
Development of a GQM-based Technique for Assessing DevOps Maturity

Thomas Neubrand1,2 and Thorsten Haendler1,2

1University of Applied Sciences BFI Vienna, Austria
2Vienna University of Economics and Business (WU), Austria

Keywords: DevOps, Maturity Assessment, Goal Question Metric (GQM), Continuous Delivery, Survey.

Abstract: DevOps aims to increase an organization’s ability to build, test and release software in a rapid, frequent, and
more reliable fashion by combining the perspectives of software development and IT operations. It emphasizes
the communication and collaboration among all stakeholders involved in the software development lifecycle
by applying a set of technological and cultural practices and principals. Organizations are increasingly adopt-
ing DevOps practices in order to capitalize on its benefits. However, DevOps is a paradigm with different
interpretations and definitions, making it difficult for organizations to decide what practices and capabilities
of DevOps to adopt and to enhance based on their individual business needs. In this paper, we propose a
GQM-based approach for assessing the DevOps maturity in organizations. For this purpose, we structure De-
vOps capabilities in terms of goals and sub-goals that enable DevOps identified in existing research literature.
Then, questions and metrics are derived and operated for a questionnaire to assess the DevOps maturity with
regard to the different capability levels. The resulting maturity report is finally illustrated via different kinds
of radar charts representing the individual levels of the identified goals and sub-goals. A first evaluation with
experts indicates that the developed technique seems useful to assess DevOps maturity. With the support of
the proposed technique, organizations are able to assess its current practices and measure the improvements
over the course of time.

1 INTRODUCTION

In the era of digital everything, software is becom-
ing more than ever an essential form of differentia-
tion. Yet many companies struggle to keep pace with
the range of new demands. The constant change of
business needs, associated with the requirement of a
reduced time to market, has changed the speed of ap-
plication development and shortened the release cycle
considerably in the last decade. For many organiza-
tions, adopting DevOps has been the answer to these
challenges (Farcic, 2019).

DevOps emphasizes the advantages of developing
products in a multi-perspective way, so that develop-
ers, designers as well as operations, security and busi-
ness people all have a common understanding of what
needs to be accomplished (Bass et al., 2015). It aims
to improve the transfer of knowledge between teams
and focuses on reducing hand-off time.

However, DevOps is not a simple process, per-
spective, or tool chain that can be implemented. It
rather is a set of coherent cultural and technological
principles and practices that can be adopted and im-
proved over time (Forsgren et al., 2014).

Regarding the question what practices to adopt,
DevOps leaves willingly room for interpretation,
making it difficult for organizations to decide what
practices to adopt and when to be considered as fully
implemented (Harrison et al., 2019). By frequently
assessing the DevOps maturity of an organization, po-
tentials and bottlenecks are made transparent to other
areas in the organization and supports the understand-
ing of what is needed for a successful DevOps adop-
tion (Smeds et al., 2015).

In general, maturity models and assessment tech-
niques are popular instruments to provide guidance
for improvement activities and can be a useful met-
ric to analyze adoption processes, improvements po-
tentials or demand for resources (van Hillegersberg,
2019). However, in current research literature only
a very few approaches for assessing DevOps matu-
rity can be identified. These approaches either focus
on specifying maturity levels with little focus on ac-
tually assessing the maturity (Bucena and Kirikova,
2017; Radstaak, 2019) or provide assessment in an
rather unstructured way (also see Section 2.2), which
are both less suited to assess DevOps maturity in or-
ganizations.

Neubrand, T. and Haendler, T.
Development of a GQM-based Technique for Assessing DevOps Maturity.
DOI: 10.5220/0010177801170129
In Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2020) - Volume 3: KMIS, pages 117-129
ISBN: 978-989-758-474-9
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

117



In this paper, we propose an approach for a
survey-based technique for assessing the DevOps ma-
turity level in organizations. In particular, this paper
provides the following contributions:

• We propose a GQM-based technique for assessing
the DevOps maturity in organizations.

• We present a conceptual model structuring 33
goals and sub-goals enabling DevOps, from
which a set of 98 questions is derived for the
survey-based assessment.

• We discuss the feedback and a first evaluation of
the proposed assessment technique based on an
expert survey. In addition, this feedback has been
included to improve the model and assessment.

The remainder of this paper is structured as follows.
Section 2 reflects on the thematic background and dis-
cusses research related to the proposed approach. In
Section 3, we describe the applied research design and
explain in detail the goals/factors applied for assess-
ing DevOps. Subsequently in Section 4, we introduce
the assessment technique and discuss the results of a
first evaluation. In Section 5, we reflect on limitations
of the approach and describe further potential in terms
of exemplary use cases. Finally, Section 6 concludes
the paper.

2 BACKGROUND AND RELATED
WORK

In this section, we provide background information
on the purpose and techniques of DevOps adoption
and assessment (Section 2.1) and discuss research re-
lated to our approach (Section 2.2).

2.1 DevOps Adoption and Assessment

The journey of adopting DevOps in organizations
brings with it many challenges, both technological
and cultural. DevOps allows for various trends and
ideas that can be associated with it, which raises the
question of how DevOps can be adopted and further
on assessed without a ubiquitous definition or a de-
fined set of practices (van Ommeren et al., 2016). A
clear business objective supports the transformation
by prioritizing the work along the way and thus max-
imizing the impact. Since it is impossible to know
all the right decisions on an enterprise-level from the
very beginning, a rigorous feedback loop has to be
applied, in order to make the appropriate adjustments
in each iteration (Gruver et al., 2015). For this pur-
pose, in order to identify potential fields and aspects
that require attention, the current state of DevOps in

the organization needs to be investigated. The pro-
posed assessment technique can provide guidance in
deciding what DevOps practice to improve and where
to invest further resources based on the perspectives
and estimations of the involved stakeholders.

2.2 Related Work

Research related to our approach can be roughly di-
vided into (1) maturity models and (2) assessment
techniques, which are both discussed below.

Maturity Models. In the domains of Information
Systems and Software Engineering, the application
of maturity models is quite popular (Wendler, 2012;
Mettler, 2011; Becker et al., 2010; Poeppelbuss et al.,
2011; von Wangenheim et al., 2010). Most of these
maturity models represent variants of the capabil-
ity maturity model (CMM) and capability maturity
model integration (CMMI) approach (Lasrado et al.,
2015). These models have the advantage that they dis-
play the maturity level clearly on a few distinguish-
able levels, e.g. from initial (0) via defined (3) to op-
timized (5). A disadvantage is that details of the indi-
vidual factors are not presented. Another type of ma-
turity model are focus-area maturity models, which
consist of different focus areas that need to be ad-
dressed in order to achieve maturity in a functional
domain (van Hillegersberg, 2019). However, for De-
vOps in particular, only a few maturity models can be
identified in current research literature. For instance,
a guidance in the DevOps adoption process in the
format of a maturity model is described by (Bucena
and Kirikova, 2017) and (Radstaak, 2019). These ap-
proaches have in common that they focus on different
dimensions of DevOps including areas such as tech-
nology, process, people, and culture, which is similar
to our approach. In addition to specifying maturity
levels, our approach provides means to actually assess
and report the DevOps maturity for a set of relevant
capabilities.

