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Abstract: The paper addresses the problem of probabilistic search and detection of multiple targets by the group of 
mobile robots that are equipped by a variety of sensors and are communicating with each other at different 
levels. The goal is to define the trajectories of the robots in the group such that the targets are chased in 
minimal time. The suggested solution model follows the occupancy grid approach, and sensor fusion is 
implemented using a general Bayesian scheme with varying sensitivity of the sensors. The created control 
algorithm was verified in three settings with different levels of communication and information sharing 
between the robots and different levels of sensors' sensitivity. The suggested algorithms were implemented in 
a software simulation to analyze and compare the different policies. 

1 INTRODUCTION 

The problem of search for a hidden object is one of 
the oldest mathematical problems that attract both 
theoretical and practical interest (Nahin, 2007). In its 
basic formulation, this problem deals either with the 
distribution of the search efforts or with the trajectory 
of the searcher, such that provides a maximal 
probability of detecting the target in a given time or 
minimal time of certain detection of the target (Stone, 
1975). 

Practical studies of the search problem were 
initiated in 1942 as a result of the quest for the 
detection of the submarines in Atlantic (Koopman, 
1946). Then, the considerations were distributed to 
the search of hidden moving targets (Washburn, 
1983), and in most settings, there were suggested 
optimal or near-optimal solutions of the problem; for 
the overview, see, e.g. (Frost & Stone, 2001; Kagan 
& Ben-Gal, 2013; Kagan & Ben-Gal, 2015; 
Washburn, 1989). 

However, with the development of mobile robots 
and multi-robot systems, the problem of the search 
was extended to the groups of autonomous agents 
searching for single or multiple targets. In such a 
setting, the activities of the agents strongly depend on 

the communication between the agents and decisions 
regarding the target made by each agent. 

In the paper, we consider the problem of 
probabilistic search and detection of multiple targets 
by the group of mobile robots. Such a problem was 
considered in (Pack, DeLima, Toussaint & York, 
2009) in the framework of search by unmanned aerial 
vehicles that required sophisticated navigation and 
prediction techniques for control of the vehicles’ 
motion. In the earlier work (Vidal, Shakeria, Kim, 
Shim & Sastry, 2002) in the field considered the 
pursuit-evasion game of the team of the ground and 
aerial vehicles that required to explore the terrain and 
build its map. 

We assume that the robots are equipped with 
different sensors that can signal with both false 
positive and false negative errors. The robots 
communicate with each other and share information 
regarding detected targets. In the paper, we consider 
different levels of communications: from complete 
sharing of the obtained date up to purely independent 
activity without sharing information. The aim of the 
research is to construct such control procedures that 
provide detection of the targets in minimal time. 

The suggested solution follows the simultaneous 
location and mapping techniques (see, e.g. Siegwart 
& Nourbakhsh, 2004), in particular – the occupancy 

Matzliach, B., Ben-Gal, I. and Kagan, E.
Sensor Fusion and Decision-making in the Cooperative Search by Mobile Robots.
DOI: 10.5220/0008840001190126
In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 1, pages 119-126
ISBN: 978-989-758-395-7; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

119



 

 

grid approach, where the map of the targets’ 
candidate points is created simultaneously with the 
detection process and the robots’ motion (Elfes, 1987; 
Elfes, 1990). The implemented sensor fusion follows 
the general Bayesian scheme (Stone, Barlow & 
Corwin, 1999). However, in order to bound the 
influence of the false-positive detection errors, the 
sensitivity of the sensors is specified dynamically 
with respect to the status of the search. 

The control algorithm implements three different 
levels of communication and information sharing: 

- each robot had complete information about the 
data available to the other robots; 

- the robots shared partial information; 
- the robots acted independently without sharing 

information. 
As was expected, the independent actions of the 

robots lead to the worst results in terms of the search 
time and the best results are obtained in the case of 
information sharing. In particular, while the robots 
share complete information, then the search time 
decreases exponentially with the increasing of the 
sensors’ power down to a specific value and then 
stays constant. In this case, we found the upper and 
lower bounds for the probable sensor’s reliability 
such that in these bounds, the search time is nearly 
constant, and out of these bounds, the search time 
increases exponentially. 

The algorithms were implemented in the Python 
programming language and the code can be directly 
used for solving the real-world tasks of search and 
detection by the groups of mobile robots. 

2 THE CONSIDERED SCENARIO 
OF COOPERATIVE SEARCH 

Let us start with a general description of the 
considered scenario of cooperative search.  

