
Impact of Mental Fatigue during Repetitive Exercises of a Visual 

P300 Speller 

Patrick Schemrbi a, Mariusz Pelc b and Jixin Ma c 
Department of Computer and Information Systems, University of Greenwich, Greenwich London, U.K. 

Keywords: Brain-Computer Interface (BCI), Event-Related Potential (ERP), Electroencephalography (EEG), P300 

Speller (P3b), Repetitive, Mental Fatigue. 

Abstract: In this paper, we investigate the effect that mental fatigue during repetitive exercises of a visual P300 Speller 

has on the P300 component, in terms of accuracy, amplitude, latency, signal morphology, and overall signal 

quality. This work is part of a larger EEG based project and is based on the P300 speller BCI (oddball) 

paradigm and the xDAWN algorithm, with eight healthy subjects; while using a non-invasive Brain-Computer 

Interface (BCI) based on low fidelity electroencephalographic (EEG) equipment. Herein, eight channels 

through the initial task (6 minutes), additional tasks (50 minutes) and final task (6 minutes) states, recorded 

the subjects’ signal. Our results show that the accuracy was best for the initial task (IT) at 100%, followed 

closely by the final task (FT) at 98%. In addition, our ANOVA analysis showed that the amplitude exhibited 

a statistical significance between IT and FT, while the latency did not indicate any statistical difference. This 

paper provides initial results into the practicability of the aforementioned P300 speller methodology and low-

cost equipment to be used repetitively and continually and the effect thereof on accuracy and signal 

characteristics. Our aim is to assess the effect of prolonged usage and exposure to the aforementioned 

methodology and equipment, with the aim of broadening its use in a real-world context. 

1 INTRODUCTION 

In this paper, we analyse the possible impact of 

mental fatigue during repetitive exercises, explicitly 

on that of a visual P300 Speller, and the effect that 

this has on the accuracy, amplitude, latency, signal 

morphology, and overall signal quality of the P300 

component. Our research makes use of non-invasive 

Brain-Computer Interface (BCI) based on 

Electroencephalography (EEG) while utilising low 

fidelity equipment. The work presented here is part of 

a larger EEG based project and in continuation of our 

latest papers (Schembri, et al., 2019) (Schembri, et 

al., 2019). 

In the past decade, P300-based BCI research has 

been predominantly focused on the speed and 

accuracy of communication for both healthy subjects 

and especially to those individuals with severe 

neuromuscular disabilities such as amyotrophic 

lateral sclerosis patients (Londral, et al., 2015). 

However, the effect of mental fatigue with prolonged 
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usage of BCI has been unheeded and neglected. Only 

a few research papers such as (Sargent, et al., 2018) 

and (Hammer, et al., 2018) focus on mental fatigue in 

conjunction with the P300 speller, however they were 

either utilizing expensive medical and/or research-

grade equipment (Oken, et al., 2019) and/or focusing 

on a way to detect, evaluate and measure mental 

fatigue (Fujita, et al., 2018) (Sabeti, et al., 2018), 

rather than the effect that mental fatigue has on the 

accuracy and on the signal characteristics of the P300 

component in a P300 Speller application.   

The research aim of this paper is to analyze the 

effects that mental fatigue during repetitive exercises 

of a visual P300 Speller have on the P300 component, 

in terms of the aforementioned accuracy and signal 

characteristics. Due to the lack of a detailed study on 

this effect, an evident necessity for this study was 

present. Our null hypothesis (H0) states that that the 

independent variables i.e. initial task (IT) and final 

task (FT) have no effect and/or no statistical impact 

on the dependent variables (accuracy, amplitude, and 
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latency). Our alternate hypothesis (H1) based on 

preceding related medical-grade research is that there 

should be a decrease in BCI performance over time 

which comprises a drop in accuracy and a reduction 

in amplitude, however, the latency should not show 

any statistically significant effect. 

In this work, we report a study where eight healthy 

subjects communicated five alphanumeric characters, 

referred to as symbols, in the IT which lasted 

approximately six minutes, other additional tasks 

(AT) which lasted around fifty cumulative minutes 

which analysis is not included in this study, and the 

FT which lasted around six minutes, respectively. Our 

comparison was based on the IT and FT tasks i.e. on 

the first task when the subject was rested and alert 

when compared to the last task when the subject was 

tired and bored. 