Adoption and Assessment Techniques. For
decades, we see efforts in Software Engineering and
Information Systems to measure the state of software
artifacts and processes especially in order to identify
shortcomings that can be addressed through targeted
remedial activities. For this purpose several metrics
are established (Fenton and Bieman, 2014). A general
problem with metrics is that often just those aspects
are measured, which are easily measurable. DevOps
in particular provides multiple challenges, since it
represents a paradigm with different interpretations
and definitions as well as involving technical, cultural

KMIS 2020 - 12th International Conference on Knowledge Management and Information Systems

118



as well as organizational aspects. For this reason, for
assessing DevOps maturity only very few assessment
approaches can be identified. A prominent exam-
ple represents the technique provided by DORA’s
research program, which provides a quick check to
measure the software delivery performance of teams
and provide improvement areas for low performers1.
In contrast to this approach, our technique offers a
more comprehensive analysis by considering a total
of 33 sub-factors. Another example is the GQM-
based approach presented in (König and Steffens,
2018) that pursues a similar technique. However,
we extend the presented approach by covering more
aspects impacting DevOps maturity and by providing
means to actually assess and report the DevOps
maturity level.

3 DEVOPS MATURITY MODEL

In this section, we describe the applied research de-
sign (Section 3.1) and introduce the concept model
for assessing DevOps maturity (Section 3.2).

3.1 Research Design

In order to address the aforementioned challenges,
this paper aims to investigate the development of a
lightweight and flexible technique for assessing De-
vOps maturity in organizations. From a research per-
spective, the approach is oriented to design-science
research for developing and evaluating the assessment
technique. Moreover, it leverages a Goal Question
Metric approach for correlating goals and metrics for
assessing DevOps maturity.

Design-science Research. The development of the
maturity model and assessment technique is guided
by a design-science research process (Hevner et al.,
2004; Peffers et al., 2007). Key to this research ap-
proach is to build and evaluate artifacts that aim at
solving problems considered relevant. If the evalua-
tion reveals points for improvement or extension, fur-
ther iterations can be performed. This approach is
well suited for developing and evaluating our assess-
ment technique, since the DevOps paradigm is not
clearly defined and dynamic (e.g. with regard to the
scope of the practices/capabilities?), which might re-
quire adjustment over time. The resulting model and
assessment technique has been created in multiple it-
erations of designing and evaluating. However, just

1https://cloud.google.com/devops

as DevOps is based on the idea of continuous im-
provement, this model can be seen as a ”living arti-
fact”, which is improved and adapted over the course
of time.

Goal Question Metric. We leverage the Goal
Question Metric (GQM) approach to measure the De-
vOps maturity of organizations (Caldiera and Rom-
bach, 1994). GQM represents a structured top-down
approach, starting by defining the goals and sub-
goals. Then a set of questions with metrics to char-
acterize and assess the specific goals is derived; also
see Fig. 1.

Q1: Do the services

developed by your team

have a production-like

environment available for

QA and/oroperations?

Q2: How often does it

happen that critical errors

are only discovered in the

productionenvironment?

Continuous

Testing

Polar 

(Yes/ No)

Continuous

Delivery

Linear (1-7)

Sub-Goal nn

Goal

Sub-Goal

Questions

Metric

Qn

…

Figure 1: GQM applied to assessing DevOps maturity (ex-
emplary excerpt). For further details, also see Tables 1 and
2 and Sections 3.1 and 3.2.

For specifying the goals and sub-goals, we ori-
ent to the research presented in the yearly State of
DevOps reports conducted by the DevOps Research
and Assessment (DORA) team (Forsgren et al., 2019).
DORA is an ongoing research program starting in
2014, which applies rigorous methodology to analyze
DevOps capabilities and provides support regarding
what technical, process, measurement, and cultural
practices need to be adopted to achieve higher soft-
ware delivery and organizational performance (Fors-
gren et al., 2019). Accordingly, we were guided
by their research, based on which the following five
groups of practices can be identified that contribute to
the DevOps adoption process:

• Lean Management
• Culture and Work Environment
• Transformational Leadership
• Lean Product Management
• Continuous Delivery

Based on these goals, sub-goals have been structured
and aggregated. Fig. 2 illustrates goals and sub-goals

Development of a GQM-based Technique for Assessing DevOps Maturity

119



in terms of a conceptual goal model (Caldiera and
Rombach, 1994). For specifying questions for the
survey-based assessment, we derived questions from
each sub-goal based on research literature (see Ta-
bles 1 and 2). Survey-based data is particularly well
suited at providing a holistic view of systems and can
be leveraged to provide reliable insights for organiza-
tions. Also, survey-based data can be gathered much
faster than system data to start off with, and later put
in comparison and eventually find root-causes for de-
viations (Forsgren et al., 2018). The metrics applied
in this approach are subjective evaluations of the par-
ticipants depending on their point of view (e.g. their
role in the software development lifecycle). However,
this technique addresses the challenges that objective
metrics are especially difficult to implement for cul-
tural, but also for technological practices and princi-
ples. Fig. 1 illustrates the structured approach of de-
riving questions and metrics from DevOps goals uti-
lized in this paper.

3.2 DevOps Capabilities

To develop the technique to assess DevOps maturity,
different practices associated with DevOps were ex-
amined. As stated in Section 2, the practices related
to DevOps are interpreted differently, which leaves
room for an individual approach. The annual DORA
DevOps report provides a solid foundation for analyz-
ing DevOps practices applied in industry that drive
high performance software delivery and operational
performance (Forsgren et al., 2019). For the purpose
of designing the assessment technique, we build on
the results of the State of DevOps reports and ex-
tended them by further concepts identified in research
literature.

Fig. 2 depicts the 5 identified key factors en-
abling DevOps (goals) with aggregated sub-factors
(sub-goals). In particular, the concept map is speci-
fied as a class diagram of the Unified Modeling Lan-
guage (UML2) (Object Management Group, 2017).
In particular, each factor is represented as a class and
the classes are connected via different kinds of as-
sociations, e.g. enable associations or aggregations.
The individual organizational conditions represent the
different variable instances of this class diagram. To
what extent these conditions can be quantified is dis-
cussed in Section 5. Please note that the multiplicities
(i.e. number of possible class instances per relation)
are not specified in this diagram, since the classes
mostly represent more abstract concepts or activities.
However, for each factor or aggregated sub-factor a
multiplicity of 1 could be applied.

In the following, the concepts and their relevance

for DevOps are explained in detail, structured by the
5 goals.

Lean Management. In the 2015 State of DevOps
Report, the researchers found that Lean Management
practices contribute to creating a culture of learning
and continuous improvement, lower levels of burnout,
and higher organizational performance overall (Fors-
gren, 2015). They identified the following practices
as most significant (also see the classes on the top in
Fig. 2).