Consider the number of mobile robots(agents) 
searching for several stationary targets hidden in the 
gridded domain. It is assumed that each searching 
robot, as well as each target, can occupy only a single 
cell of the grid. Each searching robot is equipped with 
a variety of sensors that provide may be erroneous 
information regarding the targets’ locations relative 
to the robot’s location. The robots can communicate 
and share information about the targets’ locations as 
they have been perceived by the sensors. The goal is 
to define the trajectories of the robots in the group and 
their sensing activities such that all the targets will be 
detected in minimal time. 

In order to obtain the formal definition of the 
presented scenario, including erroneous perception, 
in addition to true targets that can be detected with a 
certain probability, we introduce the dummy targets 
that produce false alarms that can be perceived by the 
robots’ sensors with certain probabilities.  

It is clear that the presented scenario follows a 
general framework of the probabilistic search (Stone, 
1975; Stone, Barlow & Corwin, 1999); however, for 
obtaining a practical solution, it requires several 
heuristic approaches and reasonable assumptions. In 
the next section, we start the consideration of 
particular methods used in the suggested algorithm 
and present the Bayesian sensor fusion that is used for 
calculating the probabilities in the presence of false 
alarms. 

An example of the domain with true and dummy 
targets is depicted in Figure 1. 

 

Figure 1: An example of a search grid area with true and 
dummy targets and several searching robots (agents). 

3 UPDATING THE SENSOR 
PROBABILITY MAP 

Following the implemented approach of the 
occupancy grid (Elfes, 1987; Elfes, 1990), the domain 
perceived by the sensor is considered as a set of cells 
ܿ௜, ݅ ൌ 1, 2, … , ݊ ൏ ∞. The state ݏሺܿ௜ሻ of an ith cell is 
defined as a discrete random variable with the values 
ሺܿ௜ሻݏ ൌ 1 that stands for the fact that the target is 
located in the cell ܿ௜ or ݏሺܿ௜ሻ ൌ 0 that represents the 
absence of the target in the cell ܿ௜. It is clear that for 
the probabilities of these two events in each cell ܿ௜ it 
is assumed that 
 

ሺܿ௜ሻݏሼݎܲ ൌ 1ሽ ൅ ሺܿ௜ሻݏሼݎܲ ൌ 0ሽ ൌ 1 (1)
 

In other words, for each cell, it is associated with 
a probability mass function that is estimated by the 
sensors. 
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As indicated above, following the assumption, the 
domain includes true targets and dummy targets, and, 
in each time, ݐ, they broadcast signals that represent 
true and false alarms. The probabilities of perception 
of these signals by the sensors are drawn with respect 
to exponential distribution 
 

 ሽݐ݊݁ݏ	݉ݎ݈ܽܽ	|	݀݁ݒ݁݅ܿݎ݁݌	݉ݎሼ݈ܽܽݎܲ
ൌ ோି݁ܣ ఒሺওሻ⁄  

(2)

 
where ܴ stands for the distance between the cell of 
the target (true or dummy) and the cell, in which the 
sensor is located, and ߣሺওሻ is the sensor’s sensitivity. 

Equation (2) forms a basis for the calculation of 
the probability 
 
௦ሺ௖೔ሻୀଵ݌
௦௘௡௦௢௥ ሺ݆, ݇, ሻݐ ൌ  

  ൟݐ	݁݉݅ݐ	ݐܽ	௜ܿ	݊݅	ݐ݁݃ݎܽݐ	݁ݑݎݐ	ݏ݂݁݅݅ݐ݊݁݀݅	൛ও௞൫८௝൯ݎܲ
 

where ও௞൫८௝൯ is a sensor of type ݇  installed on the ݆ th 
agent ८௝ and scanning the cell ܿ௜ at time ݐ. This 
calculation is as follows.  

