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Abstract: Technical advances in Information and Communication Technology have enabled the collection and storage 
of large amounts of data, rising hopes of improving asset decision-making and related building management 
support systems. It appears however that the gap between the required decision-making knowledge and the 
actual useful information provided by current technologies appears to increase, rather than contract. Thus, 
often the multitude of patterns afforded by current data analytics techniques does not deliver a set of scenarios 
prone to effective decision making. This paper advocates a decision analytics solution featuring the use of 
Situated Logic to create ‘narratives’ providing adequate meaning to data analytics results, and the use of 
Channel Theory so as to support adequate situational awareness. This approach is also analysed in the context 
of a Building Management System-of-Systems paradigm, highly relevant to the emerging complex Clusters 
of Intelligent Buildings within Smart Cities, featuring collaborative decision-making centres and their 
associated decision support systems. 

1 INTRODUCTION 

Building information models (BIMs) are files 
typically containing proprietary formats and data 
which can be extracted, exchanged or networked to 
support decision-making within a Building 
Management System (BMS) for a built asset (Van 
Nederveen & Tolman, 1992). 

BIM can be used to enhance building decision 
making (Nowak, Ksiazek, Draps, & Zawistowski, 
2016), to coordinate projects (Rokoeei, 2015) and 
deliver sustainable building value (Fadeyi, 2017). 

BIMs have an important role in reducing the 
fragmentation among professionals at each stage and 
across building delivery stages by providing a virtual 
repository that allows easy access to- and sharing of 
information and knowledge in real time. Thus, BIM 
also enhances interoperability, providing a platform 
for professionals to work in an integrated 
environment at any stage of the building delivery 
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process and further on in the management phase 
within BMS (Santos, 2009).  
Although traditionally focused more on the short term 
and real-time operation, BIMs and BMS are 
increasingly required to assist in medium- and long 
term asset planning, especially in the case of 
Intelligent Building Clusters in Smart Cities (Zhang 
et al., 2018). The scope of the models is also expected 
to expand from mainly energy consumption to all 
aspects of asset management so as to provide a 
holistic and integrated view (Teliceanu, Golovanov, 
Lazaroiu, & Dumbrava, 2017; Wei & Zhu, 2016). It 
must also be noted that nowadays, due to the 
increased complexity brought by numbers and variety 
of controlled parameters, BMS are increasingly 
taking on hybrid agent features, featuring human and 
machine components, beyond mere Human Machine 
Interface (HMI) within the BMS ‘head end’ (Forte 
Asset Services, 2019). All of the above endeavours 
essentially depend on the quality and relevant content 
of the information obtained from the collected data. 
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Thus, Big Data (Li, Zhang, Hu, & 17., 2017), the 
Liquid Enterprise (Bayler, 2016), Sensing 
Information Systems (Zdravković, Noran, & 
Trajanović, 2014) and similar concepts hold the 
promise to provide all necessary decision-making 
information for building management in the adequate 
detail, quality and ‘freshness’ required. Conceptually, 
this endeavour comprises achieving the necessary 
capabilities to use the data to derive decision-making 
information in an efficient and effective manner, 
based on inferring knowledge that was not available 
(and attainable) before; nowadays, this assumes the 
presence and support of suitable data analytics.  

The degree of success in supporting decision-
making heavily depends on proper data synthesis and 
interpretation (Dibb, Meadows, & Wilson, 2015). 
Thus, proper data analytics will effectively support 
decision analytics. 

It is also becoming clear that finding new ways to 
correctly interpret complex data in context is 
necessary (SAS, 2015). For example, evidence-based 
medicine that relies on large scale data gathering 
through clinical trials and careful statistical analysis 
is now showing difficulties when the evidence 
gathered is applied in complex individual cases 
(Greenhalgh, Howick, & Maskrey, 2014; Pope, 
2003). 

From the above, an obvious perspective is that 
when intending to use large amounts of gathered data 
to create useful decision-making information, one 
must carefully consider the information needs of the 
intended audience (e.g. management) and 
importantly, how the interpretation of data is 
influenced by context.  

This paper intends to analyse the barriers in using 
data warehousing and big data approaches for BIM in 
order to support proper decision analytics manifested 
in effective decision-making within BMS. 