• Business Decisions based on Metrics:
Utilizing data from application and infrastructure
monitoring tools is key to gain insight into
the systems and to guide business decisions
on a daily basis. It facilitates a feedback loop
from production systems to its responsible team
members (Forsgren, 2015).

• Visual Task Boards: Visualizing important
information to monitor quality, productivity and
work in process helps creating a shared un-
derstanding between different stakeholders and
within the team itself, identify bottlenecks and
shows operational effectiveness (Forsgren, 2015).

• Limiting Work in Progress: By visualizing
Work in Progress (WIP), stakeholders are able to
prioritize work in the context of global objectives.
WIP limits are preventing bottlenecks as well as
constraints from happening and ultimately drive
process improvement (Forsgren et al., 2017; Kim
et al., 2016).

Transformational Leadership. In the 2017 State
of DevOps Report, the researchers found that transfor-
mational leadership shapes an organization’s culture
and practices, which also leads to high-performing
teams (Forsgren et al., 2017). In particular, they iden-
tified the following practices as most significant (also
see the classes on the left-hand side in Fig. 2).

• Personal Recognition: Consistently valuing
and acknowledging achievements of outcomes or
goals can be seen as a vital part in increasing the
commitment of employees (Forsgren et al., 2017;
Rafferty and Griffin, 2004).

• Supportive Leadership: Taking care of em-
ployees as a leader and taking into account their
personal needs and feelings promotes a supportive
work environment (Forsgren et al., 2017; Rafferty
and Griffin, 2004).

• Intellectual Stimulation: An important
factor of leadership is the ability of challenging
employees to think about problems in new ways
and generate an improved quality of solutions
(Forsgren et al., 2017; Rafferty and Griffin, 2004).

KMIS 2020 - 12th International Conference on Knowledge Management and Information Systems

120



enables

Con�nuous Tes�ng

Con�nuous Delivery

Development

Con�nous Integra�on

Version Control

Security

Empowered TeamsMetrics

Psychological Safety

Transforma�onal 

Leadership

Lean Management

Limi�ng Work in 

Progress
Visual Task Boards

Business Decisions 

based on Metrics

Vision

Inspira�onal 

Communica�on

Intellectual S�mula�on

Suppor�ve Leadership

Personal Recogni�on

Pla�orm

Code Maintainability

Architecture Monitoring

Database Change 

Management

Automa�on

Team Strucure

Lean and Agile 

Prac�ces

Lean Product 

Management

Team Experimenta�on

Small Batches

Feedback

Learning Climate

Con�nuous 

Improvement

Test Data Management

Culture and Work 

Environment

Job Sa�sfac�on

Iden�ty

Organiza�onal Culture

enables

enables
enables

enables
DevOps

Figure 2: Concept map structuring key factors (goals) and sub-factors (sub-goals) enabling DevOps; oriented to the findings
of the State of DevOps Reports by DORA 2014–2019 (Forsgren et al., 2019). For further details on the applied factors, see
Section 3.2.

• Inspirational Communication: Being inspi-
rational in the way the leaders of an organization
communicate, builds motivation, confidence and
stimulates the enthusiasm of employees (Forsgren
et al., 2017; Rafferty and Griffin, 2004).

• Vision: Providing a vision to employees, which
is ”The expression of an idealized picture of the
future based around organizational values”, is an
essential aspect of leadership. It ensures an un-
derstanding of both the organizational and team
direction and accordingly where they should be
in five years (Forsgren et al., 2017; Rafferty and
Griffin, 2004).

Culture and Work Environment. DevOps
strongly focuses on cultural practices that predict
high organizational performance. E.g. in the 2014
State of DevOps Report, the researchers found that
organizations with a good information flow, a high
level of cooperation and trust, building bridging
between teams, and a conscious inquiry culture, have
a significant impact on the business performance
of an organization (Forsgren et al., 2014). They
identified the following practices as most significant.
We extended them by further concepts identified
in research literature (also see the classes on the
right-hand side in Fig. 2).

• Identity: There is evidence, that when employ-
ees identify themselves with the organization they
work for in terms of values, goals and apprecia-

Development of a GQM-based Technique for Assessing DevOps Maturity

121



tion, they tend to deliver higher levels of perfor-
mance and productivity (Brown et al., 2016).

• Lean and Agile Practices: Adopting agile
practices while choosing the practice combination
and adoption strategies that would fit an organiza-
tion´s priorities best, fosters knowledge and learn-
ing, employee satisfaction, social skill develop-
ment as well as feedback and confidence (Solinski
and Petersen, 2016).

• Continuous Improvement: The interaction of
employees being able to reserve time for the im-
provement of their daily work, transparency with
failures as well as feedback loops are key fac-
tors for a continuous improvement mindset (Kim
et al., 2016).

• Psychological Safety: Whenever employees
experience a culture of psychological safety, it is
predictive to an increased software-delivery per-
formance, organizational performance as well as
overall productivity (Forsgren et al., 2019).

• Organizational Culture: Dr. Westrum’s and
DORA research findings about organizational cul-
ture show that also a high-trust generative culture
predicts a better performance of software-delivery
processes and overall productivity by influencing
the way information flows through an organiza-
tion (Forsgren, 2015).

• Learning Climate: Perceiving learning as an
investment and key to improvement positively
affects organizational culture and contributes
to software-delivery performance improvements
(Forsgren et al., 2018).

• Job Satisfaction: Employees with support by
their team leaders and with adequate resources
to get their work done provide better results and
ultimately higher IT performance. Experiencing
work as challenging and meaningful, while being
empowered to exercise skills and judgment, pos-
itively adds to jobs satisfaction (Forsgren et al.,
2014).

• Team Structure: Finding a team structure that
fits best to an organization depends on the prod-
uct set of an organization, the effectiveness of
technical leadership, the willingness to change its
IT-operations department and the skills to take
the lead on operational concerns. An appropri-
ate team structure should allow high cooperation
and a shared responsibility between all functional
areas (Skelton and Pais, 2019).

Lean Product Management. In the 2016 State of
DevOps Report, the researchers found that organiza-
tions that adopt a lean approach to product design and
delivery positively impact both IT performance and

culture (Brown et al., 2016). They identified the fol-
lowing practices as most significant. We extended
them by further concepts identified in research liter-
ature (also see the classes on the right-hand side in
Fig. 2).

• Feedback: Including the feedback of customers
into the design of products is of significant im-
portance in order to meet the user expectations.
Recognizing user feedback as a need and driver of
change is essential for the software to evolve. A
feedback cycle (i.e. collect, analyze, decide, and
act) supports this process and helps avoiding that
delivered functionalities are not needed (Brown
et al., 2016).

• Small Batches: Teams which split products and
features into small batches are able to release fre-
quently, which allows them to gather customer
feedback regularly (Brown et al., 2016).