According to the Bayesian approach, the states 
,ሺܿݏ  are estimated based on ݐ ሻ of the cells ܿ at timeݐ
information read by the sensor as follows. Denote by 
,ሺܿ௜ݏ̃  the signal received by the sensor (more	ሻݐ
precisely: by the sensor ও௞൫८௝൯ of the agent ८௝) at time 
 ݐ Since in the considered scenario, the cell ܿ௜ at time .ݐ
can be either occupied (ݏሺܿ௜, ሻݐ ൌ 1) or not (ݏሺܿ௜, ሻݐ ൌ
0), we say that ̃ݏሺܿ௜, ሻݐ ൌ 1 if the sensor receives 
information that ܿ௜ is occupied and ̃ݏሺܿ௜, ሻݐ ൌ 0 
otherwise. Then, the state probabilities of the cell ܿ௜ are: 
 

,ሺܿ௜ݏሼݎܲ ሻݐ ൌ 1	| ,ሺܿ௜ݏ̃ ሻݐ ൌ 1ሽ ൌ 
,ሺܿ௜ݏሼݎܲ ݐ െ 1ሻ ൌ 1ሽ ∙ ,ሺܿ௜ݏ൛̃ݎܲ ሻݐ ൌ ,ሺܿ௜ݏ│1 ሻݐ ൌ 1ൟ

∑ ,ሺܿ௜ݏሼݎܲ ݐ െ 1ሻሽ ∙ ,ሺܿ௜ݏ൛̃ݎܲ ሻݐ ൌ ,ሺܿ௜ݏ│1 ሻൟ௦ሺ௖೔ሻݐ

, (3)

,ሺܿ௜ݏሼݎܲ ሻݐ ൌ 1	| ,ሺܿ௜ݏ̃ ሻݐ ൌ 0ሽ ൌ 
,ሺܿ௜ݏሼݎܲ ݐ െ 1ሻ ൌ 1ሽ ∙ ,ሺܿ௜ݏ൛̃ݎܲ ሻݐ ൌ ,ሺܿ௜ݏ│0 ሻݐ ൌ 1ൟ

∑ ,ሺܿ௜ݏሼݎܲ ݐ െ 1ሻሽ ∙ ,ሺܿ௜ݏ൛̃ݎܲ ሻݐ ൌ ,ሺܿ௜ݏ│0 ሻൟ௦ሺ௖೔ሻݐ

. 
(4)

 
These equations define the updating of the 
probabilities map using new observations. 

In addition, the signals received by the sensors can 
be true or false alarms. Denote the positive alarm 
received from the cell ܿ௜ by ෤ܽሺܿ௜ሻ ൌ 1 and negative 
alarm receives by the cell ܿ௜ by ෤ܽሺܿ௜ሻ ൌ 0. Alarm 
෤ܽሺܿ௜ሻ ൌ 1 means, truly or not, that the cell ܿ௜ is 
occupied, and alarm ෤ܽሺܿ௜ሻ ൌ 0 means, truly or not, 
that the cell ܿ௜ is empty. 

Using the probability of receiving such alarms 
defined equation (2), from the equations (3) and (4) 
we obtain: 

,ሺܿ௜ݏሼݎܲ ሻݐ ൌ 1 | ,ሺܿ௜ݏ̃ ሻݐ ൌ 1ሽ ൌ 

,ሺܿ௜ݏሼݎܲ ݐ െ 1ሻ ൌ 1ሽ ∙ ൛ݎܲ ෤ܽሺܿ௜, ሻݐ ൌ ,ሺܿ௜ݏ│1 ሻݐ ൌ 1ൟ ∙ ݁ܣ
ି ோ
ఒሺওሻ

∑ ,ሺܿ௜ݏሼݎܲ ݐ െ 1ሻሽ ∙ ൛ݎܲ ෤ܽሺܿ௜, ሻݐ ൌ ,ሺܿ௜ݏ│1 ሻൟݐ ∙ ݁ܣ
ି ோ
ఒሺওሻ

௦ሺ௖೔,௧ିଵሻ

, (5)

,ሺܿ௜ݏሼݎܲ ሻݐ ൌ 1 | ,ሺܿ௜ݏ̃ ሻݐ ൌ 0ሽ ൌ 

,ሺܿ௜ݏሼݎܲ ݐ െ 1ሻ ൌ 1ሽ ∙ ൬1 െ ൛ݎܲ ෤ܽሺܿ௜, ሻݐ ൌ ,ሺܿ௜ݏ│1 ሻݐ ൌ 1ൟ ∙ ݁ܣ
ି ோ
ఒሺওሻ൰

∑ ,ሺܿ௜ݏሼݎܲ ݐ െ 1ሻሽ ∙ ൬1 െ ൛ݎܲ ෤ܽሺܿ௜, ሻݐ ൌ ,ሺܿ௜ݏ│1 ሻൟݐ ∙ ݁ܣ
ି ோ
ఒሺওሻ൰௦ሺ௖೔,௧ିଵሻ

. 
(6)

 
These equations allow calculating the occupation 

probabilities at each time ݐ, given the probabilities at 
the previous time ݐ െ 1 and the information obtained 
by the sensors at time ݐ. At the initial time ݐ ൌ 1, the 
probabilities are defined based on topographic data 
and prior information or, in the worst case, can be 
specified by a uniform distribution of the occupancy 
grid. 

