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Abstract: Nowadays, there are many different approaches to detect objects as well as to determine the trajectory of an
object. Each of these approaches has its advantages and disadvantages in terms of real-time use for various
applications. In this study, we propose an approach to detect objects in real-time using the YOLOv3 deep
learning algorithm and plot the trajectory of an object using 2D LIDAR and depth cameras on a robot. The
laser rangefinder allows us to find distances to objects from a certain angle, but does not provide accurate
object detection of the object class. In order to detect the object in real-time and discover the class to which
the object belongs, we formed YOLOv3 deep learning model using transfer learning on several classes from
data sets of publicly accessible images. We also measured the distance to an object using a depth camera with
LIDAR together to determine and estimate the trajectory of objects. In addition, these detected trajectories are
smoothed by polynomial regression. Our experiments in a laboratory environment show that YOLOv3 with
2D LIDAR and depth camera on a controlled robot can be used fairly accurately and efficiently in real-time
situations for the detection of objects and trajectories necessary for various applications.

1 INTRODUCTION

In recent years, the robotization of all spheres of hu-
man activity is gaining momentum. A technologi-
cal breakthrough in robotics and machine learning al-
lows people to build autonomous vehicles and various
robots to work autonomously. Mobile robots typically
focus on solving a wide range of diverse applications
to collect heterogeneous information and to be able to
perform technological operations in extreme environ-
ments. Almost every robot needs input sensors like
a laser scanner (LIDAR) or a camera to perceive the
environment that surrounds it. LIDAR is a device that
measures distances to targets at specific angles and is
used for light detection and ranging. The rapid evo-
lution of the technological level tends to lower the
prices of the various sensors including the 2D and 3D
LIDARs. 2D LIDAR can only estimate the distance
to objects. For this reason, the data that can be ex-
tracted from LIDAR is the only array of ranges to the
objects.
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The main objective of this study is to recognize
the object in the image frame and to estimate its po-
sition to trace the trajectory of the object, which is
supplemented by the use of the Jaguar mobile robot.
The robot is equipped with 2D Hokuyo LIDAR, an IP
camera, a depth camera and a Raspberry Pi, which are
the main components of our system architecture. The
Raspberry Pi will serve as a processor and data trans-
mitter, whose data collected from LIDAR and cam-
eras are sent to the PC via Wi-Fi for further process-
ing (Lu, 2018). In this study, we propose the use of a
deep learning algorithm on LIDAR data to detect the
bounding boxes in the images to increase awareness
around the environment and the use of the distance to
a specific angle of the object obtained from LIDAR
which can help locate an object and retrace its trajec-
tory. The distances and angles returned by LIDAR
are used with a distance to an object using the depth
camera to construct the trajectory of an object.

Object detection is performed using the You Look
Only Once v3 (YOLOv3) algorithm. In order to re-
duce the size of the training data, the transfer learning
approach with pre-trained weights is applied. The fi-
nal step is to locate the object by returning its Carte-
sian coordinates and plotting the trajectory path. The
source of a dataset is images (Kuznetsova and at. al.,
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2018) for our deep learning algorithm for the detec-
tion of objects requiring big data. The transfer learn-
ing (Tan and at. al., 2018) is a technique that avoids
training the model from scratch by training your own
rather smaller data size using pre-trained weights. It
therefore applies the previous knowledge acquired by
the huge amount of data to new small data specific to
an application.

The main contributions of the study are as follows.

• We propose accurate and robust solutions for
the detection and localization of objects in real
time on a system architecture composed of a 2D
Hokuyo LIDAR, an IP camera, a depth camera
and Raspberry Pi. In addition, we have tested and
validated this proposed architecture in a labora-
tory environment on a robot equipped with these
components.

• We train YOLOv3 deep learning algorithm on
open-source datasets and use obtained parameters
for real-time object detection instead of using tra-
ditional object detection approaches, which are
relatively slow.

• 2D Hokuyo LIDAR is used to find the coordinates
of the object and follow the movement of the de-
tected object. We use polynomial regression on
these generated coordinates to find the line that
best fits and smooths the trajectory.

• In addition, the distances measured from the depth
camera are used with the LIDAR angles for the
trajectory plot for an accurate estimation of the
trajectory.