• Team Experimentation: Empowering team
members to interact with real users to learn about
their needs, challenges and design solutions sup-
ports teams to add value by incorporating the
learned inputs into the design of the product.
Teams are able to work and make changes with-
out having to ask for permission (Forsgren et al.,
2018).

• Outsourcing: Whenever an organization de-
cides to outsource a part of their application deliv-
ery to another provider, vendors need to be willing
to partner, provide feedback and standardize ap-
plication delivery and tooling between each other.
Otherwise a DevOps-style model of collaboration
is not realizable (Sharma, 2017).

Continuous Delivery. The DORA institute found
that continuous delivery practices establish the ba-
sis for delivering value faster, thus ensuring shorter
cycle times with quicker feedback loops, which im-
proves the quality and overall organizational perfor-
mance (Forsgren, 2015). They identified the follow-
ing practices as most significant. We extended them
by further concepts identified in research literature
(also see the classes on the right-hand side in Fig. 2).

• Test Data Management: Managing test data is
essential for running automated tests, resulting in
lower change failure rates and fewer deployment
issues (Brown et al., 2016).

• Architecture: Reducing the dependencies be-
tween teams, systems and testing/deploying ac-
tivities allows teams to increase the deployment
frequency and improve software-delivery perfor-
mance (Forsgren et al., 2019).

• Version Control: Storing all kinds of code,
configuration and scripts in a version control sys-

KMIS 2020 - 12th International Conference on Knowledge Management and Information Systems

122



tem is an enabler for automation and continu-
ous integration and predicts continuous delivery
(Forsgren et al., 2014).

• Code Maintainability: Maintaining the code
effectively is a vital practice to find, change, add,
or reuse code from other teams and improves
productivity by decreasing technical debt (Brown
et al., 2016).

• Monitoring: Monitoring systems based on pre-
defined metrics support teams to understand the
state of their systems, guide business decisions
and positively contributes to continuous delivery
(Forsgren, 2015).

• Metrics: Additionally to the four most power-
ful metrics (i.e. deployment frequency, lead time
for changes, time to restore service, and change-
failure rate) there are many other possibly relevant
monitoring metrics to focus on. Metrics should
provide the possibility to predict an organization’s
ability to achieve its goals (Forsgren et al., 2019;
Farshchi et al., 2018).

• Automation: Automated testing reduces the
need to spend a lot of time finding and fixing
bugs, wasting time and money on manual testing
or releasing poor quality software (Humble and
Farley, 2011). In particular, it reduces the risk
of introducing errors into a previously correctly
working software. Deployment automation re-
duces potential issues with deployments and pro-
vides fast feedback by allowing teams to compre-
hensively test as soon as possible after changes
(Brown et al., 2016).

• Continuous Testing: Performing both auto-
mated and manual tests throughout the software-
delivery lifecycle contributes to minimizing the
likelihood of failure (Forsgren et al., 2018).

• Security: By better integrating security con-
cerns into daily work and making it everyone´s
responsibility, teams can achieve higher levels of
software quality and build more secure systems
(Humble and Farley, 2011; Forsgren et al., 2014).

• Empowered Teams: Teams that are empowered
to choose their own tools and technologies tend
to achieve higher software-delivery performance
and have an increased job satisfaction (Forsgren
et al., 2017).

• Platform: Teams need to be able to auto-
matically provision new computing resources as
needed, in order to focus on their goal of develop-
ing, testing, and delivering applications and ser-
vices (Sharma, 2017; Forsgren et al., 2018).

• Continuous Integration: Frequently inte-
grating all code in small logical units to a com-
mon repository at least once a day (verified by an

automated build and test of each commit) enables
rapid feedback loops and ensures that developers
work in small batches, which contributes to the
development of high-quality software (Fowler and
Foemmel, 2006; Forsgren et al., 2014).

• Development: In order to achieve continuous
integration and to eliminate complex merging
events, small batches of code need to be integrated
into trunk frequently (at least once a day) (Fors-
gren et al., 2017).

• Database Change Management: Integrating
database changes into the deployment process
reduces the risk and delay when performing a
deployment (Forsgren et al., 2018).

4 MATURITY ASSESSMENT

In order to assess the maturity level based on the goals
and sub-goals represented in the concept model in
Section 3, we developed a survey-based technique.
From a user perspective, first a questionnaire is an-
swered, then the maturity report illustrating the indi-
vidual and automatically measured levels of all ap-
plied capabilities can be checked. In the following,
the questionnaire (Section 4.1), the maturity report
(Section 4.2) as well as a first evaluation in terms of
an expert survey 4.3 are presented.

Culture and Work

Environment
Continuous Delivery

Lean Management

Transformational Leadership Lean Product Management

Figure 3: High-level DevOps maturity report in terms of a
radar chart representing the calculated maturity levels of the
5 goals (key factors) enabling DevOps (see Section 4.2).

4.1 Questionnaire

The questionnaire comprises in total 98 questions,
which cover and relate to the DevOps capabilities
identified in Section 3.2 structured into goals and sub-
goals in the class diagram in Fig. 2. The value of each
sub-goal is assessed via several questions to be an-

Development of a GQM-based Technique for Assessing DevOps Maturity

123



Limiting Work in Progress

Business Decisions based on Metrics

Visual Task Boards

Continuous Improvement

Learning Climate

Job Satisfaction

Organizational Culture

Psychological Safety

Identity

DevOps Team Structure

Lean and Agile Practices

Feedback

Working in small Batches

Team Experimentation

Outsourcing

Inspirational Communication

Intellectual Stimulation

Supportive leadership

Personal recognition

Code Maintainability

Test Data Management

Version Control

Trunk-based Development

Architecture

Monitoring

Metrics

Continuous Testing

Test Automation

Shifting left on Security

Continuous Integration

Deployment Automation

Empowered Teams

Database Change Management

On-Demand Self-Service

Figure 4: Detailed DevOps maturity report represented as a radar chart including the calculated values of 33 sub-goals (sub-
factors) enabling DevOps (see Section 4.2).

swered by system stakeholders. The questions are ei-
ther polar (a.k.a. Yes/No) questions or 1 to 7 linear-
scale assessment questions (Likert, 1932). For calcu-
lating the resulting sub-goal-specific maturity levels,
the questions are weighted proportionally (as well as
the sub-goals for determining the values of the aggre-
gating goals). The list of applied questions is pre-
sented in detail in Tables 1 and 2 in the Appendix.2

4.2 Maturity Report

The calculated individual results derived from the an-
swers are then illustrated via different kinds of radar
charts. Radar charts (a.k.a. spider charts) are two-
dimensional charts structured by multiple quantita-
tive variables for displaying multivariate data. For in-
stance, they are popular means to visualize levels of
competencies or quality metrics (Basu, 2004).

We apply the radar chart to illustrate the maturity
levels of all DevOps goals or sub-goals identified in

2The questionnaire has been created with Google Forms
and is available at http://refactoringgames.org/devops/.

