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This paper deals with an Al implementation that uses knowledge in an original Construction Grammar (CG)
format for deep understanding of text. CG is a means of processing knowledge pieces—aka constructions—
that describe the form and meaning of text parts. Understanding consists in automatically finding in the text
the knowledge that constructions contain and in creating knowledge networks that reflect the text information
structure. Deeper understanding is achieved by propagating knowledge within the network, i.e. some con-
structions can share with others information about syntax, semantics, pragmatics and other text properties.
A shortcoming of this information-rich method is limited coverage: only text for which a CG database is
available can be understood; that database due to its complexity most often needs to be made up manually.
The author attempts to increase the coverage by implementing automatic acquisition of word knowledge from
sources such as an external (non-CG) knowledge base and formatting the knowledge as CG constructions. The
resulting CG database has been used in evaluation experiments to understand the Winograd Schema (WS)—a

test for Al. A 28% increase in accurate coverage and opportunities for further improvement are observed.

1 INTRODUCTION

This section introduces the issue the proposed knowl-
edge acquisition method tackles: the limited coverage
of text by deeper understanding, such as in the case of
the computational CG. In the context of contemporary
Natural Language Processing (NLP) the above issue
can be presented as follows.

An NLP history survey (Brock, 2018) shows
two major research areas: those featuring “recog-
nition” and “reasoning”. Among the former Brock
(2018) mentions “neural networks coupled to large
data stores”, e.g. deep learning. For such
approaches—aka statistical NLP—the major criterion
for “making judgement” is the count of character
combinations (words etc.) recognized in a large data
store (e.g. in a collection of user input). The latter
(reasoning) approaches—aka Natural Language Un-
derstanding (NLU)—aim for deep understanding of
human cognition (Micelli et al., 2009) and attempt
to infer by processing knowledge such as syntax, se-
mantics and common sense. Computational CG is
among such NLU approaches; Kiselev (2017) intro-
duces CG as a formalism and describes its practical
applications.
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Both deep NLU and statistical NLP have strengths
accompanied by weaknesses as shown below.

Modern statistical NLP methods are usually
“trained” on large data (e.g., millions of word oc-
currences) so they can process (i.e. their knowledge
database is enough to cover) considerably large in-
puts (Zhang et al., 2018). One problem with such
methods is limited accuracy when it comes to dif-
ficult understanding tasks involving deep semantics
or common sense reasoning (Mitkov, 2014; Richard-
Bollans et al., 2018). To illustrate this problem: a
number of statistical NLP methods (Peng et al., 2015;
Sharma et al., 2015; Liu et al., 2017; Emami et al.,
2018) can process considerably large quantities of
WS sentences, however with limited accuracy; Bai-
ley et al. (2015) describe WS as a test for AIl. Another
problem with statistical NLP, e.g. Machine Learning
(ML), is limited transparency: it is often impossible
or impractical to find out what exact “thoughts” led
an Al of this kind to a certain decision (Brock, 2018).
To find that out one would need to look at millions
of nodes (words, etc) and their numeric weights (re-
sulting from mathematical manipulations of word oc-
currence counts, etc) that activated certain networks.
This limited explainability is a reason to call statistical
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NLP AI with neural networks “a black box (Brock,
2018).

Differently from statistical NLP, deep NLU ap-
proaches, e.g. CG ones (Kiselev, 2017; Raghuram
et al., 2017), show high accuracy on the WS but can
process (i.e. their knowledge database is enough to
cover) limited numbers of WS sentences. This lim-
ited coverage results from more difficulty—than in
the case of statistical NLP—to automatically create a
database because the database has to reflect a richer
information structure of text. Deep NLU requires
more human effort to (manually) create the knowl-
edge base. As for the explainability, the CG-based Al
“thoughts” are usually clear from the data structure
and/or reasoning rules used, as for instance in the case
of the Kiselev (2017) and the AI method the present
paper proposes. Implementations of this type are re-
ferred to as explainable Al (aka XAI).