2 DATA TO INFORMATION: 
CONCEPTS AND 
APPROACHES 

2.1 Building Management Systems and 
Their Information Needs 

Initially limited to operational and real time, Building 
Management Systems nowadays increasingly need to 
also make decisions on strategic and tactical levels. 
This endeavour can be reasoned about in relation to 
the information flow, usage and needs, and optimised 
using various types of models. In the following, the 

authors will use an example of mainstream systematic 
model of decision-making, namely the GRAI Grid 
(Doumeingts, Vallespir, & Chen, 2003) (see Fig. 1). 
Fundamentally, this generic model identifies 
management, command and control tasks at various 
levels (identified via time spans called ‘horizons’) 
and the information flow between them. 

The exogenous and endogenous information 
flows feeding the Manage, Command and Control 
centre in Fig. 1 illustrate the point that in order to 
make successful decisions it is necessary to satisfy the 
information needs of the management functions.  

 
Figure 1: Information flows in a  Basic mainstream decision 
making model: GRAI Grid (Doumeingts, Vallespir, & 
Chen, 2003). 

This means that the data gathered and analysed 
must be meaningful, properly aggregated (level of 
detail) and suitably expressed in order to meet the 
demands and competencies of each audience 
populating the decision centres at various horizons.  

This is not a trivial task. To justify this point the 
authors refer to two main approaches to data 
analytics, namely data warehousing and big data. 

2.2 Data Warehousing and Big Data 

The concept of Data warehousing is relying on high 
quality clean and integrated data to enable the use of 
operational databases and other data repositories 
snapshots and build an interface enabling the analysis 
(‘mining’) in order to identify management-relevant 
information. Some authors (Inmon, Zachman, & 
Geiger, 1997; Kimball, 1996) argue that such a 
facility could be built fast and in an affordable manner 
using existing databases and possibly transaction logs 
so as to gain management insight (Matte & Rizzi, 
2009; Satyanarayana, Srinivasu, Poorna Rao, & 
Rikkula, 2010). The aim is to create a narrative that 
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is characterising the present or predicted future 
situation and is essential for decision-making. After 
some initial success in creating meaningful insight for 
management, data warehousing displayed some 
notable failures to deliver on its promises (Adelman 
& Moss, 2000).  

‘Big data’ is a technology that uses traditional data 
analysis and machine learning techniques to derive 
useful interpretations based on large and varied data 
sources (Gandomi & Haider, 2015; Marr, 2015). 
Brought forward by the technological advances in 
data gathering (cheaper and more intelligent Internet-
of-Things (IoT)-enabled sensors, cheaper and cloud-
based storage etc.) and initially boasted as the 
solution to the problems where traditionally 
implemented data warehousing fell short, big data is 
still maturing and yet to make significant inroads in 
decision support (Horitaa, de Albuquerquea, 
Marchezinid, & Mendiondoc, 2016; Kościelniaka & 
Putoa, 2015). This is also due  to its inherent 
dependence on machine learning algorithms that 
attempt to predict but cannot adequately explain the 
predictions, which is an essential factor in gaining 
human trust in decision support systems (Wang & 
Benbasat, 2008). 

2.3 Shortcomings of Data Warehousing 
and Big Data 

A first drawback of the two concepts refers to the 
associated methodologies, which do not lay enough 
emphasis on understanding the fundamental 
information needs of the decision maker rather than 
rushing to data collection and interpretation (Seen & 
Sinha, 2005). 

In addition, there is minimal or inexistent 
correlation between internal- and external data 
sources (i.e., connecting the endogenous and the 
exogenous information flows - see Figure 1). 

Further on, insufficient effort is put into realising 
what data is needed for being able to draw useful 
inferences, but is unavailable. Even the recent 
approaches proposing to limit the amount of sensor 
data used in situation assessment (e.g. by switching 
on- or off additional pre-stored sensor data sources) 
is in fact relying on the command and control to 
pinpoint what data should be taken into account to 
possibly change the narrative. 

If the above deficiency is identified, then the need 
for data that is not available, but is deemed necessary, 
may become the source of additional data collection 
tasks; however, this can inadvertently result in poor 
data quality ((Hazen, Boone, Ezell, & Jones-Farme, 
2014; SAS, 2015)).  

Another issue is the limited progress in 
transforming existing building management 
processes to produce the necessary data as a by-
product of the production (or service delivery) 
process, instead of requiring additional data entry 
(Hazen et al., 2014) (a main source of data quality 
issues as shown above). 

There has been a tendency to disregard the 
collected data context (Corrigan, 2007), thus creating 
the danger of situation mis-identification without 
even being aware of having committed this mistake 
(Santanilla, Zhang, Althouse, & Ayers, 2014). 