• With our experiments we show that YOLOv3 with
2D LIDAR and depth cameras on a controlled
robot is used fairly precisely in real-time situa-
tions for the detection of objects and the estima-
tion of trajectories necessary for various applica-
tions.

The rest of the article is organized as follows. The
second section includes related work. Section 3
briefly explains the hardware configuration. The
fourth section describes the deep learning algorithm
used for object detection. Section 5 presents trajec-
tory estimation including localization techniques for
measuring distances to objects. The experimental re-
sults are presented and discussed in Section 6. Finally,
we give the conclusion and future work.

2 RELATED WORK

This section provides a review of the literature re-
lated to our study. Viola Jones et al (Wang, 2014)

proposed initial attempts to detect objects on the im-
ages using the features of Haar wavelet and Adaboost
cascading algorithm. Later in 2005, Dalal and Triggs
(Dalal and Triggs, 2005) proposed Histograms of Ori-
ented Gradients (HOG), the HOG feature was more
discriminative than Haar-cascade features. As already
mentioned, deep learning algorithms for the localiza-
tion and detection of objects as well as the use of
these algorithms in the field of robotics are the sub-
ject of active research. With the increasing popularity
of deep learning models, HOG functionality has been
replaced by models of convolutional neural networks
(CNN). Nowadays, there are several states of algo-
rithms for the detection and localization of objects in
images. Some examples are the Single Shot MultiBox
Detector (SSD) method (Liu and at. al., 2016), Faster
RCNN (Ren and at. al., 2015), YOLOv3 (Redmon
and Farhadi, 2018), etc.

For real-life applications, there is no straightfor-
ward answer to the question of which of them is the
best. The following sources of literature are more re-
lated to applications that involve object detection in
combination with the various sensors. (Wei and at.
al., 2018) proposes the LIDAR camera and data fu-
sion using fuzzy logic for beacon detection as part of
the multi-sensor collision avoiding system. The study
places LIDAR vertically in order to extract points cor-
related to the beacon from different angles and ap-
plied support vector machines in order to extract char-
acteristics which are later combined with object de-
tection using fuzzy logic. Insu Kim and Kin Choong
Yow in (Kim and Yow, 2015) propose an estimate of
the location of objects from a single camera. They
use HOG to detect an object and estimate the distance
to that object using stereo vision. The state-of-the-art
deep learning classification algorithms are provided
in (Ciaparrone and at. al., 2020).

The study in (Krizhevsky et al., 2012) introduces
AlexNet that contains eight layers, five convolutional
and three fully-connected layers and as an activa-
tion function it uses ReLU. After the success of
the ResNet model (He and at. al., 2015), in 2016
the Inception-v4 and InceptionRes were introduced
(Szegedy and at. al., 2016). The main idea of SENet
(Hu and at. al., 2017) is to learn a weight tensor that
provides different weights for feature maps for each
channel (activation).

3 HARDWARE CONFIGURATION

In this section, we present the preliminary hardware
configuration, including the fundamental context of
the mobile robot, the sensors, the IP camera, the depth
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cameras and the Raspberry Pi 3.
The design of a mobile robot is often completely

determined by the environment in which it is used
and based on various parameters (Rincon and at.
al., 2019). In our study, we focus on the Jaguar
4x4 wheeled mobile robotic platform. This robot is
mainly designed for indoor and outdoor navigation.
One of the advantages of this mobile platform is that
it has faster maneuverability and movement capacity
on a vertical stage with a maximum step of 155 mm
and a variety of speed between 0 and 14 km/h.

Sensors are used to convert a certain physical
quantity into an electrical signal. The main task of any
sensor is to respond to external influences and provide
the system with data on changes in the environment.
There are different types of sensors used in the hard-
ware configuration of our testbed. In particular, for
this study, the sensors detect movement and measure
the distance to objects.

An IP camera is a digital video camera and the
transmission of a video stream through it is done in
digital format on an Ethernet and TokenRing net-
work using the IP protocol (Cabasso, 2009). Spe-
cialized IP cameras often transmit video in an un-
compressed form. IP cameras are often powered by
Power over Ethernet (PoE). Higher resolutions, in-
cluding megapixels, can be used in IP cameras, as
there is no need to transmit an analog signal in Phase
Alternating Line (PAL) or National Television Stan-
dards Committee (NTSC) format. The typical resolu-
tion for network cameras is 650 × 840 pixels. Gener-
ally, IP cameras can be classified as webcams.