Section 3.2. Fig. 3 depicts an exemplary high-level
maturity report representing the level of maturity for
the 5 key goals. Moreover, Fig. 4 depicts an exem-
plary radar chart representing the levels of maturity
of all applied 33 sub-goals enabling DevOps. Review-
ing these reports provides a differentiated overview of
the currently estimated DevOps maturity level. For
example, it allows to identify fields or aspects that
need further improvement or such that have already
reached a relatively high level. Moreover, a compar-
ison of different reports facilitates advanced analyses
of the maturity level in an organization (see Section
5.2).

4.3 Survey

In order to evaluate and improve the model and as-
sessment technique, we conducted a survey with 10
Software Engineering and DevOps experts and young
professionals to test the practical utilization of the De-
vOps assessment. The respondents maintain different
roles in the field of DevOps and belong to six different
companies, each with a professional experience rang-

KMIS 2020 - 12th International Conference on Knowledge Management and Information Systems

124



3

0

0

4

Not sure

2

2

5

Yes

Yes

3

4

7

5

5

6

6

7

7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

(1) Would you utilize the assessment in your organization?

(2) Do you think that it is basically possible to determine the

DevOps maturity level of a company based on questions?

(3) Are the most important aspects of DevOps covered

by the assessment?

(4) Are the questions suitable to determine the DevOps

maturity of an organization?

(5) What extent does the reported maturity leveladequately 

reflect the actual DevOps state in your organization?

Figure 5: Results of the expert survey. For further details, see Section 4.3.

ing from 2 to more than 20 years.
The survey participants first answered the question-
naire (see Tables 1 and 2) and checked the resulting
radar charts reporting the individually calculated ma-
turity levels. The radar charts in Figs. 3 and 4 illus-
trate the average values of this survey. Subsequently,
in order to evaluate the model and measurement tech-
nique, a second small survey has been conducted. A
set of 8 questions has been defined to evaluate the
questionnaire and the type of report (graphical radar
chart). In this anonymous semi-structured survey also
including open questions, participants have had the
opportunity to provide a more in-depth feedback.

An overview of the answers to the closed-ended
questions 1–5 of this expert survey is illustrated in
Fig. 5 (questions 6–8 were open ended). Overall, the
assessment was evaluated positively on its suitability
to determine the DevOps maturity of an organization
(see answers to questions 1 and 2 in Fig. 5). In partic-
ular, one survey respondent indicated that it should be
differentiated whether the participant is a stakeholder
of a software development organization or an IT ser-
vice provider. All respondents noted that the DevOps
practices mentioned in the survey were entirely repre-
sentative of DevOps (see question 3 in Fig. 5). More-
over, it was found that a majority of respondents be-
lieves that it is basically possible to determine the De-
vOps maturity level of a company based on questions
and furthermore would utilize the assessment in their
organization (see question 4 in Fig. 5). Lastly, the
majority of respondents agreed that the reported ma-
turity level adequately reflect the actual DevOps state
in their organization (see answers to question 5 in Fig.
5). Based on the feedback from the survey respon-
dents, some details in the model and questionnaire
have been slightly adjusted or added.

5 DISCUSSION

The presented assessment technique relies on the
perspectives and estimations of the involved system
stakeholders. With this in mind, we first reflect on the
limitations of our approach (Section 5.1). Then we
discuss further application opportunities in terms of
potential use cases (Section 5.2).

5.1 Limitations

Assessing the DevOps maturity in organizations is
challenging for several reasons. First, DevOps is a
dynamic and not clearly defined principle which com-
prises concrete techniques, but also several cultural
and organizational aspects that are more difficult to
capture. It is possible that non-mentioned capabili-
ties can be found in literature that are missing in the
assessment. Second, conducting the DevOps assess-
ment provides insights into the current state of De-
vOps implementation based on subjective perceptions
of the participants via linear scale and polar ques-
tions. Technical aspects, such as the level of au-
tomation, could by measured by integrating evidence-
based techniques, which could further increase the
accuracy of the model. Anyway, assessing the cul-
tural and (most of) organizational factors highly re-
lies on the perspectives of the involved stakeholders.
Thus, objectively measuring the maturity of DevOps
remains a challenge. Third, the interpretation and im-
plementation of DevOps in an organization is highly
individual, as mentioned above. Therefore, the impor-
tance of goals and thus the weighting of questions can
differ from organization to organization. Finally, as
of now, we evaluated the assessment technique with
10 experts via one iteration. This first evaluation in-
dicated that further iterations are needed in order to

Development of a GQM-based Technique for Assessing DevOps Maturity

125



increase the practicability of the assessment.

5.2 Exemplary Use Cases

In addition to the application of the assessment tech-
nique to obtain a general evaluation of the DevOps
maturity level, use cases for advanced analyses can be
distinguished. These are essentially based on a com-
parison of several evaluations or reports and can pro-
vide answers to various questions. For each use case,
the context and the possible implications for the orga-
nization are briefly described. In particular, we dis-
tinguish between stakeholder-based analysis, cross-
company analysis and impact monitoring.

1. Stakeholder-based Analysis: First, consider
conducting the survey with stakeholders related
to a single company. The assessment will pro-
vide an overview of the different perspectives
and evidence whether individuals in certain stake-
holder roles have common or different under-
standing of the current state of DevOps. Besides
the identification of deficit fields, the comparison
might show significant inconsistencies regarding
the state of certain aspects, which could be ad-
dressed by discussions or trainings.

2. Cross-company Analysis: Second, the survey
can be utilized as benchmark within an industry.
Comparing the DevOps maturity levels of multi-
ple companies (or departments) can provide valu-
able insights into where the competition stands.
This way, areas that might have been identified as
weak spots can turn out to be above-average in re-
lation to other companies.

3. Impact Monitoring: Third, orthogonally to the
two use cases described above, the assessment
technique could by applied before and after intro-
ducing new or modifying existing practices. By
comparing the results, the effects of the performed
measures can be analyzed, i.e. the perceived im-
pact can be related to the invested resources (ROI
analysis).

6 CONCLUSION

In this paper, we have presented a survey-based tech-
nique towards assessing DevOps maturity in organi-
zations. Following a GQM-based process, 33 goals
and sub-goals enabling DevOps have been structured,
from which a set of 98 questions has then been de-
rived. The DevOps maturity is represented via radar
charts reporting the individual maturity levels for all
identified (sub-) goals. A small evaluation in terms of

a survey with 10 experts indicates that the developed
assessment technique can provide support in analyz-
ing the state of DevOps in organizations and in iden-
tifying focus areas that require more attention. Even
though the first iteration received a predominantly
positive echo from survey participants, the assess-
ment offers opportunities for further improvements.
As stated in Section 5.2, the assessment provides sev-
eral practical use cases and provides a comprehensive
view on DevOps practices. This information can also
be useful to explain certain investments to manage-
ment, especially when cultural aspects are involved.