Another important aspect is the typical reliance of 
big data technology on machine learning techniques 
producing models whose uncertainty cannot be 
adequately assessed and whose predictions cannot be 
adequately explained (Kendall & Gal, 2017).  

To conclude, the main shortcomings found are: 
- On each decision-making level, one must correlate 

internal and external data. 
- With the opportunity to collect and access very large 

amounts of building–related data, the typically low 
density of useful content (Li et al., 2017) makes it 
difficult to identify patterns that are useful for 
decision making (too many patterns identifiable by 
algorithms) – unless one uses heuristics (i.e., the 
result of prior learning) to discern what is relevant 
(note that the measure of relevance may change in 
time and with the current interpretation of data). 

3 BUILDING INFORMATION 
MODELS FOR EFFECTIVE 
DECISIONS 

3.1 The OODA Loop as an Activity 
Network 

The tasks that appear in each type and level of 
decision-making and the feedback that can be used to 
inform the filters used to selectively observe reality 
might be studied using a model that explains how 
successful decisions are made. This model is part of 
the Observe, Orient, Decide and Act (OODA) Loop 
devised by John Boyd (Osinga, 2006).  

Although some authors such as Benson & Rotkoff 
(2011) understand OODA to be a strict sequence of 
tasks, this is in fact not true due to the feedback links 
inside the high level ‘loop-like’ structure that are 
responsible for learning and for decisions about the 
kind of filters necessary. Thus, OODA is in fact an 
activity network featuring rich information flows 
among its activities and the environment. 

Situation-aware Building Information Models for Next Generation Building Management Systems

77



A brief review of Boyd’s OODA concept can be 
used to highlight potential development directions for 
data warehousing and/or big data methodology for 
decision support. Thus, decisions can be made by the 
management / command & control system of a BMS, 
in any domain of action and on any level or horizon 
of management (i.e., strategic, tactical, operational 
and real-time, performing four interdependent tasks. 
The tasks that appear in each type and level of 
decision-making and the feedback that can be used to 
inform the filters used to selectively observe reality 
may be studied using a model that explains how 
successful decisions are made.  

Note that this ‘loop’ is often misunderstood to be 
a strict sequence of tasks (Benson & Rotkoff, 2011). 
OODA is not a strict loop, due to the feedback links 
inside the high level ‘loop-like’ structure that are 
responsible for learning and for decisions about the 
kind of filters necessary. Thus, in fact it is actually an 
activity network featuring rich information flows 
among the OODA activities and the environment. 

This learning has the potential to result in 
decisions that also emphasize relevant gaps and thus 
initiate capability improvement efforts. Self-reflective 
management typically engages in such learning, 
comparing the behaviour of the external world and its 
requirements on the system (the future predicted 
action space) with the action space of the current 
system (including the current system’s ability to 
sense, orient, decide and act). Note that here, the term 
‘action space’ describes the set of possible outcomes 

reachable using the system’s current resources 
(technical, human, information and financial). 

The learning loop is in itself an OODA loop 
analogous to the one discussed above, although the 
ingredients are different and closely associated with 
strategic management (see Figure 2). Thus the 
OODA-style questions are in this case: a) what to 
observe, b) how to orient to become situation-aware 
and c) what is guiding the decision about what to do 
(within constraints, decision variables and possible 
actions) so as to be able to act. The action space of 
this strategic loop consists of transformational actions 
(company re-missioning, change of identity, business 
model change, capability development, complete 
metamorphosis, etc.).  
Strategic self-reflection compares the current 
capabilities of the system to desired future 
capabilities, enabling management to decide whether 
the change will affect the system’s capabilities 
(including decision making capabilities), the system’s 
identity (re-missioning), or both. Note that the 
management may also decide to instead 
decommission that part of the system due to its 
inability to fully perform the system’s mission.  

Such transformations are typically implemented 
using a separate programme or project using a similar 
suitable iterative paradigm, such as the so-called 
Plan-Do-Check-Act (PDCA) loop (Lawson, 2006), 
possibly in a recursive manner (Schmidt, Elezi, 
Tommelein, & Lindemann, 2014) e.g. for complexity 
control. 