Intel RealSense Depth cameras shoot video, but
in each pixel instead of brightness, there is a point of
depth for each corresponding pixel. These cameras
have been gradually increasing the resolution, depth
accuracy and stability of the output signal, but they
are still relatively imperfect. In our study, we use the
Intel RealSense D435 depth camera (Keselman and
at. al., 2017). The camera has the highest possi-
ble viewing angle and it minimizes the risk of blind
spots appearing and is equipped with a shared shutter,
which guarantees the highest quality and clear percep-
tion of data. The camera has a set of video sensors that
can identify differences in images with resolutions up
to 1280 x 720 pixels. One advantage of the RealSense
camera that comes with its own Intel-supported SDK.
The main objective of RealSense technology is to en-
able a new type of communication and to give the pos-
sibility of interacting with the outside world.

The Raspberry Pi 3 is a single board computer
launched in industrial production in 2012. Initially,
it was intended as an affordable solution to introduce
the basics of programming and global high technol-

ogy. It contains the ARM processor, RAM chips, a
slot for a micro-SD card, as well as an Ethernet port,
HDMI, a 3.5 mm audio output and USB ports for con-
necting peripherals. The majority of the components
required for our mission are already integrated into
the Jaguar mobile platform. It is a good choice for
small storage and data transmission. Due to the ab-
sence of LIDAR among the components of the Jaguar,
we were able to manually mount the LIDAR on top
of the robot hood. The main disadvantage of such a
LIDAR location from the point of view of the build-
ing map and obstacle avoidance is that it does not see
certain objects located below the LIDAR. Other com-
ponents such as the Wi-Fi router and the integrated IP
camera are included in the components of the mobile
platform. Finally, the version fully connected to the
robot’s sensors is visible in Figure 1. We connect the
Raspberry Pi which is inside the Jaguar robot to the
source 5V. In addition, we also connect the LIDAR to
another source 5V and connect it to the Raspberry Pi.
We have made the appropriate configuration and con-
figured the IP addresses and masks of the global sys-
tem. This configuration is required so that the Rasp-
berry Pi can transmit data from LIDAR directly to the
PC via Wi-Fi. The main computer which acts as a
server receives and then processes the data obtained
from the client which, in our case, is Raspberry Pi.
This simple client-server architectural model allows
data to be processed and transmitted over the network.

The data received from LIDAR is in the form of
an array. The size of each array is 1080 points. The
points represent the distance to each object within the
angle step of the LIDAR. The video stream from the
IP camera is also sent via Wi-Fi. It is possible to sim-
ply connect to the camera via its IP address. The
video frame can be adjusted to the specific size, the
default is 680 x 480 pixels.

Figure 1: The hardware setup.

4 OBJECT DETECTION

The main objective of object detection is to find ob-
jects: pedestrians, bicycles, buildings or any other
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class on images and videos and to annotate them with
the bounding box (Khalifa et al., 2020). In other
words, the output of the object detection is (x, y,
width, height) from the bounding box that contains
the object. On the other hand, object classification or
recognition indicates what the object is in the bound-
ing box. Thus, the output of the classification is a
class label of the particular bounding box. We use the
YOLOv3 deep learning model for object detection.
Generally, algorithms related to object detection and
its localization within an image consist of two groups:

1. Algorithms built on the classification.

2. Algorithms built on the regression.

The algorithms consist of two phases. First, the algo-
rithm selects distinct regions of an image. In addition,
these regions are classified using CNNs. Prediction is
made for each region selected. Since the algorithm
runs for each selected region, it can be very slow.
The region-based CNN (RCNN) and its modifications
(Faster-RCNN) are considered as this type of algo-
rithms (Girshick et al., 2013),(Yang and at. al., 2020).
The algorithms based on the second type do not se-
lect the regions offered in an image. Instead, it in-
volves predicting bounding boxes and related classes
in a single execution of the algorithm for the entire
image. The YOLO algorithm belongs to the second
category.

Figure 2: Architecture of CNN (Li and at. al., 2018).

The YOLO algorithm was introduced at the end of
2015 (Redmon and at. al., 2016). YOLO allows fast
image processing compared to CNN, but with lower
accuracy. As mentioned earlier, the YOLO solves the
problem of object detection as a regression problem
and due to the high-speed image processing, it is suit-
able for use in real-time systems.