This paper is structured as follows: the research 

background, equipment, experimental procedures and 

participants are described in Section 2. The offline 

and online ERP results are presented in Section 3. 

Conclusions and future work are given in Section 4. 

2 METHODOLOGY 

The following segment/s of the methodology is the 

author's previous work and are adopted and outlined 

in the current paper for readers’ convenience. A more 

thorough explanation can be found in our previous 

paper (Schembri, et al., 2018). 

2.1 Research Background 

Fatigue can be broadly divided into two categories i.e. 

physical and mental fatigue, depending on the task 

being performed. In previous studies such as 

(Marcora, et al., 2009), it was discovered that mental 

fatigue affects the physical performance of the 

subject, but contrariwise physical fatigue does not 

affect mental alertness. In simplest terms, mental 

fatigue refers to a psychobiological state caused by 

prolonged periods of demanding cognitive activity 

and characterized by subjective feelings of tiredness 

and lack of energy (Boksem & Tops, 2008), and,  

from boredom. 

(Lee, et al., 2018) reports that after prolonged use 

of visual attention-based BCI, most participants 

report the uncomfortable symptoms of physiological 

fatigue, which include tiredness, drowsiness, and a 

loss of attention which degraded the signal quality 

and performance of the BCI system. Similarly, 

(Oken, et al., 2019) reports that there was a decrease 

in BCI performance over time that related to increases 

in sleepiness and boredom. This worsened 

performance was only partly explained by decreases 

in P300 amplitude. Thus, drowsiness and boredom 

have a negative impact on BCI performance. 

(Chen, et al., 2017) reports that the P300-Speller 

was shown to be significantly impaired once applied 

in practical situations due to effects of mental 

workload, where his aim was to provide a new 

method of building training models to enhance the 

performance of P300-Speller under mental workload. 

On the other hand, (Yu, et al., 2017) merged a motor 

imagery (MI)-based brain switch into a P300-based 

BCI speller which allowed the subjects to voluntarily 

turn on/off the P300 system when the mental 

workload was high. This was especially aimed for 

subjects with severe neuromuscular disabilities.  

2.2 Hardware 

The work reported herein is based on an OpenBCI 32-

bit board (called Cyton) connected with an Electro-

Cap using the international 10/20 system for scalp 

electrode placement in the context of EEG 

experiments. The Cyton board’s microcontroller is 

the PIC32MX250F128B with a 32-bit processor and 

a maximum speed of 50MHz; storage of 32KB of 

memory and is Arduino compatible. The board uses 

the ADS1299 IC developed by Texas Instruments, 

which is an 8-Channel, 24-Bit, simultaneous 

sampling delta-sigma, Analogue-to-Digital Converter 

used for biopotential measurements. The system 

comes with a pre-programmed USB dongle for 

wireless communication, which communicates with 

the low-cost RFDuino RFD22301 microcontroller 

built on the Cyton board. A more thorough 

explanation of the hardware components of the Cyton 

board can be found in our previous paper (Schembri, 

et al., 2017). The Electro-Cap being used in our 

experiments has the fabric, which is made from 

elastic spandex and has recessed pure tin wet 

electrodes directly attached to the fabric. The term 

wet electrodes type implies that the use of an 

electrolyte gel is required to make effective contact 

with the scalp otherwise, it may result in impedance 

instability. 

2.3 Participants 

We enlisted a total of N = 10 healthy subjects, six 

males and four females, aged 29-38 which voluntarily 

participated in this study. The mean age (SD) was 

33.75 years (3.65) and the total averaged reported 

sleep the night before the experiment was 442.5 

minutes (31.05). Nine out of the ten subjects’ native 
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language was Maltese and the tenth subject’s native 

language was English. All subjects were fluent in the 

English language and were familiar with the 

alphanumeric symbols presented on the P300 Speller. 

Moreover, nine out of ten subjects had previous 

experience performing P300-BCI experiments. The 

subjects were given written instructions describing all 

procedures related to the study but were not aware of 

the aims and hypothesis. 