4 SENSORS FUSION 

As indicated above, it is assumed that each mobile 
agent ८௝ is equipped with several sensors ও௞൫८௝൯ of 
different types of ݇, and each sensor obtains 
information from the cell ܿ௜ independently. Then, 
sensors fusion allows filtering the events resulting in 
false alarms and increasing the quality of detecting 
real targets. 

In the framework of the occupancy grid, sensor 
fusion is conducted as follows. Consider two sensors 
ওଵ ൌ ও௞భ൫८௝൯ and ওଶ ൌ ও௞మ൫८௝൯ of the type ݇ଵ and 
݇ଶ, respectively, installed at the same agent ८௝. The 
signals received by these sensors denote by ̃ݏଵሺܿ௜,  ሻݐ
and ̃ݏଶሺܿ௜,  ሻ. Using these signals, the probability thatݐ
the state ݏሺܿ௜, ,ሺܿ௜ݏ is ݐ ሻ of the cell ܿ௜ at timeݐ ሻݐ ൌ 1 
is defined as follows: 
 

,ሺܿ௜ݏሼݎܲ ሻݐ ൌ 1 | ,ଵሺܿ௜ݏ̃ ሻݐ ൌ 1, ,ଶሺܿ௜ݏ̃ ሻݐ ൌ 1ሽ ൌ 
௉௥൛௦̃మሺ௖೔,௧ሻୀଵ│௦ሺ௖೔,௧ሻୀଵൟ∙௉௥ሼ௦ሺ௖೔,௧ሻୀଵ|	௦̃భሺ௖೔,௧ሻୀଵሽ

∑ ௉௥൛௦̃మሺ௖೔,௧ሻୀଵ│௦ሺ௖೔,௧ሻൟ∙௉௥ሼ௦ሺ௖೔,௧ሻ|	௦̃భሺ௖೔,௧ሻୀଵሽೞ൫೎೔,೟షభ൯
. (7) 

 
If the agent ८୨ is equipped with independent 

sensors ওଵ ൌ ওଵ൫८௝൯, ওଶ ൌ ওଶ൫८௝൯, …, ও௠ ൌ ও௠൫८௝൯ 
that perceive completely different types of signals, for 
example, light, sound, ultrasound, and so far, then the 
probability that the agent ८௝ on which these sensors 
are installed detects the target in the cell ܿ௜ is 
 

௦ሺ௖೔ሻୀଵ݌
௔௚௘௡௧ ሺ݆, ሻݐ ൌ

∏ ௉ೖ
೘
ೖసభ

∏ ௉ೖ
೘
ೖసభ ା∏ ሺଵି௉ೖሻ

೘
ೖసభ

, (8)

 
where ௞ܲ ൌ ௦ሺ௖೔ሻୀଵ݌

௦௘௡௦௢௥ ሺ݆, ݇, ሻݐ ൌ ,ሺܿ௜ݏሼݎܲ ሻݐ ൌ 1ሽ is the 
probability defined by equations (5) and (6). 
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The presented equation is based on the approach 
known as “independent opinion pool” under the 
assumption that the sensors are independent and that 
their reliabilities and accuracies are equivalent. 

By the same manner can be fused the sensors 
installed on different agents that result in global 
probability. 
 

௦ሺ௖೔ሻୀଵ݌
௚௟௢௕௔௟ ሺݐሻ ൌ 

∏ ௣
ೞ൫೎೔൯సభ
ೌ೒೐೙೟ ሺ௝,௧ሻ೗

ೕసభ

∏ ௣
ೞ൫೎೔൯సభ
ೌ೒೐೙೟ ሺ௝,௧ሻ೗

ೕసభ ା∏ ൭ଵି௣
ೞ൫೎೔൯సభ
ೌ೒೐೙೟ ሺ௝,௧ሻ൱೗

ೕసభ

. 
(9)

 
As a result, over the cells ܿ௜, ݅ ൌ 1,2, … , ݊, the 

probabilities ݌௦ሺ௖೔ሻୀଵ
௦௘௡௦௢௥ ሺ݆, ݇,  ሻ form the sensorݐ

probabilities map for each sensor ও௞൫८௝൯ of the agent 
८௝. The map is obtained by real-time updating of the 

sensor's probabilities. The probabilities ݌௦ሺ௖೔ሻୀଵ
௔௚௘௡௧ ሺ݆,  ሻݐ

form the agent ८௝ probabilities map, and the 

probabilities ݌௦ሺ௖೔ሻୀଵ
௚௟௢௕௔௟ ሺݐሻ form the global probability 

map. 
An example of a global probabilities map is 

depicted in Figure 2. Dark color represents a higher 
probability for target location. 