 

Figure 2: Extended OODA Loop as an activity network (based on (Fadok, Boyd, & Warden, 1995)) featuring additional 
Learning and Narratives Loops. 
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3.2 Consequences for BMS Decision 
Support based on Data 
Warehousing and Big Data – 
Enabled BIM 

The above analysis implies that ‘big data’ (meaning 
the collective technologies and methods of data 
analysis and predictive analytics) has the potential to 
enable situational awareness (a condition of 
successful action) by delivering a plethora of 
previously unavailable domain-level facts and 
patterns relevant for decision-making. However, this 
data needs to be interpreted, which calls for a theory 
of situations resulting in a narrative of what is being 
identified or predicted. Without such a narrative, 
there is no true situational awareness or trust in the 
system, which can substantially limit the chances of 
effective action. 

It is therefore argued that having the ability to 
gather, store and analyse large amounts of data using 
only algorithms is not a guarantee that the patterns 
thus found in data can be turned into useful and 
trustworthy information that forms the basis of 
effective decision-making, followed by appropriate 
action leading to measurable success. 

Importantly, the process is similar the other way 
around: when interpreting available data, there can be 
multiple fitting narratives; unfortunately, it is quite 
difficult to choose the ‘correct’ one. In this case, 
adequate means of reasoning with incomplete 
information could help articulate a need for new data 
(or new types of data) that can resolve the ambiguity. 

As a result of the above reasoning, the authors 
argue that supporting decision-making based on data 
warehousing using ‘big data’ requires the collection 
of a second level of data. This ‘second level’ is not 
meant to refer to particular facts, but rather to 
underpin the creation of an inventory of situation 
types, containing facts that must be true, facts that 
must be not true, as well as constraints and rules of 
corresponding causes and effects. These situation 
types can be considered models (or model prototypes) 
of the domain, which can be matched against findings 
on the observed data level. 

Note that due to the changing nature of the 
Universe of Discourse, the above-mentioned situation 
types are also expected to evolve; therefore, one 
should not aim to design and / or construct a facility 
that relies on a completely predefined ontology of 
situation types. Rather, there is a need for a capability 
to continuously improve and extend this type of 
knowledge, including the development and learning 
of new types, which are not a specialisation of some 
known type. This is required in order to ensure that 

the ‘world of situations’ remains open, as described 
by Goranson and Cardier (2013). 

In order to achieve adequate situation awareness 
for effective decision making, collected data needs to 
be filtered based on relevance (Li et al., 2017; 
Szafranski, 1995), dictated by the possible situations 
of interest. However, as the current situation is 
typically not unambiguously known and changes as 
data gathered is interpreted, one will have to maintain 
a dynamic  narrative (or set thereof) of the situation, 
which will continually adjust the data needs (Madden, 
2012) as well as what needs to be filtered out, or be 
kept. This constitutes yet another OODA loop, 
applied to the set of narratives involved in the 
interpretation of data for decision making (see 
Narratives Loop in Figure 2). 

4 DESIGN PRINCIPLES FOR 
‘NEXT GENERATION’ BMS 
DECISION MAKING 

On both existing and emergent system levels, 
decision making needs a timely and accurate 
narrative that looks behind the ‘observables’. An 
essential aspect of agile and effective decision 
making (whether on strategic or tactical level) relies 
on the ability of the system in question to create and 
to continually update its situated insight, thus being 
able to deal with uncertainty. 

4.1 First Functional Principle: Employ 
Situated Reasoning 

Consider the following domain-level observations 
within the domain of building energy demand at 
cluster level and its coupling with complex integrated 
energy systems; O1:  some buildings within an 
‘intelligent’ cluster report increased levels of energy 
consumption; O2: occupants of some of the buildings 
within the cluster (some overlap with O1) report 
reduced thermal comfort, O3: there are no reports of 
malfunction. Then, O4: energy consumption goes to 
normal however O5: occupants still complain. Then 
later on, the situation (O1 – O5) repeats itself. 

A domain-level theory could describe energy 
supply-demand rules in complex smart building 
clusters including e.g. energy consumption 
fluctuations depending on various factors.  

While it is possible to build a model of the 
situation, it is quite difficult and computationally 
intensive  to know all the intricacies (in space and 
time) of such complex interconnected systems within 
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the building cluster (Frayssinet et al., 2018). More 
importantly, the information usable to address the 
situation with the right decision is incomplete. 
Therefore, one does not really know what really 
causes the increased energy consumption and thermal 
discomfort in the absence of well-identified 
malfunctions. 