Data from eight subjects were analyzed. Two 

subject’s (S2 and S7) were excluded from the study 

since (a) he/she was unable to complete the 

experiments due to the discomfort with the electrode 

cap after approximately 30 minutes, and (b) he/she 

was very anxious and panicked several times during 

the experiments. It was later known that he/she was 

claustrophobic and was uncomfortable in a closed 

environment of a lab setting. Additionally, this was 

the only subject that had never performed a P300-BCI 

experiment. An additional two subjects assisted in the 

preliminary testing and configuration of the 

equipment and methodology; however, they were not 

part of the official experiments and hence their data is 

not included in the results. 

2.4 Data Acquisition 

The EEG signals were sampled at 250Hz, while the 

sampling precision was 24-bit. The recordings were 

stored anonymously as raw data in OpenVIBE 

(Renard, et al., 2010) .ov format. These were later 

converted to a comma-separated value (CSV) files for 

offline analysis. Eight EEG electrodes were used in 

different regions of the scalp according to the 

International 10-20 System. The electrode positions 

C3, Cz, C4, P3, Pz, P4, O1 and O2 were selected. This 

is because the spatial amplitude dispersal of the P300 

component is symmetric around Cz and its electrical 

potential is maximal in the midline region (Cz, Pz) 

(Ogura, et al., 1995). A referential montage was 

selected with the reference electrode being placed on 

the left earlobe A1 given that, in general, a mastoid or 

earlobe reference will produce a robust P300 

response. The right ear lobe A2 was used as ground. 

The electrodes are referenced to electrode A1 as 

follows: Ch1: C3; Ch2: Cz; Ch3: C4; Ch4: P3; Ch5: 

Pz; Ch6: P4; Ch7: O1; Ch8: O2. 

2.5 P300 Speller and xDAWN 

In this paper, we make use of Farwell & Donchin 

P300 speller (Farwell & Donchin, 1988), which is 

based on visual stimuli, in conjunction with the 

xDAWN algorithm. The subject was presented with a 

six by six grid, made up of thirty-six alphanumeric 

characters referred to as symbols. In this 

methodology, each row and column of the spelling 

grid is augmented in random order and the subject is 

asked to distinguish between a common stimulus 

(nontarget) and a rare stimulus (target). As a result of 

the (target) stimuli, an exogenous and spontaneous 

ERP potential known as P300; which is a positive 

deviation around 300ms after the stimuli; is evoked in 

the brain. The desired symbol is determined and 

predicted by the intersection of the (target) row and 

column. This prediction entails distinguishing 

between non-target i.e. rows/columns stimuli that do 

not generate a P300 component and target i.e. 

row/column stimuli that generate a P300 component. 

Since the peak potential of a P300 component is 

between 5-10µV, this is embedded and masked by 

other brain activities (typical EEG signal +-100µV) 

leading to a very low Signal-to-Noise Ratio (SNR). A 

popular way to address the limited SNR of EEG is for 

each symbol to be spelled numerous consecutive 

times and the respective column/row epochs are 

averaged over a number of trials, thus canceling 

components unrelated to stimulus onset. 

The xDAWN process of spatial filtering is (1) a 

dimensional reduction method that creates a subset of 

pseudo-channels (referred to as output channels) by a 

linear combination of the original channels and (2) it 

promotes the appealing part of the signal, such as 

ERPs, with respect to the noise. This is applied to the 

data before performing any classification such as 

LDA (Linear Discriminant Analysis) which was used 

in this paper. A more thorough explanation of the 

xDAWN algorithm can be found in our paper 

(Schembri, et al., 2017) or (Rivet, et al., 2009). 

2.6 Experimental Design 

In this study, there were two independent variables 

manipulated: (a) initial task (IT) and (b) final task 

(FT), within-subjects variables. In addition, there 

were several dependent measures used which can be 

categorized into two types of dependent variables: 

online performance (accuracy), offline performance 

(amplitude and latency). 