 

Figure 2: Global probabilities map example. 

5 PROBLEM FORMULATION 

Now we are ready to formulate the considered 
problem of search in the exact terms. As indicated in 
the introduction, the goal is to define the trajectories 
of the agents such that they detect the targets in 
minimal time. 

In general, such a problem can be considered from 
two different directions: 
1. The agents have to detect the targets and to reach 

them. The search is terminated when all the targets 
have been reached. In other words, the problem is 

considered as the path-planning problem widely 
accepted in the considerations of a search for 
moving targets (Kagan & Ben-Gal, 2015). 

2. The agents have to allocate the targets without 
reaching them. The search process is terminated 
when the positions of all the targets were achieved. 
Such formulation follows classical considerations 
of the search and screening problem that result in 
the distribution of search efforts over the domain 
(Stone, 1975). 

Below, we focus on the first formulation. In this 
scenario, the step of the search process is outlined as 
follows. 
1. At time ݐ, the agent ८௝ is located in the cell ܿሺݐሻ 

and percepts the signals (that receives true and 
false alarms) from the cells, in which the targets 
can be located. The quality of sense depends on the 
sensitivities ߣ of the agent’s sensors ও௞൫८௝൯ and 
the distances ܴሺܿሺݐሻ, ܿ௜ሻ between the agent’s cell 
ܿሺݐሻ and the cells ܿ௜, from which the alarms are 
sent. 

2. After receiving the signals, the sensor probability 
maps ݌௦ሺ௖೔ሻୀଵ

௦௘௡௦௢௥ ሺ݆, ݇, ݅ ,ሻݐ ൌ 1,2, … , ݊, are updated. 
3. The resulting sensor probability maps are 

combined into the agent’s probability map 
௦ሺ௖೔ሻୀଵ݌
௔௚௘௡௧ ሺ݆, ݅ ,ሻݐ ൌ 1,2, … , ݊. 

4. Following the considered control algorithms, there 
are three possible scenarios: 
4.1. If the agents act independently without 
communication, the further decision about the next 
step is obtained, based on the agent’s probability 
map ݌௦ሺ௖೔ሻୀଵ

௔௚௘௡௧ ሺ݆, ݅ ,ሻݐ ൌ 1,2, … , ݊. 

4.2. If the agents can communicate, they can 
share their maps with the other agents. In the case 
of complete information sharing, each agent 
creates a global probability map ݌௦ሺ௖೔ሻୀଵ

௚௟௢௕௔௟ ሺݐሻ, ݅ ൌ
1,2, … , ݊, and makes a decision basing on this 
map. 
4.3. Otherwise, following partial maps obtained 
from the other agents, the agent creates a local 
probability map and makes a decision using this 
map. 

Thus, the problem consists of two questions: 
1. What kind of communication (complete 

information sharing, partial information sharing, or 
independent activity) is better? 

2. Given the probability map (global, partial or 
individual), how the agent should choose its next 
location? 

In addition, we can allow the updating of the sensors' 
sensitivity ߣ that allows decreasing the influence of 
false alarms. 
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6 SEARCH POLICIES 

Let us start with the scenario in which the agents can 
share complete information. In this case, at each time 
 ሻ and theݐeach agent ८௝ is aware of its location ܿሺ ݐ

probability map ݌௦ሺ௖೔ሻୀଵ
௔௚௘௡௧ ሺ݆,  ሻ, and about the globalݐ

probability map ݌௦ሺ௖೔ሻୀଵ
௚௟௢௕௔௟ ሺݐሻ, ݅ ൌ 1,2, … , ݊. 

Since for each cell in the grid (except boundary 
cells) the agent has 9 possibilities: to stay in the 
current cell or make a step to one of 8 neighboring 
cells, the agent’s goal is to choose a possibility such 
that it results in reaching the targets in minimum time. 