Typically, the Service Entity (SE) attempting to 
address the situation must be able to interpret past 
observed events and build types of situations (the 
candidate interpretations of the events described), 
each with their own logic and constraints. Thus, a 
competent SE would be familiar with a repertoire of 
situation types and their internal logic. The question 
is: which one of these can be used as the correct 
narrative of the observed events in this case? 

The SE can interpret the current situation S based 
on known matching situation types SA – e.g. sensor 
measurement drift (e.g. due to low quality control or 
bugs in embedded software) in some batches and SB, 
e.g. semantic communication problem between 
BMS-es within the cluster. Note that there may be a 
myriad of situation types SN, some being variations of 
a general type. 

The SE’s Decision Suppot Sstem (DSS) can 
employ situated reasoning in order to find out what 
(perhaps very simple) additional fact/s would have to 
be discovered to disambiguate between SA and SB and 
thus be able to act appropriately. 
While such avenues of action may seem rather simple 
for humans, the real issue is the potential automation 
and optimisation of such behaviour in BMS, based on 
interpretation of BIM data. In order to achieve this, 
one needs to employ a second functional princciple. 

4.2 Second Functional Principle: 
Channel Theory for Situation 
Awareness 

If situations are organised in types and their internal 
logic is known (like in the scenario in Section 4.1), 
then there exist possible ‘channels’ through which 
information in one situation type can be transferred 
(possibly in a lossy manner) to another situation type. 

A recently popularised mathematical approach of 
the above is the category theoretic treatment of 
situation theory (Barwise & Perry, 1998; Devlin, 
2003; Goranson & Cardier, 2013). The mechanism 
that allows the two levels (situation theory and 
domain level theory(ies)) to coexist is channel logic 
(Barwise & Seligman, 2008) - according to which, 
given the category of situations representing situation 
types, there is a mapping that regulates the way 

complete lines of reasoning can be ‘transplanted’ 
from one situation type to another. 

This transplanting works as follows: when there 
exists a logic in a known situation type SA and the 
facts suggest that the situation is of a related type SB, 
many (however typically not all) facts and inferences 
should also be valid in type SB (see Figure 3). 

As a result, if we have a known situation of type 
SA with facts supporting this claim, and we only have 
scarce data about another situation type of interest (of 
type SB), channel logic allows us to deduce the need 
for data that can be used to ‘fill in the details’ about 
this second situation of type SB. The resulting 
mapping is a so-called morphism between categories 
and can be implemented using functional 
programming techniques. In Figure 3, this (info-) 
morphism is represented by the double-headed 
arrows shown carrying information (while possibly 
losing some, as previously stated) from one situation 
type to another type to another. 

In the case described in section 4.1, this morphism 
may mean analysing particular sensor manufacturing 
data and/or simulating events on the BMS in question 
while observing the effects (as the original events 
appear to be of a transient and random nature, either 
due to random sensor drift or complex unwanted 
interaction within BMS software or even sensor 
embedded software). 

The practical consequence is that the decision 
maker can use this analogical reasoning to come to 
valid conclusions in an otherwise inaccessible 
domain; should this not be possible, it allows to at 
least narrow down the need for specific data that can 
support a valid conclusion.  

The above also illustrates in a simplified way the 
ability of the situation theoretic logic to infer that for 
decision making, there is a need for specific, but yet 
unavailable data that can disambiguate the 
interpretation of what is known at the time. 

5 CONCLUSIONS AND FURTHER 
WORK 

In the context of the increasing rate of change and the 
resulting flood of data, decisions, even in traditionally 
local and non-time-critical domains such as BMS will 
have increasingly far-reaching consequences and 
need to be promptly made -  often, in real time.  
The work presented in this paper can be used towards 
creating an ongoing situational awareness capability. 
The effective use of ‘proven repertoires’ nowadays 
increasingly depends on their fast, near-automated 
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Figure 3: Simplification of Category Theoretic approach of Situation Theory (Noran & Bernus, 2018). 

deployment, which is traditionally based on human 
tacit skills and knowledge. 

The paper has shown how novel paradigms can 
assist traditional data analytics approaches in order to 
achieve adequate BIM situation awareness and thus 
properly support decision-making within complex 
Building Management Systems-of-Systems. 

Further work will continue to focus on the 
principles underpinning situation theory-based 
decision-making and related supporting technology. 
The results will be used to demonstrate their use in 
complex Building Management Systems-of-Systems 
within clusters of Intelligent Buildings present in the 
emerging Smart City paradigm. 
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