2.6.1 Independent Variables 

In this study, there were two manipulated 

(independent) within-subjects variables: (a) Initial 

Task abbreviated as IT, which was based on the first 

task i.e. immediately after the training phase, and 

when the subject was rested and alert. (b) Final Task 

abbreviated as FT, which was based on the last task 
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i.e. after approximately 60 minutes of cumulative 

P300 spelling tasks (including resting time between 

experiments which amounted to approximately 6 

minutes), and when the subject was tired and/or 

bored. The IT and FT tasks were performed in a 

sound-attenuated room with no distractions i.e. lab 

conditions.  

2.6.2 Dependent Variables 

Online Performance (Accuracy): is the number of 

correctly spelled symbols over the number of planned 

target symbols to be spelled; in our case five symbols, 

which make up the word BRAIN. 

Offline Statistics (Amplitude and Latency): P300 

amplitude (μV) is related to the distribution of the 

subject’s processing resources assigned to the task. It 

is defined as the voltage difference between the 

largest positive peak from the baseline within the 

P300 latency interval. P300 latency is considered a 

measure of cognitive processing time, generally 

between 300-800ms poststimulus i.e. after target 

stimulus. In simplest terms, it is the time interval 

between the onset of the target stimulus and the peak 

of the wave. 

2.7 Experimental Procedure 

Prior to the study, all participants consented and a 

written informed consent was obtained. Subsequently, 

each subject was invited and attended an induction 

session that was aimed to re-educate all subjects on 

the P300 speller paradigm and the hardware utilized. 

The subjects’ were informed on the following: (1) 

they would be performing the experiment a number 

of consecutive times, which amount to approximately 

sixty to seventy minutes in total, and that these will 

be performed entirely in a sound-attenuated room i.e. 

lab conditions. (a) in the training phase, (b) IT, (c) 

additional tasks AT (which are not part of this study), 

and (d) FT; as explained in the independent variable 

section; (2) the symbols to be spelled were “BRAIN” 

for (1b) to (1d) and fifteen random symbols for (1a). 

The experiment (1a) was always done first since it 

was the training and required for the other 

experiments, while (1b) to (1d) were done in 

sequential order. Any subjects’ query was answered 

at this stage. Before the start of the experiments, each 

subject was asked to relax for a few minutes in a 

seated position. The subject was seated 

approximately one meter away from the display. The 

researcher and his equipment were situated on the left 

side of the subject. The speakers were situated one 

meter away and facing the subject at a 15-degree 

angle. The experiment was started when the subject 

was able to properly perform the task at hand and had 

no additional questions. Prior to the start of every 

experiment, the impedance of the electrodes was 

confirmed to be less than 5KΩ. 

The subjects were presented with 36 symbols in a 

6x6 matrix. The target symbol was preceded by a cue 

i.e. one of the symbols was highlighted in blue at the 

beginning of the symbol run. Each row and column in 

the matrix was augmented randomly for 100ms and 

the delay between two successive augmentations was 

80ms. This led to an interstimulus interval (ISI) of 

180ms. For each symbol, six rows and six columns 

were augmented for fifteen repetitions and there was 

a 100ms inter-repetition delay and a 3000ms inter-

trial period between the end of the trials of one 

symbol and the beginning of trials of the next symbol, 

which allowed the subject to focus on the next 

symbol. At the end of each symbol run, the predicted 

symbol was presented with a green cue, which 

indicated whether the system predicted the correct 

target symbol. The subjects were given a short break 

between experiments. 

The training phase (1a) consisted of one session 

with 15 random symbols by 15 trials each (i.e. 12 

flashes of columns & rows per trial*15 trials=180 

flashes per symbol). The recording of the training 

phase took approximately 10 minutes. The IT and FT 

experiment consisted of one session each with the 

aforementioned conditions and configurations while 

spelling the symbols “BRAIN” consecutively. The 

AT experiments consisted of repetitive experiments in 

different settings, but with the same configuration as 

IT and FT; however, they are not part of this study. 

Similarly, to the training phase, each symbol had 

fifteen trials each. The recording of each task lasted 

around 6 minutes. In total, there were 15 symbols 

spelled in the training phase and 5 symbols spelled in 

each task, per subject. Hence due to the matrix 

disposition, there were in total 2700 flashes in the 

training phase, amongst which 450 were targets; and 

1800 flashes in each task i.e. IT and FT (900 * 2 

tasks), amongst which 300 (150 * 2 tasks) were 

targets; per subject. The data was stored anonymously 

by referring to subjects as subject1-10 respectively, 

with the exclusion of subjects 2 and 7.  