The most information about the targets’ locations 
is provided by the global probability map, and the 
agent decides to move toward the highest probability 
௦ሺ௖೔ሻୀଵ݌
௚௟௢௕௔௟ ሺݐሻ, ݅ ൌ 1,2, … , ݊. In addition, since the 

movements’ time is equivalent to the distance that the 
agent moved, the agents’ choice should minimize this 
distance. The simplest implementation of these two 
assumptions is: 
 

ܿሺݐ ൅ 1ሻ ൌ 

argmax
௜ୀଵ,…,௡

ቄ݌௦ሺ௖೔ሻୀଵ
௚௟௢௕௔௟ ሺݐሻ ܴሺܿሺݐሻ, ܿ௜ሻൗ ቅ, (10)

 
where ܴሺܿሺݐሻ, ܿ௜ሻ is the distance between the current 
cell ܿሺݐሻ occupied by the agent and the cell ܿ௜. 

The usage of a global probability map with 
reasonable search policy, for example – with the 
policy defined by equation (10), provides the best 
results in terms of minimal search time than the usage 
of partial or individual probability maps. However, 
the usage of a global probability map requires either 
transfer of all available information to a central 
station and then broadcasting it to the agents or 
transfer of all information to each agent and 
processing it by the on-board computer. Obviously, 
both options are rather problematic. 

In order to decrease the quantity of transferred 
information and of the computations, instead of a 
global probability map, the partial or individual maps 
can be used. In the first scenario, we assume that the 
agent shares only those positions of the cells in which 
the probabilities of detecting the targets are relatively 
high. Such a technique allows decreasing uncertainty 
in target locations and excluding some of the false 
alarms. Formally, such sharing is implemented as 
follows. The data are transferred among the sensors 
ও௞൫८௝൯ of the same type installed on different agents 
८௝, ݆ ൌ 1,2, . . , ݉, and for this type ݇ the threshold 
probability ௞ܲ

∗ is specified. Over the agents we find 
 

௦ሺ௖೔ሻୀଵ݌
௠௔௫ ሺ݇, ሻݐ ൌ 

max
௝ୀଵ,…,௠

൛݌௦ሺ௖೔ሻୀଵ
௦௘௡௦௢௥ ሺ݆, ݇, ሻൟ, (11)ݐ

 
and if ݌௦ሺ௖೔ሻୀଵ

௠௔௫ ሺ݇, ሻݐ ൐ ௞ܲ
∗, then the for each agent ८௝ 

the probability ݌௦ሺ௖೔ሻୀଵ
௦௘௡௦௢௥ ሺ݆, ݇,  ሻ of the sensor of theݐ

type ݇ is updated by: 
 

௦ሺ௖೔ሻୀଵ݌
௦௘௡௦௢௥ሺ݆, ݇, ሻݐ ൌ 

௣ೞ൫೎೔൯సభ
೘ೌೣ ሺ௞,௧ሻ	∙	௣ೞ൫೎೔൯సభ

ೞ೐೙ೞ೚ೝ ሺ௝,௞,௧ሻ

௣ೞ൫೎೔൯సభ
೘ೌೣ ሺ௞,௧ሻ ∙ ௣ೞ൫೎೔൯సభ

ೞ೐೙ೞ೚ೝ ሺ௝,௞,௧ሻାቆଵି௣ೞ൫೎೔൯సభ
೘ೌೣ ሺ௞,௧ሻቇ∙ቆଵି௣ೞ൫೎೔൯సభ

ೞ೐೙ೞ೚ೝ ሺ௝,௞,௧ሻቇ
. (12)

 
Such partial data sharing enhances the agent 

probability map that allows better decisions even 
using the simples rule defined by equation (10). 

Finally, the same decision rule (10) was applied to 
the individual agent’s probability map ݌௦ሺ௖೔ሻୀଵ

௔௚௘௡௧ ሺ݆,  ,ሻݐ
݅ ൌ 1,2, … , ݊. Such maps are created individually by 
each agent and do not require communication 
between the agents.  Since such a scenario does not 
imply information transfer and so is based on 
decisions made using restricted data, it leads to the 
longer search time. 

7 SIMULATION RESULTS 

The indicated three scenarios were studied by 
numerical simulations. The methods and algorithms 
were implemented using basic tools of the Python 
programming language and the trials were run on 
regular PC Intel I5 8265U. 

