
Soft Querying GeoJSON Documents within the J-CO Framework

Giuseppe Psaila1 a, Stefania Marrara2 b and Paolo Fosci1
1University of Bergamo, DIGIP, Viale Marconi 5, 24044 Dalmine (BG), Italy

2Cefriel, viale Sarca 226, 20126 Milano, Italy

Keywords: GeoJSON Documents, Soft Querying of GeoJSON Documents, Fuzzy J-CO-QL Queries.

Abstract: GeoJSON documents have become important sources of information over the Web, because they describe
geographical information layers. Supposing to have such documents stored in some JSON store, the problem
of querying them in a flexible and easy way arises.
In this paper, we propose a soft-querying model to easily express queries on features (i.e., data items) within
GeoJSON documents, based on linguistic predicates. These are fuzzy predicates that evaluate the membership
degree to fuzzy sets; this way, imprecise conditions can be expressed and features can be ranked, accordingly.
The paper presents a rewriting technique that translates soft queries on GeoJSON documents into fuzzy J-
CO-QL queries: this is the query language of the J-CO Framework, an Internet-based framework able to get,
manipulate and save collections of JSON documents in a way totally independent of the source JSON store.

1 INTRODUCTION

GeoJSON1 is the standard format to represent geo-
graphical layers; today, it is widely used to share
geographical information. Indeed, GeoJSON relies
on the JSON2 (JavaScript Object Notation) syntax,
a simple and widely used standard that can be eas-
ily managed by any object-oriented programming lan-
guage. As a consequence, GeoJSON documents are
often found in open data portals, as well as GIS tools
import and export export GeoJSON documents.

Based on this premise, the reader may think that
managing and querying GeoJSON documents is easy,
especially due to the availability of JSON document
stores, i.e., database systems that are able to store
JSON documents without any limitation. Unfortu-
nately, this assumption is not true for several reasons:
first of all, JSON document stores are designed to
manage a multitude of small JSON documents, while
GeoJSON documents may be very large; second, at
the moment a standard query language for JSON doc-
uments does not exist, and each document store im-
plements its own query language, forcing a user in-
terested in several GeoJSON documents stored in dif-
ferent repositories to rewrite her/his queries in every

a https://orcid.org/0000-0002-9228-560X
b https://orcid.org/0000-0003-2745-3539
1https://geojson.org/
2https://www.w3schools.com/js/js json intro.asp

specific query language; third, the query languages
provided by all JSON document stores may be inad-
equate to effectively manage the typical nested struc-
ture of GeoJSON documents; finally, all the available
languages are based on Boolean conditions that do not
help to rank single features described within GeoJ-
SON documents.

The problem of querying and manipulating JSON
documents stored within different JSON document
stores has been addressed in our previous work: the
J-CO Framework (Bordogna et al., 2017; Bordogna
et al., 2018) is the tentative answer. The framework
is designed to be an internet-based polystore frame-
work, able to connect to a multitude of heterogeneous
JSON stores distributed over the Internet; it provides
a query language, named J-CO-QL, that is indepen-
dent of the specific JSON store and provides high-
level constructs to manipulate heterogeneous collec-
tions of JSON documents (instructions can deal with
many different document structures contained in the
same collection at the same time).

With this framework, the reader may think that the
problem of querying GeoJSON documents has been
already solved. The truth is that this is “only par-
tially” true: in fact, non-trivial J-CO-QL queries must
be written to query GeoJSON documents. Further-
more, as far as soft querying GeoJSON documents
is concerned, in principle the last extension to J-CO-
QL proposed in (Psaila and Marrara, 2019), which

Psaila, G., Marrara, S. and Fosci, P.
Soft Querying GeoJSON Documents within the J-CO Framework.
DOI: 10.5220/0010155702530265
In Proceedings of the 16th International Conference on Web Information Systems and Technologies (WEBIST 2020), pages 253-265
ISBN: 978-989-758-478-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

253

has introduced constructs to evaluate fuzzy sets over
JSON documents, promises to provide this capability,
but we will see that queries become harder to write.
So, a higher-level approach is necessary, based on a
simpler soft-querying model that is specific for GeoJ-
SON documents, but indeed based on fuzzy J-CO-QL
queries, which becomes the underlying engine.