2.8 Signal Processing 

The online system was controlled by OpenViBE 2.0.0 

which is a C++ based software platform designed for 

real-time processing of biosignal data. The 

acquisition server interfaces with the Cyton board and 

generates a standardized signal stream that is sent to 
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the designer which in turn is used to construct and 

execute signal processing chains stored inside 

scenarios. The signal was obtained via the acquisition 

server which does not communicate directly with the 

Cyton board. Instead, it provides a specific and 

dedicated set of drivers that does this task. The signal 

was obtained at a sampling rate of 250Hz with 8 EEG 

channels and 3 accelerometer (auxiliary) channels. 

The experimental paradigm was controlled by the 

OpenViBE designer where a number of scenarios in 

the “P300 Speller xDAWN Spatial Filter” were 

executed in succession.  

In the offline analysis, the following procedure 

was done for IT and FT. The captured raw data was 

converted from the proprietary OpenVIBE .ov 

extension to a more commonly used .csv format and 

was later imported into MATLAB R2014a. Then, any 

unnecessary rows and columns such as headers and 

auxiliary data were removed. Next, we filtered out the 

data to include the target stimulations with code 

33285; non-target stimulations 33286; and visual 

stimulation stop 32780, which is the start of each 

flash of row or column. Subsequently, we had to 

perform a signal inversion due to the hardware and 

driver implementation. The data (samples and event 

info) were later imported into EEGLAB (Delorme & 

Makeig , 2004) for offline processing. The first 

process was to apply a bandpass filter of 1-20HZ to 

eliminate the environmental electrical interference, to 

remove any signal harmonics and unnecessary 

frequencies which are not beneficial in our 

experiments, and to remove the DC offset. Next, the 

imported data was used in ERPLAB (Lopez-Calderon 

& Luck, 2014) and we took every event we wanted to 

average together and assigned that to a specific bin 

via the binlister. This contained an abstract 

description of what kinds of event codes go into a 

particular bin. In our experiments we have used the 

following criteria: “.{33285}{t<50-150>32780}“ for 

the target and “.{33286}{t<50-150>32780}” for the 

non-target. This implies that it is time-locked to the 

stimuli event 33285 (target) or 33286 (non-target) and 

must have the event 32780 that happens 50 to 150ms 

after the target/non-target event. If this criterion is 

met, it is placed in the appropriate BIN. Next, we 

extracted the bin-based epochs via ERPLAB (not the 

EEGLAB version) and set the time period from -0.2s 

before the stimulus until 0.8s after the stimulus. We 

have also used baseline correction (pre) since we 

wanted to subtract the average pre-stimulus voltage 

from each epoch of data. Next, we passed all channels 

epoch data through a moving window peak-to-peak 

threshold artifact detection with the voltage threshold 

set at 100μV, moving window width at 200ms and 

window step at 100ms to remove unwanted signals 

such as blinking and moving artifacts. Subsequently, 

we averaged our dataset ERPs and performed an 

average across ERPsets (Grand Average) to produce 

the results shown in Table 2, generated by the ERP 

measurement tool. 

3 RESULTS 

3.1 Online Analysis 

Following the online experiments, the results 

achieved per subject are shown in Table 1 which 

depicts the correct symbols predicted out of five (i.e. 

symbols BRAIN) and the percentage in parentheses, 

rounded to the nearest one, for the accuracy 

dependent variable. It must be noted that in an 

incorrect symbol prediction, it might be the case that 

the column was predicted correctly, whilst the row 

was predicted incorrectly or vice versa. For instance, 

subject10 had a success rate of 80% in the FT 

scenario; with the symbol, A predicted as symbol G 

i.e. the column prediction was correct but not the row. 

However to avoid ambiguity we have decided to 

assume that both row and column prediction were 

incorrect when the symbol is predicted incorrectly. 

Table 1: Symbols spelled (out of 5) and percentage (in 

parentheses) for the accuracy dependent variable. 