To sum it up, statistical NLP (such as ML) demon-
strates large coverage but limited accuracy and lim-
ited explainability, deep NLU (such as computational
CG) demonstrates limited coverage but high accuracy
and sufficient explainability.

2 CURRENT RESEARCH STAGE
AND TARGETS

This section identifies the Al implementation the pro-
posed knowledge acquisition method has built upon,
and outlines future knowledge acquisition research
prospects. The section ends with the question to be
empirically answered by the present paper.

The author tackles the NLU coverage issue, ex-
plained in 1, by further improving an existing Al im-
plementation. That AI (Kiselev, 2017) has shown
high accuracy in answering questions from a WS
dataset, but its CG database is limited to that dataset
only and no automatic knowledge acquisition is im-
plemented. That database is manually populated with
information structures called constructions, each of
which contains knowledge about the form and mean-
ing of a word, a phrase or a sentence. To put it differ-
ently, the database has three types of constructions:
word, phrase and sentence ones. It is important to
note that the same constructions can be reused to un-
derstand text pieces with similar form and meaning.

This paper describes the current research stage
at which the author looks into automatic acquisition
of word constructions only. They are added to the
database of the above Al and used for WS understand-
ing. Automatic acquisition of phrase and sentence
constructions are future stages of the research.

The paper is to answer the following question.
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Does automatically adding word constructions to the
existing database result in any increase of the accu-
rate coverage for unknown sentences? This ques-
tion is important because the word constructions are
meant to become components of phrase and sentence
constructions by satisfying syntactic, semantic and
pragmatic requirements (listed “inside” phrase and
sentence constructions). The answer to the ques-
tion contributes to the practical value of the proposed
method applied to understanding the WS, an espe-
cially hard (Winograd, 1980) task for Al.

3 TEXT UNDERSTANDING

Before explaining how the knowledge is acquired, it
is important to explain how the present Al implemen-
tation understands text.

3.1 Knowledge Networks

First, word constructions from the database are used
to find known words. A construction is, simply put, a
collection of feature => value pairs. This is a tem-
plate so instead of the feature and value any mean-
ingful information can be used. That information is to
describe form and/or meaning of text pieces of three
types (recall the construction types mentioned in 2).
For instance, a familiar word “phone” was found be-
cause the value (i.e. the word spelling) in the pair
string => phone matched “phone” in the text. The
boldface words within boxes in Fig. 1 represent con-
structions for the known words: the implementation
now knows e.g. that “he” is a personal pronoun. It
knows because the construction that matched “he” has
the pair type => personal and the construction also
says that “he” is a pronoun.

Next, the AI checks if the found known words
(or, technically, the word constructions that have
matched the spelling) fit into known phrase structures.
Each phrase construction in the database represents a
known phrase type, e.g. the verb phrase (VP) for “call
George” (Fig. 1). These two words fit into the VP be-
cause the Al has found matching features and values.
For instance, the values action in the word construc-
tion for “call” and entity in that for “George” have
matched the same values in the VP construction; for
space considerations the figure does not show every
feature and value.

As all form and meaning requirements of the VP
to its potential components were similarly met by the
two word constructions (i.e. certain features and val-
ues were found matching), the constructions became
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Compound Sentence

Clause but
Noun Verb Phrase
Paul

Verb b Ph
tried Verb Phrase
Particle
to Verb Phrase

Verb Phrase

patient => noun

Noun Phrase

Verb
call

Noun
George

Prep.
on |

Conjunction

Article

Clause

Pronoun
he

type => personal
case => nominative

Verb Phrase

Verb

wasn't
polarity => negative

Adjective

available
implies => presence

Noun
the phone

Figure 1: The knowledge network generated to find what “he” refers to in the WS sentence “Paul tried to call George on the
phone but he wasn’t available”; a concise illustration. Solid line boxes represent CG constructions.

components' of the VP. This VP construction has
been (manually) designed to know its semantic struc-
ture patient => noun (Fig. 1): the noun denotes the
patient, i.e. the receiver of the action. This semantic
knowledge has been propagated from the VP to the
“George” word construction, i.e. the Al has copied
knowledge from the above feature-value pair. In this
way the implementation has understood phrases and
now knows that e.g. “call George” is a VP, “call” is
an action and “George” is an entity as well as the
patient (recipient) for “call”. In other words, knowl-
edge networks for phrases have been formed. In Fig. 1
the network components are connected by lines with
circles on ends, dashed arrows show how knowledge
propagated (i.e.was copied by the Al).