In this paper, we present a high-level soft querying
model for selecting features in GeoJSON documents,
in such a way that, given an input GeoJSON docu-
ment, the query generates a new GeoJSON document
containing only the selected features (i.e., data items
contained in the document). The adoption of linguis-
tic predicates in the soft query provides the capability
to rank features, on the basis of the membership de-
gree to fuzzy sets. The paper will show how such
“simple” soft queries can be automatically translated
into complex fuzzy J-CO-QL queries, which actually
disassemble the GeoJSON documents, apply fuzzy
querying to single features and re-assemble them into
a unique GeoJSON document, such that features are
ordered in reverse order of importance with respect to
the linguistic condition expressed in the soft query.

The remainder of the paper is organized as fol-
lows. Section 2 briefly discusses relevant related
work. Section 3 presents the background of our work,
i.e., basic notions on fuzzy sets and the GeoJSON for-
mat. Section 4 introduces the main research idea of
the paper, i.e., applying soft querying to GeoJSON
documents. Section 5 shows how the J-CO-QL lan-
guage can manipulate GeoJSON documents to select
features. Then, Section 6 shows how fuzzy concepts
previously added to J-CO-QL in (Psaila and Marrara,
2019) can perform soft querying on GeoJSON docu-
ments (Sections 6.1 and 6.2), while a rewriting tech-
nique to derive fuzzy J-CO-QL queries on GeoJSON
features is presented in Section 6.3. Finally, Section 7
concludes the paper.

2 RELATED WORK

Most relational database management systems adopt
Boolean logic to formalize queries. This means that a
query condition can be either satisfied or not satisfied.
By using Boolean logic, it is not possible to have a
flexible semantics of relational operations, to express
preferences and to rank query results. In many real-
world situations, queries are expressed by humans by
means of imprecise words. User’s intention is not
merely to find the items that satisfy a given query;
in contrast, the user may wish to estimate how much
each item satisfies the conditions in the query (its sat-
isfaction degree), in order to rank items (if possible).

There are several approaches to represent impre-
cise and vague concepts in Information Retrieval (IR).
A first approach defines similarity or proximity rela-
tions between pairs of imprecise and vague items. In
the Vector Space Model, for instance, documents and
queries are represented as points in a space of terms
and the distances between the points representing the
query and the documents are used to quantify their
similarity (Salton et al., 1994). Another category of
approaches adopts the notion of Fuzzy Set. Fuzzy Set
Theory is an extension to classical set theory (Zadeh,
1975). The notion of fuzzy set has been used to repre-
sent vague concepts expressed in a flexible query for
specifying soft selection conditions (Blair, 1979). The
objective here is to quantify the closeness of the in-
formation carried by the proposition with the consid-
ered reality. Possibility Theory (Fuhr, 1989; Zadeh,
1965) together with the concept of linguistic variable
defined within fuzzy set theory (Zadeh, 1975), pro-
vides a complete formal framework to manage impre-
cise, vague and uncertain information (Buell, 1985).

There are two alternative ways to model the re-
trieval activity. (i) One possibility is to model the
query evaluation mechanism as an uncertain decision
process. The concept of relevance is defined as a
binary (crisp) condition, since the query evaluation
mechanism computes relevance probability of a doc-
ument d with respect to a query q. Such an approach,
which does model the uncertainty of the retrieval pro-
cess, has been introduced and developed by using
probabilistic IR models (Ramer, 1989; Herrera and
Herrera-Viedma, 1997; Waller and Kraft, 1979). (ii)
Another way is to interpret the query as the speci-
fication of soft constraints that the representation of
a document can satisfy to a certain degree, and to
consider term relevance as a gradual (vague) concept.
This is the approach adopted in fuzzy IR models (Bor-
dogna and Pasi, 1995). In this latter case, the decision
process performed by the query evaluation mecha-
nism computes the degree with which the query is sat-
isfied by the representation of each document. A very
good survey regarding the adoption of Fuzzy Sets in
IR can be found in (Kraft et al., 2015).