Subject IT FT 

S1 5 (100%) 5 (100%) 

S3 5 (100%) 5 (100%) 

S4 5 (100%) 5 (100%) 

S5 5 (100%) 5 (100%) 

S6 5 (100%) 5 (100%) 

S8 5 (100%) 5 (100%) 

S9 5 (100%) 5 (100%) 

S10 5 (100%) 4 (80%) 

Grand Avg 100% 98% 

3.2 Offline Analysis 

In this section, we process and analyse the averaged 

epoch signal of eight subjects in relation to the 

independent variables (IT and FT). Table 2 shows the 

means and standard deviations in parentheses, for the 

dependent variables (amplitude and latency) 

according to levels of the independent variable 

rounded to the nearest hundredth. This data includes  
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Table 2: Means and Standard Deviations (in Parentheses) for Two Dependent Measures (Amplitude and Latency). 

Subject IT FT 

 Amplitude (μV) Latency (ms) Amplitude (μV) Latency (ms) 

S1 4.90 (0.54) 466.5 (2.98) 3.58 (0.53) 342.5 (21.37) 

S3 3.39 (1.53) 391.0 (87.29) 3.68 (0.74) 441.5 (93.39) 

S4 3.74 (0.92) 445.5 (110.44) 3.81 (0.96) 437.0 (83.38) 

S5 3.95 (0.77) 444.5 (90.57) 4.30 (0.80) 457.0 (99.34) 

S6 5.39 (1.64) 483.0 (1.85) 2.87 (0.93) 477.0 (44.12) 

S8 3.00 (1.25) 387.0 (79.07) 3.02 (0.75) 420.0 (86.35) 

S9 4.80 (1.92) 380.5 (89.91) 2.96 (1.90) 356.0 (76.26) 

S10 2.72 (0.49) 446.0 (45.31) 3.08 (0.43) 405 (68.11) 

Grand Avg 3.99 (1.48) 430.5 (79.31) 3.41 (1.04) 417.0 (84.14) 

Table 3: ANOVA test on Amplitude and Latency. 

 Source of Variation SS df MS F P-value F crit 

A
m

p
li

tu
d

e Between Groups 

 
10.502 1 10.502 6.442 0.012 3.916 

Within Groups 205.395 126 1.630    

Total 215.897 127     

L
a

te
n

cy
 Between Groups 

 
5832.0 1 5832.0 0.872 0.352 3.916 

Within Groups 842256.0 126 6684.571    

Total 848088.0 127     

 

the average of all eight recorded electrodes 

throughout the five symbols and is shown per subject. 

We have performed a one-way ANOVA which is 

based on our independent variable with two 

levels/groups (IT and FT) as presented in Table 3, to 

determine if there is a significant difference between 

the two means of each group or if they are all the 

same. We have chosen to use a 5% significance level 

(0.05) denoted as α (alpha) and rounded all values to 

the nearest thousandth. Our ANOVA null hypothesis 

(H0) states that the means are all equal i.e. the mean 

of IT and FT is the same. Our alternate hypothesis 

(H1) states that at least two of these means are 

different. Even though we are comparing only two 

groups, we have opted to use one-way ANOVA rather 

than a T-test for comparison purposes to our previous 

results (Schembri, et al., 2019) and to avoid a 

statistical Type I error on multiple two-sample T-

tests. Regardless, this should yield the same results. 

For instance, consider the results in Table 3 in the 

amplitude section. In the first column we have the 

source of variation, where ANOVA carries out an 

analysis between groups variation i.e. IT and FT, and 

also carries out an analysis of the within-groups 

variation i.e. the variation within each of our two 

groups. In the second column, we have the sum of 

squares (SS) of the variation, which is the spread 

between each individual value and the mean. The 

third column is the degrees of freedom (df) which is 

the (number of samples – 1). We have two samples of 

between groups which gives one and we have one-

hundred and twenty-eight samples (eight channels * 

eight subjects * two groups) in total which give one-

hundred and twenty-seven. That allows us to 

calculate the within-group df which is total less 

between groups i.e. a value of one-hundred and 

twenty-six. The fifth column we have the mean 

Square Values (MS) which is calculated by dividing 

SS by the corresponding df. The sixth column is the F 

statistic which is the key statistic where we divide the 

MS between groups by the MS within group. Since 

our F statistic got a result 6.442 which is larger than 

our F-critical value (8th column) i.e. 3.916, this 

implies that we reject the H0 i.e. that all means are 

equal and accept H1. Also, by analyzing that the P-

value (7th column) which is 0.012 i.e. it is smaller 

than the alpha value of 0.05, so we can also accept H1 

and reject our null hypothesis H0. The latency section 

results follow the same detailed description as above, 

which however accepts H0 and rejects H1. 