Sentences are understood the same way as
phrases. Constructions for the understood phrases fit
into the known sentence structure if features and val-
ues match. Knowledge listed as feature-value pairs
is copied from some constructions to others. Techni-
cal details of what conditions feature-value pairs must
meet so they match or so they are copied the way
the construction designer desires are given by Kiselev
(2017) . However, for the present Al some feature-
value pairs have been discarded to make phrase and
sentence constructions lighter, and regular expres-

'Becoming components means getting marked by the Al
as components and put in a specially allocated memory
container that is traceable, retrievable and printable.

sions (regex)? are incorporated into constructions for
more matching versatility. For instance, the same
construction can be designed to match multiple word
forms or parts of speech (POS).

Another feature of the present Al is recursive gen-
eration of alternative parses. Some cases for doing so
are as follows. In English there is a number of words
that, depending on the context, can be different POS,
although the spelling is the same. If such word is used
in a sentence and matches constructions for different
POS, alternative sentence parses (each containing the
construction for the different POS) are generated. If
the same group of words in a sentence matches multi-
ple constructions for different types of phrases, alter-
native sentence parses are also generated. At present
the Al is set to output parses more extensively cov-
ered by the CG database knowledge, or simply parses
with the larger number of matching constructions.

It is not true that the tree-like structure represent-
ing the knowledge network for the whole sentence in
Fig. 1 has to be a syntactic tree generated by means of
statistical NLP—athough, that is also implementable.
In other words, what types of phrases the sentence is
to consist of does not have to be determined by how
many phrases of some type are usually found in large
collections of data. By creating feature-value pairs the
construction designer is free to have any construction

2Programming tools used for manipulating character
strings, e.g. finding words or changing morphemes.
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convey practically any meaning, match another con-
struction and form a network that can have practically
any syntactic structure. This kind of freedom is re-
ferred to by van Trijp (2017) as “chopping down the
syntax tree”.

By forming the sentence network exemplified in
Fig. 1 the AI has understood, for instance, the fol-
lowing. The sentence (Fig. 1) has a clause, this
clause has a VP, and this VP implies negated pres-
ence. This implication has been understood because
the pairs polarity => negative and implies
=> presence from the “wasn’t” and “available”
constructions respectively were copied to the VP
construction—copied because they met certain condi-
tions as mentioned above, and met the conditions be-
cause the constructions had been manually designed
to do so. In terms of human reasoning, this knowledge
propagation can be described like so. As “wasn’t”
is negative and “available” implies presence and the
two words form a VP (the way shown in Fig. 1), that
VP implies negated presence. This is one example of
the way CG knowledge propagation can in itself be
looked upon as a chain of reasoning. The knowledge
propagation implemented by the author draws upon
the CG remarkable quality of feature and value prop-
agation referred to by Steels (2017) as “percolation”
and “merging”.

The following CG concept should also be noted.
It is not true that each single construction can de-
scribe only one unique piece of text. Constructions
are meant to be reusable for (i.e. can describe) text
pieces with similar forms and meanings. For instance
a single VP construction can be “filled with” a va-
riety of actual verbs and nouns from the text. The
same concept applies to sentence constructions. This
is what makes CG different from annotated corpora
where a particular tag is attached to one word or one
group of them.

3.2 Inference Rules

Rules are instructions for the present Al implementa-
tion to follow when more complex reasoning—such
as the anaphora resolution task exemplified by the
caption for Fig. 1—is involved. A rule defines a rea-
soning pattern as explained below. Kiselev (2017) has
shown that WS anaphora resolution can be handled
without using rules. However, that results in construc-
tion data proliferation: the need to use a larger number
of long constructions each of which describes a sepa-
rate sentence as a whole. Using rules for the present
Al aims for shorter and more versatile constructions.