A well defined context, in which dealing with un-
certainty and vagueness is quite common, is XML
Retrieval. When defining query languages for XML
documents, the problem of querying data collections
without a well-defined structure, or with a heteroge-
neous structure, was soon evident.

To tackle this problem, Fuzzy Set Theory was
a fairly immediate choice. In (Damiani and Tanca,
2000) the authors presented an approach in which
XML documents are modeled as labeled graphs; their
structure is selectively extended by computing the im-

WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies

254

portance of the information carried by tags as fuzzy
estimates. The results of such an extension are fuzzy
labeled graphs. Query results are sub-graphs of these
fuzzy labeled graphs, presented as a ranked list ac-
cording to their matching degree with respect to the
query.

In a different perspective, the approaches pre-
sented in (Campi et al., 2009; Marrara and Pasi, 2016)
propose flexible XML selection languages, which al-
low for formulating flexible constraints on both struc-
ture and content of XML documents. This way, users
can formulate queries that are able to retrieve XML
documents that provide information close to users’
needs.

According to many research papers (Kacprzyk
and Zadrożny, 1995; Medina et al., 1994) there are
two main ways to apply Fuzzy Set Theory in the con-
text of database management systems. The first way
consists in developing a fuzzy database model to man-
age imprecise relational data (Bosc and Prade, 1997)

The second way develops a fuzzy querying inter-
face on top of a conventional relational database: the
advantage of this approach is evident in the SoftSQL
proposal (Bordogna and Psaila, 2009). Other exten-
sions of SQL have been proposed: FSQL (Galindo
et al., 2006) and SQLf (Bosc and Pivert, 1995).

3 BACKGROUND

This section presents the relevant background on
which the paper relies.

3.1 A Brief Introduction on Fuzzy Sets

Fuzzy Set Theory was introduced by Zadeh (Zadeh,
1975), and soon proved its potentiality, since it was
successfully applied to different areas, such as arti-
ficial intelligence, natural language processing, deci-
sion making, expert systems, neural networks, control
theory, and so on. Let us denote by X a non-empty
universe, either finite or infinite.

Definition 1. A fuzzy set (or type-1 fuzzy set) A⊆ X is
a mapping A : X → [0,1]. The value A(x) is referred
to as the membership degree of the element x to the
fuzzy set A.

Therefore, a fuzzy set A in X is characterized by
a membership function A(x) that associates each ele-
ment x ∈ X with a real number in the interval [0,1];
in other words, given x, the value A(x) represents the
degree of membership of x to A.
A fuzzy set is empty if and only if its membership
function is identically zero for each x ∈ X . Two fuzzy

sets A and B are equal, denoted as A = B, if and only
if A(x) = B(x) for all x ∈ X .
The complement of a fuzzy set A is A′ and is defined
as A′(x) = 1−A(x).
As in the case of ordinary sets, the notion of contain-
ment can be defined as well.

Definition 2. A is contained in B (or, equivalently, A
is a subset of B, or A is smaller than or equal to B) if
and only if A(x)≤ B(x), for each x ∈ X.

Definition 3. The union (resp. intersection) of two
fuzzy sets A and B with respective membership func-
tions A(x) and B(x) is a fuzzy set C, written as C =A∪
B (resp., C =A∩B), whose membership function is re-
lated to those of A and B by C(x) = Max(A(x),B(x))
(resp., C(x) = Min(A(x),B(x))), for all x ∈ X.

The union (resp., intersection) is used to express the
logical OR (resp. AND) operators, while the comple-
ment set represents the logical NOT operator.

3.2 The GeoJSON Format

GeoJSON (Butler et al., 2016) is a format for encod-
ing geographic information layers, defined by using
the JSON format. With a GeoJSON document, we
can represent a region of space (i.e., a Geometry), a
spatially bounded entity (i.e., a Feature), or a list of
Features (i.e., a FeatureCollection).