In the simulations, the search is conducted over 
the gridded domain of the size 80 ൈ 80 cells and both 
searchers and the targets can occupy one cell. In the 
illustrations below, we consider the group of 3 agents 
searching for 3 targets. Each agent is equipped with 
the sensors of 2 types. The starting positions of the 
searchers are: ሺ5, 5ሻ, ሺ8, 8ሻ and ሺ62, 62ሻ, and the 
locations of the targets are: ሺ65, 76ሻ, ሺ75, 70ሻ and 
ሺ75, 78ሻ. 

In order to obtain the lower bound of search time, 
we consider the scenario in which all the agents have 
complete information about the targets’ locations and 
move directly toward the targets. In this case, the 
overall search time by three agents is ௠ܶ௜௡ ൌ 158. 
Since this is the minimal possible time of the agents’ 
motion toward the targets, the other search scenarios 
were compared with this time ௠ܶ௜௡. 

In the first series of simulations, we considered 
the search with constant sensors’ sensitivity ߣሺওሻ ൌ
20 and different ratios of false alarms. The 
implemented threshold probability is ௞ܲ

∗ ൌ 0.75 for 
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each type ݇ of the sensors. The results of the 
simulations are summarized in Table 1. 

Table 1: Search time in different scenarios with respect to 
the frequency of false alarms. 

False 
alarms 

per time 
unit 

Search time 

Lower 
bound 

Global 
map 

Partial 
data 

sharing 

Individual 
maps 

800	 158	 166 185	 225
1600	 158	 188 202	 321
3200	 158	 229 274	 361

 
It is seen that, as it was expected, the best results 

are provided using the global probability map. In this 
case, the time of search is greater than its lower bound 
only in 5% (for 800 false alarms per time unit), 19% 
(for 1600 false alarms per time unit), and 45% (for 
3200 false alarms). 

The worthier results are obtained by the search with 
partial information sharing. In this case, the time of 
search is greater than its lower bound in 17% (for 800 
false alarms per time unit), 28% (for 1600 false alarms 
per time unit), and 73% (for 3200 false alarms). 

Finally, the worst results were obtained in the 
search with the use of individual probability maps 
without information sharing. In this case, the time of 
search is greater than its lower bound in 42% (for 800 
false alarms per time unit), in 103% (for 1600 false 
alarms per time unit), and in 128% (for 3200 false 
alarms). 

In all the scenarios, the increasing of search time 
with the frequency of false alarms represents the 
reaction of the agents to the greater uncertainty in the 
data about the targets’ locations. 

In the other series of simulations with the same 
agents, we considered the dependence of search time 
on the threshold probability ௞ܲ

∗ in the scenarios with 
partial information sharing between the agents. The 
resulting dependence is shown in Figure 3. 

In the figure, it is seen that the minimal time is 
reached for the threshold's probability ௞ܲ

∗ ൌ 0.75 (it 
was used in the above-described simulations). Notice 
that for the values ௞ܲ

∗ ൐ 0.75, the search time 
increases exponentially, while for the probabilities 

௞ܲ
∗ ൏ 0.75 the time increasing is very slow and is 

close to linear. 
Thus, the value of optimal threshold probability 

௞ܲ
∗ is crucial for a search by the group of cooperating 

agents and can completely change the search results. 
However, in this paper, we do not address this 
optimization problem and will define the probability 

௞ܲ
∗ heuristically based on the convexity of the 

dependence of search time on this probability. 

 

Figure 3: Dependence of the search time ܶ on the threshold 
probability ௞ܲ

∗. 

8 SENSORS WITH VARYING 
SENSITIVITY 

In the next simulations, we considered the dependence 
of search time on the sensors’ sensitivity ߣሺওሻ on the 
search time ܶ.  

The greater sensitivity sensors enable to detect 
more targets on greater distances from the agent. 
However, more sensitive sensors are more expensive 
and require more energy. In the case of active sensors, 
the greater sensitivity also requires broadcasting 
stronger signals that, especially for the military 
robots, is not always possible. 

Thus, in certain missions, the agents can be 
equipped not with the best but with cheaper sufficient 
sensors, that requires an exact definition of the 
dependence of the search time ܶ on the sensitivity 
 ሺওሻ. The resulting dependence obtained in numericalߣ
simulations is shown in Figure 4. 

 

Figure 4: Dependence of the search time ܶ on the sensors’ 
sensitivity ߣሺওሻ. 