In a next step, we plan to use our model and as-
sessment technique on a larger scale to assess the
maturity level of DevOps in organizations. For this
purpose, we plan to apply the assessment technique
within organizations that intend to enhance DevOps
maturity and to distribute the survey to a larger num-
ber of participants. In addition, we prepare tech-
nical means to analyze the results according to the
use cases described in Section 5.2, e.g. in terms of a
stakeholder-based analysis and a cross-company anal-
ysis. Finally, we plan to provide tailor-made recom-
mendations as feedback to enable the respondents to
address the identified deficit areas accordingly and to
initiate appropriate measures to increase the DevOps
maturity level.

ACKNOWLEDGEMENTS

This work was partly supported by the Department
for Economic Affairs, Labour and Statistics (MA23)
of the City of Vienna (Austria) through the project
”New Work, New Business” at the UAS BFI Vienna.

REFERENCES

Bass, L., Weber, I., and Zhu, L. (2015). DevOps: A software
architect’s perspective. Addison-Wesley Professional.

Basu, R. (2004). Implementing quality: a practical guide
to tools and techniques: enabling the power of opera-
tional excellence. Cengage Learning EMEA.

Becker, J., Niehaves, B., Poeppelbuss, J., and Simons, A.
(2010). Maturity models in IS research. In Proc. of
ECIS 2010.

Brown, A., Forsgren, N., Humble, J., Kersten, N., and Kim,
G. (2016). State of DevOps report 2016.

Bucena, I. and Kirikova, M. (2017). Simplifying the De-
vOps adoption process. In BIR Workshops.

Caldiera, V. R. B. G. and Rombach, H. D. (1994). The goal
question metric approach. Encyclopedia of software
engineering, pages 528–532.

KMIS 2020 - 12th International Conference on Knowledge Management and Information Systems

126



Farcic, V. (2019). DevOps paradox: The truth about De-
vOps by the people on the front line. Packt Publishing,
Birmingham, UK.

Farshchi, M., Schneider, J., Weber, I., and Grundy, J.
(2018). Metric selection and anomaly detection for
cloud operations using log and metric correlation
analysis. Journal of Systems and Software, pages 531–
549.

Fenton, N. and Bieman, J. (2014). Software metrics: a rig-
orous and practical approach. CRC press.

Forsgren, N. (2015). State of DevOps report 2015.
Forsgren, N., Gene, K., Nigel, K., and Jez, H. (2014). State

of DevOps report 2014.
Forsgren, N., Gene, K., Nigel, K., Jez, H., and Brown, A.

(2017). State of DevOps report 2017.
Forsgren, N., Humble, J., and Kim, G. (2018). Accelerate:

State of DevOps report 2018.
Forsgren, N., Smith, D., Humble, J., and Frazelle, J. (2019).

Accelerate: State of DevOps report 2019.
Fowler, M. and Foemmel, M. (2006). Continuous integra-

tion.
Gruver, G. (2016). Starting and scaling DevOps in the en-

terprise. Gary Gruver, [United States].
Gruver, G. (2019). Engineering the Digital Transformation.

Gruver, 1 edition.
Gruver, G., Mouser, T., and Kim, G. (2015). Leading the

transformation: Applying Agile and DevOps princi-
ples at Scale. IT Revolution, Portland, OR.

Harrison, D., Lively, K., and Wang, A. (2019). Achieving
DevOps: A novel about delivering the best of Agile,
DevOps, and microservices. Apress, New York, NY.

Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004).
Design science in information systems research. MIS
quarterly, pages 75–105.

Humble, J. and Farley, D. (2011). Continuous delivery: Re-
liable software releases through build, test, and de-
ployment automation. Addison-Wesley, Upper Saddle
River, NJ.

Kim, G., Humble, J., Debois, P., and Willis, J. (2016).
The DevOps Handbook: How to Create World-Class
Agility, Reliability, and Security in Technology Orga-
nizations. IT Revolution.

König, L. and Steffens, A. (2018). Towards a quality model
for DevOps. Continuous Software Engineering &
Full-scale Software Engineering, page 37.

Lasrado, L., Vatrapu, R., and Andersen, K. (2015). Matu-
rity models development in IS research: A literature
review. volume 6. Scandinavian Chapter of the Asso-
ciation for Information Systems (AIS) - Scandinavian
IRIS. 38th Information Systems Research Seminar in
Scandinavia, IRIS38 ; Conference date: 09-08-2015
Through 12-08-2015.

Likert, R. (1932). A technique for the measurement of atti-
tudes. Archives of psychology.

Linda and ling Lai, S. (2012). Managing user expectations
in information systems development. International
Journal of Economics and Management Engineering,
6(12):3710 – 3714.

Mettler, T. (2011). Maturity assessment models: a design
science research approach. International Journal of
Society Systems Science (IJSSS), 3(1/2):81–98.

Morales-Ramirez, I., Perini, A., and Guizzardi, R. (2015).
An ontology of online user feedback in software engi-
neering. Applied Ontology, 10:297–330.

Object Management Group (2017). Unified Mod-
eling Language (UML), Superstructure, Version
2.5.1. https://www.omg.org/spec/UML/2.5.1 [July 31,
2019].

Peffers, K., Tuunanen, T., Rothenberger, M. A., and Chat-
terjee, S. (2007). A design science research method-
ology for information systems research. Journal of
management information systems, 24(3):45–77.

Poeppelbuss, J., Niehaves, B., Simons, A., and Becker,
J. (2011). Maturity models in information systems
research: literature search and analysis. Communi-
cations of the Association for Information Systems,
29(1):27.

Radstaak, J. (2019). Developing a DevOps maturity model:
A validated model to evaluate the maturity of De-
vOps in organizations. Master’s thesis, University of
Twente.

Rafferty, A. E. and Griffin, M. A. (2004). Dimensions of
transformational leadership: Conceptual and empiri-
cal extensions. The Leadership Quarterly, 15(3):329–
354.

Sharma, S. (2017). The DevOps adoption playbook: A
guide to adopting DevOps in a multi-speed IT enter-
prise. Wiley, Indianapolis IN.

Skelton, M. and Pais, M. (2019). Team topologies: Orga-
nizing business and technology teams for fast flow. IT
Revolution, Portland, Oregon.

Smeds, J., Nybom, K., and Porres, I. (2015). Devops: a def-
inition and perceived adoption impediments. In Inter-
national Conference on Agile Software Development,
pages 166–177. Springer.

Solinski, A. and Petersen, K. (2016). Prioritizing agile ben-
efits and limitations in relation to practice usage. Soft-
ware Quality Journal, 24(2):447–482.

van Hillegersberg, J. (2019). The need for a maturity
model for maturity modeling. In The Art of Structur-
ing, pages 145–151. Springer International Publish-
ing, Cham.

van Ommeren, E., van Doorn, M., Dial, J., and van Herpen,
D. (2016). Mastering digital disruption with DevOps:
Design to disrupt.

von Wangenheim, C. G., Hauck, J. C. R., Salviano, C. F.,
and von Wangenheim, A. (2010). Systematic liter-
ature review of software process capability/maturity
models. In Proceedings of International Conference
on Software Process Improvement and Capabity De-
termination (SPICE), Pisa, Italy.

