
(d +1)"-order DCA is defined as p(@ L;(x), d(x,k))
i=0

for every input x. When consideri;lg any pair of
inputs (x1,x3), the (d + 1)M-order DCA rewrites

p@)uxl) ® é)mxz),q»(xl,k) ® 0(x2,k).  Now,

Table 1: Comparison of the studied second-order attacks
when targeting a masked white-box implementation.

Attack Execution | Number
method time (s) of traces
DCA 4.28 310
BCA 5.67 256
MIA (XOR) 15.58 150
MIA (multivariate) 34.11 150
Collision 70.15 500

since we are focusing on the study of the collision
during the processing of two different inputs x; and
x>, the relevant values of the prediction vector are
when ¢(x1,k) @ ¢(x2,k) = 0. Thus, one can trans-
form the prediction vector from 0(x;,k) & ¢(xz,k) to
8¢ (x, k)o(x,.k) tO Obtain the distinguisher described in
Eq. (3). Said differently, the correlation is only com-
puted for the pair of plaintexts for which a collision
occurs for a key guess k (i.e. ¢(x1,k) = ¢(x2,k)).

5.3 Experimental Results

We validate first the soundness of the extended col-
lision attack through simulation and we provide the
source code of its second-order version along with the
used simulated traces in (SM, 2019). Then, we run
the attack on the computation traces collected from
our reference masked white-box implementation. The
obtained results have demonstrated the practicability
of the attack. Indeed, we succeed to recover the AES
key using 500 computation traces.

6 ATTACK COMPARISON

We provide in Tab. 1 a comparison of the results ob-
tained for the studied attacks in this work. For the
sake of comparison, we perform as well the second-
order DCA as described in (Bogdanov et al., 2019).
For a fair comparison, we target the same areas of
interest to search for the leaking points of the mask
and the masked sensitive variable. All the attacks are
executed on a Linux machine with an Intel Core i7
processor at 3.60GHz and 16 GB of RAM.

The most efficient attack in terms of traces com-
plexity is the MIA. This is expected due to its abil-
ity to capture the non-linear dependency between the
leakage and the predictions. In terms of performance,
the MIA based on the XOR combination is faster than
the multivariate version. This could be explained, as
already discussed in Sec. 4, by the fact that the esti-
mation of the conditional entropy of multivariate ran-
dom variables is more time-consuming compared to

271



ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

the univariate case. The second-order BCA offers the
best trade-off between the execution time and trace
complexity and hence it is a good alternative to the
second-order MIA. Finally, when masking is involved
then the DCA is better than the collision attack. In-
deed, the collision attack (w.r.z. to Eq. (3)) can be
seen as a particular case of the DCA where the corre-
lation is only computed when a collision is detected.
However, the collision attack remains a good candi-
date to consider in an unmasked context as demon-
strated in (Rivain and Wang, 2019).

7 CONCLUSION

In this work, we considered the evaluation of higher-
order masked white-box implementations. Indeed,
we extended some well-known computational attacks
to the higher-order context. The practical evaluation
of these attacks had shown their efficiency to defeat
masked white-box implementations.

As a future work, we intend to study these higher-
order computational attacks when relaxing the as-
sumptions formulated in Sec. 2.2.
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