The CNN model takes the entire image as input
and gives the coordinates of the bounding boxes and
the probability of belonging to classes. The CNN ar-
chitecture is shown in Figure 2. The output of the
CNN is a tensor with coded predictions, and its size
is S × S (B × 5 + C). Here, S denotes the dimen-
sion of a grid and B denotes the number of bounding
boxes. The value C is the number of classes that a NN
is able to recognize.

The YOLOv3 algorithm in terms of mean average
precision (mAP) is superior to the Single Shot Multi-
Box Detector (SSD) method (Liu and at. al., 2016),
but inferior to the Faster R-CNN method (Ren and at.
al., 2015). However, the Faster R-CNN frame does
not process more than 5 frames per second. Using
the NVIDIA Titan X graphics processing unit, the
YOLOv3 algorithm processes images at 30 frames
per second, good for real-time video processing sys-
tems. Therefore, we have chosen the YOLOv3 model
for this study. The pseudo code of object detection
using YOLOv3 is given in Algorithm 1.

Algorithm 1: Real–time Obj. Detection With YOLOv3.

function detectObject (V, td);
Input: V : video stream

td : threshold
Output: Object market with bounding box
for each frame f in V do

//resize frame
f = f.size(416, 416)
//detect objects in frame above threshold
detections = detect (f, td = 0.5)
//draw bounding boxes on detected objects
image = drawBoundingBox(detec–s, frame)
//display image
show(image)

end
return image

Figure 3: Triangle similarity principle.

5 TRAJECTORY ESTIMATION

This section presents the methods of distance and
trajectory measurement. Estimating the distance be-
tween a camera and an object is often offered as an
inexpensive solution to alternative methods such as
the use of laser scanners or radars. In general, there
are several basic methods for estimating the distance
between a particular object and a simple monocular
camera (Kim and Yow, 2015).

We determine the distance to an object using in-
formation about its size. If the real dimensions of an
object (height or width) are known, then, knowing the
coordinates of an object in the image, using the for-
mulas of projective geometry, we can calculate the
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distance to it (Tian and at. al., 2018). The disadvan-
tage of this approach is the increase in error when the
object is further away. In addition, for the algorithm
to work properly, the length and width of the object
must not change over time. Also, to use this method,
you need to know the focal length of the camera (Oz-
tarak and at. al, 2016) in advance. Finding the dis-
tance from a camera to a certain object is a very well-
studied problem in image processing (Kim and at. al.,
2020). One of the main and straight-forward meth-
ods is the triangle similarity. The monocular camera
produces a one-to-one relationship between the im-
age and the object located inside the image. Using
this principle, it is possible to derive a relationship be-
tween known parameters: focal distance (f), width in
the image plane (w), and width of the object in the ob-
ject plane (W) and unknown parameter, distance from
camera to object (d). Using the principle described in
Figure 3 of triangle similarity, the following formulas
can be obtained:

d = f × R
r

(1)

For example, let's measure the distance to the pedes-
trian 2.75 meters from the camera. To do this, we ad-
just a pedestrian with a known width (W to a certain
distance D from the camera. In our experiments, our
known width is 34cm and we adjust a person to 3.8
meters from the camera. Then, we capture an image
of an object and measure the apparent width in pixels,
which allows us to estimate the focal distance:

f = 380cm× 346px
34cm

(2)

As an object (marker) continues to move closer and
farther away from the camera, it is possible to use the
triangle similarity to determine the distance from a
camera. Now, an object is moving 2.75 meters from
the camera and the bounding box returns a perceived
width which is 435 pixels.

d = f × 34cm
435px

= 302cm (3)

Finally, using the principle of triangle similarity, the
distance at 2.75 meters is estimated at around 3.02
meters. Another way to get the focal length of the
camera is the process of calibrating the camera us-
ing the chessboard. Camera calibration consists of
obtaining internal and external parameters, namely
the camera matrix and the camera distortion coeffi-
cients from the available photos or videos taken by it.
Camera calibration is often used at the initial stage of
solving many computer vision problems, especially in
augmented reality. In addition, calibrating the camera
corrects the distortion of photos and videos. In our

Figure 4: Person at certain ranges.

study, we use the method which was developed by
Zhengyou Zhang and is based on the use of a flat cal-
ibration object in the form of a chessboard (Zhang,
2000). We use the principles of triangle similarity
to find the distance to an object at certain ranges, as
shown in Figure 4. The experimental results are given
in the next section.