Wendler, R. (2012). The maturity of maturity model re-
search: A systematic mapping study. Information and
software technology, 54(12):1317–1339.

Westrum, R. (2004). A typology of organizational cultures.
Quality and Safety in Health Care, 13:22–27.

Development of a GQM-based Technique for Assessing DevOps Maturity

127



Table 1: Applied goals, sub-goals and corresponding questions for assessing DevOps maturity (part 1).
DevOps Assessment

Goal Sub-Goal Question Source
Lean Management Limit Work in Progress To what extent are teams able to limit work in progress (WIP) and use these limits to drive

process improvement and increase throughput?
(Forsgren, 2015)

Limit Work in Progress To what extent are teams aware of the mean lead time and variability the entire value stream
(from idea to customer)?

(Forsgren, 2015)

Limit Work in Progress How often does your team have to leave unfinished work to start working on another require-
ment?

(Forsgren, 2015)

Visual Boards To what extent do teams create and maintain visual displays (f.e. boards) that are showing
key quality and productivity metrics and the current status of work (including defects)?

(Forsgren, 2015)

Visual Boards To what extent are the visual displays giving you the information you need? (Forsgren, 2015)
Visual Boards To what extent is the information on visual displays up to date and are people acting on this

information?
(Forsgren, 2015)

Business Decisions To what extent do teams use data from application performance and infrastructure monitoring
tools to make business decisions on a daily basis?

(Forsgren, 2015)

Culture and Work
Environment

Westrum Org Perf. On my team, information is actively sought. (Westrum, 2004)

Westrum Org Perf. On my team, failures are learning opportunities, and messengers of them are not punished. (Westrum, 2004)
Westrum Org Perf. On my team, responsibilities are shared. (Westrum, 2004)
Westrum Org Perf. On my team, cross-functional collaboration is encouraged and rewarded. (Westrum, 2004)
Westrum Org Perf. On my team, failure causes enquiry. (Westrum, 2004)
Westrum Org Perf. On my team, new ideas are welcomed. (Westrum, 2004)
Psychological Safety To what extent do team members feel safe to take risks and be vulnerable in front of each

other?
(Forsgren et al., 2019)

Job Satisfaction To what extent do you see your work as challenging and meaningful? (Forsgren et al., 2014)
Job Satisfaction To what extent do you feel empowered to exercise your skills and judgment at work? (Forsgren et al., 2014)
Learning Culture To what extent does your organization view learning as the key to improvement? (Forsgren et al., 2014)
Learning Culture To what extent does your organization see learning as an investment rather than an expense? (Forsgren et al., 2014)
Continuous Improvement To what extent are team leaders and managers creating conditions for employees to improve

their daily work and emphasize learning and problem solving?
(Kim et al., 2016)

Continuous Improvement To what extent are employees able to reserve time for the improvement of their daily work? (Kim et al., 2016)
Continuous Improvement To what extent are failures reported and made transparent throughout the organization in

order to gain experience to prevent incidents from happening again?
(Kim et al., 2016)

Job Identity To what extent do you identify yourself with the organization you work for (values, goals,
appreciation)?

(Brown et al., 2016)

Team Structure To what extent are aspects like the product set of an organization, anti-types (bad practices)
and established DevOps team structures considered when forming the team structure of the
organization?

(Skelton and Pais, 2019)

Team Structure To what extent does the current organizational structure allow high cooperation between all
functional areas, especially those that are included in developing the end-product?

(Skelton and Pais, 2019)

Team Structure To what extent do teams have a shared responsibility between each functional area of the
software delivery process with regards to building, deploying, and maintaining a product?

(Skelton and Pais, 2019)

Team Structure To what extent is software development managed like projects, meaning that developers get
assigned to the next project immediately after the project goal is met?

(Skelton and Pais, 2019)

Agile To what extent are agile values and principles established within the organization? (Gruver, 2019)
Lean Product Man-
agement

Small Batches To what extent do teams slice up products and features into small batches that can be com-
pleted in less than a week and released frequently, including the use of minimum viable
products (MVPs)?

(Forsgren et al., 2018)

Feedback To what extent does your organization actively and regularly seek customer feedback and
incorporate this feedback into the design of their products?

(Forsgren et al., 2018)

Team Experimentation To what extent do development teams have the authority to create and change specifications
as part of the development process without requiring approval?

(Forsgren et al., 2018)

Software Evolution To what extent is the role of user feedback recognized as a need of change? (Morales-Ramirez et al., 2015)
Software Evolution To what extent is user feedback relevant for software evolution (f.e. new designs evolving

from old ones)?
(Morales-Ramirez et al., 2015)

Feedback Cycle To what extent is a feedback cycle (Collect, Analyse, Decide, Act) implemented as a process? (Morales-Ramirez et al., 2015)
Expectation-Perception Gap To what extent does the user´s perception of the delivered system meet the the user´s expec-

tations?
(Linda and ling Lai, 2012)

Expectation-Perception Gap How often a customer/business does not need/use the delivered functionalities or use the
ordered features very rarely?

(Bucena and Kirikova, 2017)

Outsourcing Does your organization outsource whole functions such as application development, IT oper-
ations work, or testing and QA?

(Sharma, 2017)

Outsourcing To what extent are vendors not willing to partner because the contracts in place do not provide
for a DevOps-style model of collaboration?

(Sharma, 2017)

Outsourcing Does your team build applications in-house and deliver them to a production environment
managed by an external vendor?

(Sharma, 2017)

Outsourcing To what extent does your team receive appropriate feedback from the vendor to improve
continuously?

(Sharma, 2017)

Outsourcing To what extent is your team partnering closely with the organization on standardizing appli-
cation delivery and tooling?

(Sharma, 2017)

Transformational
Leadership

Vision To what extent do leaders in your organization have a clear concept of where the organization
is going and where it should be in five years?

(Forsgren et al., 2017)

Inspirational communication To what extent do leaders in your organization communicate in a way that inspires and moti-
vates, even in an uncertain or changing environment?

(Forsgren et al., 2017)

Intellectual stimulation To what extent do leaders in your organization challenge their teams to think about problems
in new ways (ask new questions, status quo, basic assumptions about the work)?

(Forsgren et al., 2017)

Supportive leadership To what extent do leaders in your organization demonstrate care and consideration of follow-
ers’ personal needs and feelings?

(Forsgren et al., 2017)

Personal recognition To what extent do leaders in your organization praise and acknowledge achievement of goals
and improvements in work quality; personally compliment others when they do outstanding
work?