A rule has condition and action parts: the action
is taken if the condition is met. Below is a human

292

language gloss of a rule for anaphora resolution in
the Fig. 1 sentence and in similar sentences; the con-
struction data dealt with can be looked up by locating
dashed boxes and arrows. In a compound sentence
a clause of which implies negated presence, into a
part that is a nominative case personal pronoun, in-
sert refers_to => pointing to a part that denotes
the patient (the receiver of the action). To gloss it fur-
ther: the sentence speaks about not being present, so
“he” refers to “George”. This is just one possible res-
olution of anaphora, a construction designer is free to
come up with others.

4 KNOWLEDGE ACQUISITION

The knowledge (i.e. word constructions) acquisition
targets unknown words. A word is unknown if to
match its spelling (recall 3.1) the Al has tried every
word construction available from the database, but all
unsuccessfully. In this case it does not even know if
some character string between spaces can be a word.
So the acquisition task can be divided into two steps.
First, identifying words as such. Next, making word
constructions for them.

4.1 Identifying Words

For lack of CG tools covering the morphology and
syntax of large textual data, the author has used
the external tool TreeTagger’ to identify words and
tag them as POS. TreeTagger is a probabilistic
(Hidden Markov Model) POS tagger using decision
trees (Schmid, 1994). The decision algorithm fea-
tures analyzing morphemes of the word in ques-
tion and available POS tags for words preceding it,
which demonstrates rather high precision with a lim-
ited amount of training data (Schmid, 1999). Tree-
Tagger has been incorporated into the present Al and
has been configured to output in the Penn Treebank
format which attempts (Taylor et al., 2003) to utilize
fewer, more universal tags and observes a standard
list (Santorini, 1990) of thirty-six POS tags displayed
in Table 3 (see APPENDIX). For instance “call” (as
used in the Fig. 1 sentence) according to this list is
tagged VB i.e. a verb, base form.

4.2 Making Word Constructions

After an unknown word (or, technically, a character
string) is identified as a POS, a construction for it is

3Available at  http://www.cis.uni-muenchen.de/schmid/
tools/TreeTagger/ retrieved on May 3, 2019.



An Al using Construction Grammar: Automatic Acquisition of Knowledge about Words

CONSTRUCTION => call_VB
_ Text_Form

ID => VB

lemma => call

string => calls|called
to_match => ID
___Text_Meaning

ID => A

to_match => ID
wn_senses => 28

Figure 2: A word construction example: a minimal con-
struction for the verb “call”.

generated. By tradition (De Saussure, 2011) a con-
struction describes a linguistic sign of a certain form
(e.g., a string of characters that are a word) and the
meaning corresponding to that form. Constructions
automatically generated by the present Al have two
major parts Text _Form and Text Meaning (Fig. 2).
To identify the form and meaning of a word (so the
identifier can match one in other constructions to form
networks), the two parts have pairs such as ID =>
VB (“verb, base form”) and ID => A (“action”), see
Fig. 2.

The notation in Fig. 2 is interpreted as follows:
the value call_VB means this is a construction for the
word “call” and its POS tag is VB; the ID values VB
and A result from the TreeTagger output the way de-
scribed later; the lemma pair is also made out of the
TreeTagger output and shows the basic form of the
word; calls|called (given as mere examples) en-
able the construction to match the former or the lat-
ter verb form in a text, if needed; to_match => ID
is a “dummy” pair used to tell the Al to look for
matches only in the ID pair of this word construc-
tion and of phrase or sentence constructions (when
matches in other form or meaning features are not re-
quired for forming a network); the wn_senses pair
points to word senses as described later.