4 CONCLUSION 

In continuation of our previous papers (Schembri, et 

al., 2019), this work analyzed the effect that mental 

fatigue during repetitive exercises of a visual P300 

Speller have on the P300 component, in terms of our 

Impact of Mental Fatigue during Repetitive Exercises of a Visual P300 Speller

161



dependent variables i.e. accuracy, amplitude and 

latency, and also on the signal morphology, and 

overall signal quality. N = 8 healthy subjects 

performed several experiments using Farwell & 

Donchin P300 speller in conjunction with the 

xDAWN algorithm, with a six by six matrix of 

alphanumeric characters, while utilising low fidelity 

equipment in concurrence with eight EEG channels. 

This paper is related to our current work where we 

have introduced (Schembri, et al., 2019) different 

categories of distractions alongside the continuous 

development (Schembri, et al., 2019) of taxonomy. 

The experiments were explicitly done in three 

states i.e. the initial task (IT) which lasted 6 minutes, 

additional tasks (AT) which lasted around 50 

cumulative minutes, in which data is not included in 

this study, and the final task (FT) which lasted 6 

minutes, respectively. Our comparison was based on 

the independent variables, IT and FT tasks i.e. on the 

first task when the subject was rested and alert when 

compared to the last task when the subject was tired 

and bored. 

The goal of our study is to develop and ensue on 

the development (Schembri, et al., 2019) (Schembri, 

et al., 2019) of a hierarchical taxonomy aimed at 

categorizing distractions in the P300b domain and the 

effect that these distractions have on the success rate, 

signal quality, reduction of amplitude, or any other 

change/distortion that occurs. This should give some 

insight into the practicability of real-world 

application of the current P300 speller with our 

aforementioned low-cost equipment. The aim of this 

paper was to assess the effect of prolonged usage and 

exposure to the aforementioned methodology and 

equipment, with the aim of broadening its use in a 

real-world context.  

Our null hypothesis based (H0) states that the 

independent variables have no effect and/or statistical 

significance on the dependent variables (accuracy, 

amplitude, and latency). Our alternate hypothesis 

(H1) based on preceding related and tantamount 

medical-grade research state that there should be an 

effect on the accuracy and a statistical effect on the 

amplitude, while the latency should not have any 

statistically significant effect. The results show that 

the accuracy was slightly affected and that there was 

a statistically significant effect on the amplitude, but 

the latency was not statistically affected as shown in 

our ANOVA analysis in Table 3. In view of the 

results, we reject H0 and accept H1 for the accuracy 

and amplitude dependent variables, while we reject 

H1 and accept H0 for the latency dependent variable. 

Non-statistical analysis shows that the dependent 

accuracy variable was highest in the IT (100%), 

followed closely by FT (98%) as shown in Table 1. 

The dependent variable amplitude was highest in the 

IT (M=3.99, SD=1.48), followed by FT (M=3.41, 

SD=1.04). Additionally, the dependent variable 

latency was shortest in the FT (M=417.0, SD=84.14), 

followed by IT (M=430.5, SD=79,31) as shown in 

Table 2. It seems that there is no correlation between 

amplitude and latency, while the signals were 

morphological consistent in both settings, even 

though they did not yield identical P300 components. 

Moreover, empirical results show a significant 

decrease in the activation of P300 sources in the FT 

mental fatigue level compared to the IT. 

In this paper, we have analysed the P300 

component of a visual P300 speller under the effect 

of mental fatigue during repetitive exercises. 

Explicitly, the effect that the aforementioned 

independent variables have on the dependent 

variables. In the future, we plan to expand on our 

study by performing extended and lengthier sessions, 

under the same conditions, and analyse the dependent 

variables of the experiments being performed on the 

hour every hour. 
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