GeoJSON supports several geometry types: Point,
LineString, Polygon, MultiPoint, MultiLineString,
MultiPolygon, and GeometryCollection. Features in
GeoJSON are composed by a geometry field plus
additional properties described by the properties
field. The overall GeoJSON document is of type
FeatureCollection, and the array field named
features contains a list of features.

An example of GeoJSON document is reported in
Listing 1. Features, that are contained in the fea-
tures array field, describe weather measures, made
by weather stations located in Regione Lombardia
(Northern Italy). Each feature describes the station
identifier, the date of measure, the temperature (in de-
gree Celsius), the percentage of humidity and the at-
mospheric pressure in millibars.

4 SOFT QUERYING ON GeoJSON

Consider the GeoJSON document reported in List-
ing 1. With soft querying of a GeoJSON document
we mean searching for features that meet a qualitative
condition, in order to get a new GeoJSON document,

Soft Querying GeoJSON Documents within the J-CO Framework

255

Listing 1: Sample GeoJSON Document.
{ "type": "FeatureCollection",

"features": [
{ "type": "Feature",

"properties": {
"Station_Id": 109,
"Date": "2020-05-01",
"temperature": 26,
"humidity": 83,
"pressure": 1000

},
"geometry": {

"type": "Point",
"coordinates":

[9.379659683,45.26066732]
}

},
{ "type": "Feature",

"properties": {
"Station_Id": 114,
"Date": "2020-05-01",
"temperature": 24,
"humidity": 99,
"pressure": 980

},
"geometry": {

"type": "Point",
"coordinates":

[9.267153115,45.32059361]
}

},
{ "type": "Feature",

"properties": {
"Station_Id": 117,
"Date": "2020-05-01",
"temperature": 17,
"humidity": 81,
"pressure": 874

},
"geometry": {

"type": "Point",
"coordinates":

[10.33339294, 46.17572375]
}

}
]

}

in which features are sorted in reverse order of impor-
tance (as far as the qualitative selection condition is
concerned).

A sample qualitative query may be: extract those
meteorological measures (features) that registered a
high value of humidity with either a low value of tem-
perature or a medium value of pressure or both.

To explain the idea, suppose we can express
three linguistic predicates, i.e., High Humidity,
Low Temperature and Medium Pressure.

By using a SQL-like syntax, the soft query may be
expressed as reported in Listing 2.

Listing 2: Soft query in SQL-like syntax.
SELECT *

FROM Meteo_Measures
WHERE High_Humidity AND
(Low_Temperature OR Medium_Pressure)

FOR FUZZY SET Wanted
ALPHA-CUT Wanted: 0.5
ADD MEMBERSHIP OF Wanted AS rank

The idea is the following: if we are able to evalu-
ate the three linguistic predicates on each feature, we
can evaluate a compound Wanted linguistic predi-
cate; the membership value associated to this linguis-
tic predicate denotes the degree with which the sin-
gle feature matches the compound linguistic condi-
tion. Let us describe our idea in details.

• The FROM clause specifies the source GeoJSON
document.

• The WHERE clause specifies the compound lin-
guistic condition, by evaluating the membership
degree for each single feature.
The last part of the clause, i.e., FOR FUZZY
SET Wanted, gives a name to the fuzzy set ob-
tained by evaluating the compound linguistic con-
dition.

• The SELECT clause specifies the properties of the
feature to project on.

• The ALPHA-CUT clause selects only those fea-
tures that belong to the Wanted fuzzy set with
membership degree greater than or equal to 0.5.

• ADD MEMBERSHIP OF Wanted AS rank
specifies that the membership value of the
Wanted fuzzy set becomes a new property in
features, whose name is rank; implicitly, we
assume that the features are sorted by the rank
properties in descending order.

We now present our semantic model.

• Each feature can have a pool of associated fuzzy
sets; the memberships degree for each fuzzy set
denotes the degree with which the feature belongs
to the fuzzy set. Formally, the data model for a
feature is:

f = 〈properties,geometry,fuzzysets〉
where properties and geometry are de-
fined exactly as in the GeoJSON standard; The
fuzzysets field is a key/value map, that asso-
ciates a fuzzy set name f sn to the membership de-
gree of f to the fuzzy set f sn.