5.1 Distance Measurement using Depth
Camera

This section describes another and more accurate
method to estimate the distance to an object using a
depth camera (Draelos and at. al., 2015). The depth
camera is working using the following principle:

1. First, it has an Infra-Red(IR) projector that pins
the scene with invisible markers. This allows pro-
jecting Infra-Red lights which pin the object like
a cloud of dots representing the depth for each
pixel. The output of this is called the depth map.

2. The distance triangulation applied between IR
projector and camera.

In simple words, a depth map is an image in
which, for each pixel, instead of color, its distance
from the camera is stored. In our study, we take the
depth map from the Intel depth camera, but it could
also be constructed from a stereo pair of images.

The quality of the depth of an image is highly cor-
related with the resolution of a camera. Our depth
camera supports a few defined depth resolution pre-
sets, which can be selected in advanced camera mode.
We have tried several of them and decided to use
848× 480. Generally, the lower resolutions can also
be used, but it will decrease the depth precision.

The overall process of finding the distance to an
object using the depth camera is pretty straight for-
ward. The method that we used consists of several
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steps. Firstly, we capture the object by accessing its
color component RGB frame and depth frame. The
next step is to align both frames because they must be
accessible from the same physical viewport. Figure
5c illustrates the RGB data and depth data combined
into a single RGB-D image and it can be seen that
images is properly aligned. The process of the depth
alignment further allows using the depth data as any
of the other image channels.

After the process of the depth alignment, it is
possible to use any deep learning algorithm on the
RGB frame to find specific objects. In our case, we
use pre-trained state-of-the-art object detection model
YOLOv3 to recognize and localize the object in the
RGB image and use additional depth data to find the
distance to an object (Henry et al., 2012).

It can be seen in Figure 5a, the object is found
using object detection model and marked with the
bounding box. Since we have aligned RGB-D image
it is possible to project the bounding box on the depth
frame as shown in Figure 5b. To be more concrete,
we draw the bounding box on the depth frame using
its coordinates from the RGB frame.

Generally, there exist several approaches to cal-
culate the distance to an object. As one of the ap-
proaches, the distance to the object can be measured
by averaging the depth data inside the bounding box.
The number of experiments shows that this is not a re-
liable method, because some depth pixels are too far
away and can significantly affect the result of overall
distance measurement. For this reason, we propose
first to find the coordinates of the center pixel of the
cropped bounding box. In our case, the coordinates
of the center pixel of the bounding box are already
returned by the YOLOv3 model. There also exists
another popular format for the bounding box, instead
of returning x, y, h, w it returns the coordinates of the
corners of the box. The last step is to extract the depth
using the obtained coordinates. The output is the fi-
nal distance to an object. The results of the distance
measurement are provided in the next part.

5.2 Trajectory Estimation

This subsection describes how to estimate the trajec-
tory of an object and the process of getting the co-
ordinates of this object to plot the distance travelled.
The trajectory is the path that the object follows un-
der the given reference frame (Ciaparrone and at. al.,
2020). As we know in classical mechanics the trajec-
tory is represented as a series of the coordinates. The
trajectory vector can be represented as:

T1 = ((x1,y1),(x2,y2),(x3,y3)...(xn,yn)), (4)

(a) RGB image (b) Depth image

(c) Aligned image (RGB - D)

Figure 5: Depth estimation process.

where the vector T1 contains the coordinates of an ob-
ject.

In our case, to plot the trajectory, we need to find
the distance and the angle of an object with respect to
the LIDAR. As was mentioned, the laser rangefinder
(LRF) returns the distance in the form of scans. If the
distance and the angle are known, it is possible to get
the rectangular coordinates of an object. Obviously,
if the coordinates of an object are known it is possible
to plot its trajectory. We used Hokuyo UTM-30LX
scanning laser rangefinder. The LIDAR has a 270◦

area scanning range with 0.25◦ angular resolution. In
order to obtain the coordinates of an object, we con-
vert Polar’s LIDAR data into Cartesian coordinates.
Generally, we must solve a simple problem of a right
triangle problem with a known long side and angle.
This allows us to localize an object on the Cartesian
plane. Below are standard formulas for converting a
Polar Coordinates (r,θ ) to Cartesian coordinates (x,y).