As mentioned above, the identifiers VB and A
(Fig. 2) result—i.e. are automatically made—from
the TreeTagger output. The word “call” as it is used
in the sentence (Fig. 1) is parsed by TreeTagger as
VB. The meaning identifier A (Fig. 2) corresponds to
the form identifier VB (as a verb denotes an action).
Meaning tags that correspond to other POS are also
generated. The form and meaning identifiers are used
so they can match the same ones in, for instance, a
phrase construction that may say that its prospective
parts must match those identifiers; in this way the
Al understands what words are parts of what phrases
etc., recall 3.1. Table 3 (see APPENDIX) lists and
describes form and meaning identifiers automatically
inserted into word constructions.

The wn_senses => 28 pair (Fig. 2) says that there
are data for twenty-eight senses of the verb “call” in

WordNet (Miller, 1998), a publicly available lexical
database with look-up tools. WordNet has been incor-
porated into the present Al and the number of senses
is automatically inserted into the word construction.
For each of the senses WordNet lists synonyms and
other related words; the total number of senses like
28 facilitates faster (parallel) processing of the data
for each sense. The author uses these WordNet sense
data so the same inference rules (such as that exem-
plified in 3.2) can be applied to text parts with similar
meanings, however in-depth research into that kind of
rule application is left for the future.

At present minimal constructions like one shown
in Fig. 2 are automatically generated, additional
feature-value need to be entered manually.

5 EVALUATION EXPERIMENTS

5.1 Setting

The purpose of the experiments is to answer the ques-
tion (posed in 2) about the coverage increase. To fur-
ther detail the question: is there any increase in the
number of accurately formed sentence networks due
to the described automatic generation of word con-
structions? To gloss the question for more clarity:
how many sentence constructions (i.e. their ID val-
ues, etc.) are correctly matched by word and phrase
ones; do the formed sentence networks correctly re-
flect the syntax and semantics? As the phrase and sen-
tence constructions come from the limited database
(introduced in 2) it is interesting how large a portion
of the whole WS collection the database knowledge
can cover—in the experiments the database is used to
understand the whole WS collection, differently from
Kiselev (2017) who applied that database to a part of
the WS collection.

The whole WS collection of 150 items or 300
statement-question sets (as of the time the experi-
ments were preformed) was utilized. That collec-
tion was obtained from a publicly available online
source*. For more clarity the original collection for-
mat that uses slashes and square brackets was changed
(by writing and executing an additional program) into
that shown in Fig. 3, the item numbering corresponds
to the original collection numbering.

The CG database mentioned above was originally
designed to cover 7 items or 14 statement-question
sets (Kiselev, 2017) from the WS collection. In the

“http://www.cs.nyu.edu/faculty/davise/papers/
WinogradSchemas/WSCollection.html  retrieved  on
June 20, 2019.
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_52_

The fish ate the worm. It was tasty.
What was tasty?

The fish ate the worm. It was hungry.
What was hungry?

Figure 3: A WS as it is used in the experiments. There are
two statement-question sets: the statement part is directly
followed by the question. A WS is preceded by its number.

Table 1: Construction quantities in the database before the
automatic generation of word constructions.

Word Constructions | 79
Phrase Constructions | 19
Sentence Constructions | 13

experiments the database is applied to all of the 150
items or 300 sets; recall that the same constructions
can be reused to understand text pieces with similar
form and meaning. Table 1 lists the quantities for con-
structions of each type in the database. Before the ex-
periments the database was formatted so the existing
constructions could form networks with the new auto-
matically generated ones. For instance, the new form
and meaning notation for ID pairs (described in 4.2)
was incorporated into constructions.

First, the Al applied the database without auto-
matically generating word constructions. Next, it ap-
plied the same database again and while doing so au-
tomatically added constructions for unknown words.

5.2 Results

In Table 2 the row TTL gives the total number of
statement-question sets in which at least one sen-
tence network was formed, i.e. at least one sentence
construction matched phrase and/or sentence ones;
the row Accurate gives the part of the above TTL
where the sentence network correctly—from the hu-
man prospective—reflects the syntax and semantics;
the row Accurate Coverage % shows the share of the
above Accurate count in the number of all the WS
collection statement-question sets (i.e. in 300).