(Forsgren et al., 2017)

KMIS 2020 - 12th International Conference on Knowledge Management and Information Systems

128



Table 2: Applied goals, sub-goals and corresponding questions for assessing DevOps maturity (part 2).
DevOps Assessment

Goal Sub-Goal Question Source
Continuous Delivery Code Maintainability To what extent do teams manage code maintainability (systems and tools that

make it easy for developers to change code maintained by other teams, find
examples in the codebase, reuse other people’s code, as well as add, upgrade,
and migrate to new versions of dependencies without breaking their code)?

(Forsgren et al., 2017)

Test Data Management To what extent is adequate test data available for their work? (Brown et al., 2016)
Test Data Management To what extent can test data be acquired on demand for test suites? (Brown et al., 2016)
Version Control / Applica-
tion code

Do you use version control for application code? (Forsgren, 2015)

Version Control / Applica-
tion code

How easily and quickly can a team recover application code from the version control system? (Forsgren, 2015)

Version Control / System
configurations

Do you use version control for system configurations? (Forsgren, 2015)

Version Control / System
configurations

How easily and quickly can teams reconfigure systems from version control? (Forsgren, 2015)

Version Control To what extent do you use as few repositories as possible for all requirement specifications
and related documentation?

(Bucena and Kirikova, 2017)

Trunk-based development To what extent are teams aware of how many active branches they have on their application
repositories’ version control system and aims to reduce the branches?

(Forsgren et al., 2017)

Trunk-based development To what extent are teams aware of how many code freezes they have and how long they last,
and aims to reduce them?

(Forsgren et al., 2017)

Trunk-based development To what extent are teams aware of the number of branches and forks that are merged per day
to master and aims to increase the frequency?

(Forsgren et al., 2017)

Loosely coupled architecture To what extent are teams able to independently test, deploy, and change their systems on
demand without dependingon other teams for additional support, services, resources, or ap-
provals?

(Forsgren et al., 2019)

Architecture To what extent are the existing architectures facilitating the practices required for improving
software delivery performance (increased deployment frequency with reduced lead time for
changes, time to restore service, and change failure rate)?

(Forsgren et al., 2017)

Architecture To what extent are major architectural archetypes considered when it comes to selecting the
architecture for a new system?

(Forsgren et al., 2017)

Monitoring To what extent is data from application performance monitoring tools used to support busi-
ness decisions?

(Forsgren, 2015)

Monitoring To what extent is data from infrastructure monitoring tools used to support business deci-
sions?

(Forsgren, 2015)

Monitoring / Proactive Fail-
ure Notifications

To what extent are failure alerts from logging and monitoring systems captured and used? (Forsgren et al., 2018)

Monitoring / Proactive Fail-
ure Notifications

To what extent is system health proactively monitored using threshold warnings? (Forsgren et al., 2018)

Monitoring / Proactive Fail-
ure Notifications

To what extent is system health proactively monitored using rate of change warnings? (Forsgren et al., 2018)

Metrics How often does your organization deploy code to production or release it to end users? (Forsgren et al., 2019)
Metrics What is your lead time for changes (i.e., how long does it take to go from code committed to

code successfully running in production)?
(Forsgren et al., 2019)

Metrics How long does it generally take to restore service when a service incident or a defect that
impacts users occurs (e.g., unplanned outage or service impairment)?

(Forsgren et al., 2019)

Metrics What percentage of changes to production or released to users result in degraded service (e.g.,
lead to service impairment or service outage) and
subsequently require remediation (e.g., require a hotfix, rollback, fix forward, patch)?

(Forsgren et al., 2019)

Continuous Testing Do the services developed by your team have a production-like environment available for QA
and/or operations?

(Forsgren et al., 2018)

Continuous Testing How often does it happen that critical errors are only discovered in the production environ-
ment?

(Forsgren et al., 2018)

Continuous Testing Is there a standardized tool and process to track issues/defects? (Forsgren et al., 2018)
Continuous Testing To what extent are teams continuously reviewing and improving test suites to better find

defects and keep complexity and cost under control?
(Forsgren et al., 2018)

Continuous Testing To what extent are testers allowed to work alongside developers throughout the software
development and delivery process?

(Forsgren et al., 2018)

Continuous Testing To what extent are teams performing manual test activities such as exploratory testing, us-
ability testing, and acceptance testing throughout the delivery process?

(Forsgren et al., 2018)

Continuous Testing To what extent do developers practice test-driven development by writing unit tests before
writing production code for all changes to the codebase?

(Forsgren et al., 2018)

Continuous Testing Are teams able to get feedback from automated tests in less than ten minutes both on local
workstations and from a CI server?

(Forsgren et al., 2018)

Test Automation To what extent does the time spent on fixing test failures changes over time? (Forsgren et al., 2018)
Test Automation How often do automated test failures represent a real defect (in contrast to being poorly

coded)?
(Forsgren et al., 2018)

Test Automation Do all test suites run in every pipeline trigger? (Forsgren et al., 2018)
Test Automation / Security To what extent do automated tests cover security requirements? (Brown et al., 2016)
Shifting left on Security To what extent do features undergo a security review early in the design process? (Brown et al., 2016)
Shifting left on Security To what extent do security reviews slow down the development cycle? (Brown et al., 2016)
Shifting left on Security To what extent is the security team involved in each step of the software delivery lifecycle

(design, develop, test, and release)?
(Brown et al., 2016)

Continuous Integration To what extent do code commits result in a software build without manual intervention? (Forsgren, 2015)
Continuous Integration To what extent do code commits result in a suite of automated tests being run without manual

intervention?
(Forsgren, 2015)

Continuous Integration To what extent are automated builds and automated tests successfully executed every day? (Forsgren, 2015)
Continuous Integration To what extent are builds available to testers? (Forsgren, 2015)
Continuous Integration To what extent is feedback from acceptance and performance tests available to developers

within a day?
(Forsgren, 2015)

Continuous Integration How long does it take between a build breaking and having it fixed, either with a check-in
that fixes the problem, or by reverting the breaking change?

(Forsgren, 2015)

Deployment Automation To what extent are teams aware of the number of manual steps in the deployment process and
aim to reduce those steps?

(Brown et al., 2016)

Deployment Automation To what extent is a delivery pipeline (or deployment pipeline) implemented that automates
the orchestrating of deployments on all necessary components?

(Bucena and Kirikova, 2017)

Empowered Teams To what extent is a development team allowed to change requirements or specifications in
response to what they discover, without authorization from some outside body?

(Forsgren et al., 2017)

Database Change Manage-
ment

To what extent are database changes integrated into the software delivery process (configura-
tion management, communication with DBAs)?

(Forsgren et al., 2018)

On-Demand Self-Service To what extent are teams able to automatically provision computing resources as needed,
without human interaction from the provider?

(Forsgren et al., 2019)

On-Demand Self-Service To what extent does the infrastructure platform automatically control, optimize, and report
resource use based on the type of service such as storage, processing, bandwidth, and active
user accounts?

(Forsgren et al., 2019)

On-Demand Self-Service How long does it take to get up an HelloWorld! application in an environment using the
standard processes?

(Gruver, 2016)

Development of a GQM-based Technique for Assessing DevOps Maturity

129