αradius = αdegrees×
π

180
(5)

x = r× cos(αradius),y = r× sin(αradius) (6)

In the previous sections, the process of detecting an
object and estimating its distance is described. Now,
if the distance to an object and the angle to the object
are known, it is possible to localize the object using
the conversion formula. For example, if the person
stays at 2 meters from LIDAR at an angle of 90◦. To
be more accurate, we convert meters to millimetres
and multiplied the result to the re-scaling coefficient
0.05. Then, the coordinates of the person are:

x = (2000×0.05)× cos(αradius) = 0.079 (7)

y = (2000×0.05)× (−sin(αradius)) =−99.99 (8)
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As mentioned before, our LIDAR has a scanning
range of 270◦, and its angular resolution is 0.25◦, so
in total, we have 1080 laser scans, one scan at each
step of angle. In order to simplify the visualization
of the laser beams and to draw a trajectory, we pre-
computed some useful values for plotting trajectory
using the formula below:

αradius = (
−270

2
+

value
1080

×270)× π

180
(9)

where value is the number in the range of 1 and 1080.
Finally, we have obtained an array of radians with

the length of 1080 for the angles between (-135, 135)
which allows us to convert the coordinates by mul-
tiplying the radians obtained at each corresponding
laser scanning range. We visualize the laser beams
using the precalculated values and the canvas library.
The experimental results of the object trajectory are
provided in the following section.

6 EXPERIMENTS AND RESULTS

In this section, we present the datasets used for our ex-
periments. We then describe the experimental results
of the distance measurement. Finally, we present the
results of LIDAR and object detection for the trajec-
tory estimation and the fusion of these two. All the
experiments related to object detection were carried
out on a machine with an Intel Core-i7 8570H pro-
cessor, an NVIDIA GeForce 1080Ti GPU and on an
Ubuntu 16.04 LTS operating system.

6.1 Dataset for Object Detection

There are many publicly available image datasets
used for training models for object detection (Deng
and at. al., 2009). Google Open Images-v4 and Pascal
Visual Object Classes (VOC) 2007 and 2012 are two
of the most popular ones. The Google open images-
v4 dataset contains around 600 classes and 1,743,042
training images, as well as validation 41,620 and
125,436 test images (Kuznetsova and at. al., 2018).
We choose four classes (Person, Box, Chair, Mechan-
ical Fan), which are relevant to our research from
Google’s open image dataset. For testing, we use 10%
of each class and all are high-quality images with dif-
ferent image sizes. The other dataset that we use in
our experiments is the Pascal VOC dataset. The com-
plete dataset contains 20 classes. We merged the Pas-
cal VOC 2007 dataset with 2012. We extracted 12
classes relevant to our study. These classes are air-
plane, bicycle, bus, car, cat, cow, dog, motorcycle,
person, horse, sofa and train.

The training process is done on NVIDIA 1080
Ti GPU. Instead of training model from scratch, we
use pre-trained convolutional weights that have been
trained on the ImageNet dataset. Using these con-
volutional weights helps us to train our model faster.
Additionally, the mean average precision of the model
increases compared to training from scratch.

We trained several YOLO models on our datasets.
The training process for the Pascal VOC dataset took
approximately 5 days for YOLOv3 with an ImageNet
backbone that contains an additional 53 convolutional
layers. The next model to be trained is YOLOv3-tiny.
The training process for the tiny version took about 2
days with the backbone of an ImageNet that contains
15 additional convolutional layers. The average accu-
racy per class is computed every 5000 iterations. In
order to test the algorithm in real-time, we choose the
trained weights with the highest mAP.

6.2 Distance Measurement to the Object

The trained checkpoints of the model allow us to de-
tect and identify the objects in real-time. After the
object is marked with a bounding box, it is possible to
find the distance using the methods described earlier.
To evaluate the distance measurements, we conduct
experiments with the class person at 2.75, 5.5, 7.25
and 9 meters from the camera and LIDAR. We com-
pare our results obtained for distance measurement
with similar studies. The results are presented in Ta-
ble 1. The abbreviations used are AD (actual depth),
MD (measured depth) and DERR (depth error rate).
DERR, where Z is the actual depth and Z′ indicates
the estimated depth, is calculated as follows.