By comparing the entries in the row Accurate
Coverage % a 28% increase can be observed.

5.3 Discussion

The above results are not meant to extensively cover
the whole WS collection, they are rather a step to-
wards that—the following steps being phrase and sen-
tence knowledge acquisition as mentioned in 2.

An increase in accurate coverage of sentences
without automatically generating phrase and sen-
tence constructions can be considered encouraging
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Table 2: Numbers and percentages for sentence networks
formed with and without the automatic generation of word
constructions: Proposed and Baseline respectively.

Baseline Proposed
TTL 17 170
Accurate 17 101
Accurate Coverage % 6% 34%

and speaks in favor of CG scalability to a certain ex-
tent: phrase and sentence constructions have proven
reusable on the WS.

Along with an encouragement there is room for
improvement. Namely, by comparing the figures for
TTL and Accurate under Proposed in Table 2 it is
clear that 69 sentence networks were not parsed cor-
rectly. The reason is that some constructions may
have been designed excessively versatile, i.e. allow-
ing matches of unwanted POS, word forms etc. There
is a need for a better look into using a larger number
of non-versatile constructions as opposed to a smaller
number of versatile ones.

The recursive generation of alternative parses
is rather time-consuming (about 25 seconds for a
statement-question set with an especially large num-
ber of parses) so the implementation of parallel pro-
cessing for variant parses may be needed.

6 CONCLUSIONS AND FUTURE
WORK

This paper has described a step towards automating
the hard task of understanding the WS by means of
deep NLU, featuring an original explainable Al that
utilizes CG and automatically generates word knowl-
edge. That knowledge generation augmented phrase
and sentence knowledge already existing in a database
and led to accurate understanding of the sentence
structure in a larger portion of the WS text. How-
ever, a more complete unsupervised understanding
necessitates automatic generation of not only word
knowledge but also knowledge about the phrase and
sentence form and meaning. Research into this kind
of knowledge generation is on the long-term agenda.
The short-term agenda includes research into the ap-
propriate degree of the construction versatility and
into parallel processing for alternative parses of text.
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APPENDIX

Table 3: The columns No., Form ID and POS Explanation respectively give the item number, the part-of-speech (POS)
identifier (ID) tag and the explanation as they are in the Penn Treebank Project (Santorini, 1990). The column Meaning ID
lists IDs showing a meaning for each POS (e.g., the meaning “action” for a verb). The Meaning IDs: A = action, E = entity,
P = property, U = currently unspecified. This simplistic meaning identification meets the current research needs but may be

reconsidered in the future.

Meaning ID

POS Explanation

No. FormID
1. CC
2. CD
3. DT
4. EX
5. FW
6. IN
7. 1)

8. IR

9. JIS
10. LS
11. MD
12. NN
13.  NNS
14. NP
15. NPS
16. PDT
17. POS
18. PP
19. PP$
20. RB
21 RBR
22. RBS
23. RP
24. SYM
25. TO
26. UH
27. VB
28. VBD
29. VBG
30. VBN
31 VBP
32. VBZ
33. WDT
34. WP
35. WP$
36. WRB

cCCcccppCCprpprpOCcCcUYvvCCCCmOmmCccvvICCCCCC

Coordinating conjunction
Cardinal number
Determiner

Existential there

Foreign word

Preposition or subordinating conjunction

Adjective

Adjective, comparative
Adjective, superlative

List item marker

Modal

Noun, singular or mass

Noun, plural

Proper noun, singular

Proper noun, plural
Predeterminer

Possessive ending

Personal pronoun

Possessive pronoun

Adverb

Adverb, comparative

Adverb, superlative

Particle

Symbol

to

Interjection

Verb, base form

Verb, past tense

Verb, gerund or present participle
Verb, past participle

Verb, non-3rd person singular present
Verb, 3rd person singular present
Wh-determiner

Wh-pronoun

Possessive wh-pronoun
Wh-adverb
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