It is seen that the search time ܶ decreases 
exponentially with the sensors’ sensitivity ߣሺওሻ such 
that for the values ߣሺওሻ ൐ 10 the greater sensitivity 
has a minimal influence on the search time. That 
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allows choosing the sensors with the sensitivity 
 .ሺওሻ~10 without loss of the search efficiencyߣ

Finally, let us consider the real-time update of the 
sensors’ sensitivity. Such updating enables tuning the 
sensitivity with respect to the updates of the 
probability map. Sensitivity updating is conducted as 
follows. 

Recall (see equation 11) that ݌௦ሺ௖೔ሻୀଵ
௠௔௫ ሺ݇,  ሻ standsݐ

for maximum probability (over the agents) of 
detecting the target at time ݐ by the sensor of type k. 
Denote by ௨ܲ

௞ and by 	 ௟ܲ
௞, respectively, the upper and 

the lower threshold probabilities. Then with respect 
to these probabilities, the sensors’ sensitivity ߣ௧ାଵሺওሻ 
at time ݐ ൅ 1 obtains the following value: 
 

௧ାଵሺওሻߣ ൌ 

൞

ߙ ∙ ௦ሺ௖೔ሻୀଵ݌	݂݅				௧ሺওሻߣ
௠௔௫ ሺ݇, ሻݐ ൑ ௟ܲ

௞,											

	݂݅										௧ሺওሻߣ ௟ܲ
௞ ൑ ௦ሺ௖೔ሻୀଵ݌

௠௔௫ ሺ݇, ሻݐ ൑ ௨ܲ
௞,

௧ሺওሻߣ ⁄ߙ ௦ሺ௖೔ሻୀଵ݌	݂݅				
௠௔௫ ሺ݇, ሻݐ ൒ ௨ܲ

௞,											

 
(13)

 
where ߙ ൒ 1 is an updating coefficient. 

The presented sensitivity updating allows 
improvement of the search time. The results of 
simulated search scenarios are summarized in Table 2. 

Table 2: Search time in different scenarios with respect to 
the sensors’ sensitivity. 

Sensors’ 
sensitivity 

Search time 

Lower 
bound 

Global 
map 

Partial 
data 

sharing 

Individual 
maps 

const 
ߣ		 ൌ 20	 158	 229	 274	 361

ߙ ൌ 1.05	 158	 195	 209	 280
ߙ ൌ 1.10	 158	 191	 195	 220
ߙ ൌ 1.20 158 178 182 200 

 
Here all the scenarios were simulated with 3200 

false alarms are created per time unit; for the other false 
alarm frequencies, the results follow the same tends. 

The obtained results support the expectation that 
greater sensitivity results in shorter search time and 
demonstrate the effectiveness of dynamic sensitivity 
tuning. 

9 CONCLUSIONS 

In the paper, we considered a probabilistic search for 
multiple static targets by a group of agents acting in 
the gridded domain. In opposite to most of the known 
algorithms, we considered both false positive and false 
negative detection errors. 

For both types of errors, we considered three 
levels of communication and information sharing: 

- complete information sharing (the agents share 
complete probability maps available to each of 
them); 

- partial information sharing (the agents share 
the most robust parts of the available 
probability maps); 

- no information sharing (the agents act using 
their own probability map). 

In addition, in these scenarios, we assumed either 
constant or varying sensors’ sensitivity that can be 
changed online with respect to the target location 
probabilities. 

For the indicated scenarios, we developed new 
models of decision making, sensor fusion and 
information sharing. These models are simple enough 
for practical implementation but, at the same time, 
completely represent the data and control flows in the 
system and include the processing of false positive 
and false negative detection errors. 

The developed models were implemented in the 
Python software that was used in the simulations. The 
simulations show that, as it was expected, the shortest 
search times were demonstrated by the groups of 
agents with complete information sharing and the 
longest search times – by the groups without 
information sharing. Partial information sharing 
results in the intermediate time searches. 

The online tuning of the sensors’ sensitivity 
allows shorting the search times in all three 
considered cases of information sharing; however, the 
influence of the levels of information sharing still the 
same. 

The future research will address the problem of 
building the probability maps, or, in other words, the 
problem of detecting the targets without reaching 
them in the grid. In this task, the movements of the 
agents are governed by the expected information gain 
for the targets’ locations and by their visibility, rather 
than by detection probabilities. The results of this 
research will complete the model and will allow using 
the same terms at all the stages of the search process. 
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