DERR =
|Z−Z′|

Z
(10)

The results show that the depth camera has accu-
rate results up to 5 meters. The depth precision start
fluctuates at longer distances. The main advantage
of the depth camera is that it is suitable for the real-
time distance estimation while the monocular real-
time camera fluctuates enormously even at a closer
range. Conventional methods work better at lower
ranges, while LIDAR can give a very precise distance
up to 30 meters with a small deviation in millime-
ters. Table 2 provides accuracy of our approach for
distance measurement and compared to other existing
methods. Algorithm 2 includes the details of distance
measurement using depth camera.
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Table 1: Comparison of distance measurement methods.

CMOS Camera Depth Camera 2D LIDAR

AD
(m)

MD
(m)

DERR
(%)

MD
(m)

DERR
(%)

MD
(m)

DERR
(%)

2.75 3.02 9.8 2.745 0.18 2.75 0
5.50 4.99 9.2 5.86 6.36 5.50 0
7.25 6.5 10.3 8.1 11.72 7.25 0
9.00 8.01 11 10.2 13.33 9.00 0

6.3 Object Detection and Trajectory
Plot

Now, we give a detailed account for the combination
of the object recognition with LIDAR localization.
The main steps of the algorithm used in our experi-
ments are given below.
1. Detect and recognize an object using YOLOv3.
2. If an object is recognized, then start saving the

coordinates in CSV file.
3. Plot the trajectory scatter plot of coordinates.
4. Apply polynomial regression in order to smooth

the trajectory path.
The first step requires the execution of YOLOv3

in real-time for object detection, since we have al-
ready trained the YOLOv3 model, we can use our
trained weights in order to more precisely detect ob-
jects, which is called transfer learning.

Algorithm 2: Dist. Measurement Using Depth Cam.

function distanceMesurementDepth (V, D, td);
Input: V : video stream

D : depth stream
td : threshold

Output: distance : distance to an object
for each frame fv, fd in V, D do

//detect objects in frame above threshold
detections = detect (f, td = 0.5)
//draw bounding boxes on detected objects
image = drawBoundingBox(detections, fv)
//reproject bounding boxes on depth frame

depthBoundBox=reprojectBoundBox (detec–s, fv)
//evaluate distance
distance=takeCenterPixel(depthBoundBox)

end
return distance

It is possible to take the minimum range value at
LRF from the ranges at each index of an array of the
scans to verify the closest object at a particular an-
gle. When the object is marked with the bounding
box and begins to move around, its coordinates are
stored continuously in the CSV file, for further pro-
cessing. Additionally, it is possible to apply a poly-
nomial regression in order to smooth the trajectory.

Table 2: Comparison with the other works.

System Error(%)(Accuracy)

M. Sereewattana et al.(Only for
stationary object below 3m)

3.9 ~12.4

Insu Kim and Kin Choong Yow
(Kim and Yow, 2015)

0.4 ~14.5

CMOS Camera Using Principle of
Similar Triangles

9.2 ~11

Depth Camera 0.18 ~13.33
Laser rangefinder 0

Table 3: RMSE, R2 scores for trajectories.

Figure 6 RMSE R2 Polynomial
Degree

a 1.62 0.99 10
b 4.9 0.98 5
c 1.95 0.99 4
d 10.92 0.65 3

Polynomial regression finds the line that best fits our
generated data. Figure 6 shows the various trajecto-
ries for objects and the results of applying polynomial
regression. Table 3 includes corresponding root mean
squared error (RMSE), R2 scores and the degree of
each line that best fits to the points.

We have done some experiments to plot the tra-
jectory of a person using the angles obtained from
the LIDAR and the distances obtained from the depth
camera. In addition we compared the trajectories us-
ing distances obtained from the LRF and depth cam-
era in the same angles extracted from the LRF. For
this experiment, a person is moving with a stable 0.5
m/s straight ahead to the LRF and camera, covering
the distance of the about 6.5 meters. Furthermore,
we consider the trajectory obtained from the LRF as
the ground truth. The distances from the depth cam-
era are sufficiently accurate and the distribution of the
points is almost the same compared to LRF in a real-
time system. The Y-axis values of the trajectory using
the depth camera are slightly higher than the trajec-
tory using the LRF. It can be concluded that distances
from the depth camera can also be used for detection
of trajectories.

The trajectory is detected by using an ordi-
nary Complementary Metal Oxide Semiconductor
(CMOS) camera. The distribution of coordinates is
very huge because the distances obtained with the
CMOS camera are highly fluctuating. It can be con-
cluded that the single CMOS camera using the prin-
ciple of similar triangles is not suitable for accurate
trajectory plotting in real-time. Then we aggregated
trajectories of the three sensors. The series of coor-
dinates obtained from the depth camera are close to
the ground truth, while the coordinates obtained from
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(a) (b)

(c) (d)

Figure 6: Depth estimation process.

Table 4: Comparison of trajectories.

Ground Truth
Sensor

Sensors RMSE Spearman
Correlation

2D LIDAR Depth
Camera

52.03 0.98

CMOS
Camera

101.5 0.67

the CMOS camera have a high deviation from rest.
Table 4 describes the results of the trajectory compar-
ison using the RMSE and Spearman's rank correlation
coefficient. As a ground truth value, the coordinates
obtained from 2D LIDAR are used.

6.4 Trajectory using Controlled Mobile
Robot

In the previous sections, we traced the trajectory of
a person moving straight relative to the fixed 2D LI-
DAR. We now look at the trajectory plotting with the
same method but with an extension of a trajectory. By
extension, we mean moving our robot to the particular
checkpoint and continuing to calculate the trajectory
of a person with the same technique. The checkpoint
is where the person disappears from the view of the
camera. The pseudo-code of object localisation and
detection of trajectories is given in Algorithm 3.

The experiments have been carried out inside the
building, the same as the previous experiments. In
this specific experiment, a person is moving with a
stable 0.5 m/s straight ahead from the LRF and the
camera, covering the distance of about 6.5 meters. To-
wards the end of the 6.5 meters, the person is moved
to the right and disappears from the view of the cam-
era. Then our robot moves to this position where the

Table 5: Comparison of trajectories.

Ground
Truth
Sensor

Sensors RMSE Spearman
Correlation

2D LIDAR Depth
Camera

33.37 0.90

CMOS
Camera

78.94 0.61

Algorithm 3: Object Localisation and Trajectory Plot.

function plotTrajectory (V);
Input: V : video stream
Output: coordinatesplot ,regressionplot : Trajectory plots
for each frame f in V do

//Start saving coordinates of detected object
if Object is in f then
lidar = turnOn()
//get converted coordinates
x, y = lidar.saveCoordinates()
//Stop prog., apply regr–n and plot the traj.
if button “ESC” isPressed then
lidar = turenOff()
coordinatesplot=plotTrajectory(x, y)
regressionplot=polynomialRegression(x, y);

end
return coordinatesplot ,regressionplot

person disappears and continue to calculate the trajec-
tory again. The trajectory is shown in Figure 7.

As it is possible to see from this plot, the person
moves straight and turns right, again covering the dis-
tance of about 6.5 meters. Table 5 describes the re-
sults of the trajectory comparison for the case with
the relocation of the mobile robot. It can be concluded
that the trajectory of an object can be estimated using
a mobile robot in a controlled manner.

(a) Trajectory using the Depth camera (b)Trajectory using the LRF

(c) Trajectory using the CMOS camera (d)Aggregation of trajectories

Figure 7: Trajectories of a pedestrian.
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7 CONCLUSION AND FUTURE
WORK

The main objective of this study was to implement
the method for the object trajectory estimation using
the YOLOv3 object detector algorithm an 2D laser
rangefinder. We analysed the YOLOv3 and YOLOv3-
tiny deep learning models on various classes from
datasets including Pascal VOC and Google Open Im-
ages. We used additional pre-trained convolutional
weights to increase the capability of the model to de-
tect the objects. The combination of the object detec-
tion and 2D LIDAR helps the trajectory estimation of
an object. In addition, we tried to plot the trajectory
by using the distances from the depth camera, CMOS
camera and LRF angles. We also estimated the trajec-
tory of an object using a mobile robot in a controlled
fashion. Furthermore, we used polynomial regression
with the purpose of smoothing trajectory path but only
for suitable cases. The experiments show that our ap-
proach is feasible and robust to obtain the object lo-
cation and further draw the trajectory.

As a possible future work, we plan to investigate
different algorithms for the objects trajectory predic-
tion, as well as methods related to object tracking us-
ing mobile robot control.
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