• The WHERE clause evaluates a soft condition,
computes the membership degree and adds the
new fuzzy set name and the computed member-
ship degree to the map f .fuzzysets.

WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies

256

Clearly, linguistic predicates can be interpreted in
terms of fuzzy sets, i.e., the satisfaction degree of a
linguistic predicate corresponds to the membership
degree to a fuzzy set. So, the previous soft query is
correct only if we guess that the features in the source
GeoJSON document have membership degrees to the
fuzzy sets High Humidity, LowTemperature
and Medium Pressure already computed. How-
ever, this is not true in GeoJSON documents: so, we
can assume that their membership degree is 0 (as a
standard behavior, we can assume that when a fuzzy
set name f sn 6∈ f .fuzzysets, its membership de-
gree is 0). Thus, the previous soft query is correct,
but would not select any feature.

Consequently, we have to extend our proposal and
consider that:

1. fuzzy operators for evaluating membership de-
grees are available;

2. the FROM clause must accept nested soft queries.

Based on the above-mentioned consid-
erations, and supposing that three fuzzy
operators named Has High Humidity,
Has Low Temperature and
Has Medium Pressure are defined, the soft
query can be written as reported in Listing 3.

Listing 3: Nested soft query in SQL-like syntax.
SELECT *
FROM (SELECT *

FROM (SELECT *
FROM (SELECT *

FROM Meteo_Measures
WHERE Has_High_Humidity(humidity)

FOR FUZZY SET High_Humidity
)
WHERE Has_Low_Temperature(temperature)

FOR FUZZY SET Low_Temperature
)
WHERE Has_Medium_Pressure(pressure)

FOR FUZZY SET Medium_Pressure
)
WHERE High_Humidity AND
(Low_Temperature OR Medium_Pressure)

FOR FUZZY SET Wanted
ALPHA-CUT Wanted: 0.5
ADD MEMBERSHIP OF Wanted AS rank

Consequently, the problem we address in this pa-
per can be formulated as follows

Problem 1. Given a soft query sq on a GeoJSON
document, rewrite the query into a lower-level fuzzy
query language for JSON data sets, that generates a
new GeoJSON document containing only the features
that satisfy the soft condition, sorted by the member-
ship degree in reverse order.

5 QUERYING GeoJSON
FEATURES WITH J-CO-QL

The J-CO-QL language is a rich language to query
and transform collections of complex JSON docu-
ments. Here, we show how it can be used to select
features in GeoJSON documents. This way, we will
briefly introduce the language (the reader can refer to
(Bordogna et al., 2017; Bordogna et al., 2018; Psaila
and Fosci, 2018)) and what it is possible to do with-
out using fuzzy constructs, that will be presented in
Section 6.2.

Suppose we have a GeoJSON document that de-
scribes measures performed by weather stations (see
Listing 1), stored within a database named MyDB as
the lonely document of a collection (container of doc-
uments) named Meteo Measures. In this paper,
we do not consider how to connect the J-CO frame-
work to JSON stores (such as MongoDB); the inter-
ested reader can refer to (Psaila and Fosci, 2018).

Listing 4: J-CO-QL query that selects features from a Geo-
JSON document.
GET COLLECTION Meteo_Measures@MyDB;

EXPAND
UNPACK WITH ARRAY .features
ARRAY .features TO feature
DROP OTHERS;

FILTER
CASE WHERE WITH

.feature.item.properties.temperature
AND
.feature.item.properties.temperature
> 30

GENERATE { .type: .feature.item.type,
.properties:

.feature.item.properties,
.geometry: .feature.item.geometry,
.key: "K" }

DROP OTHERS;

GROUP
PARTITION WITH .key

BY .key INTO .features
DROP GROUPING FIELDS
GENERATE { .features: .features,

.type: "FeatureCollection" }
DROP OTHERS;

SAVE AS Filtered@MyDB;

The query in Listing 4 generates a new GeoJ-
SON document, and stores it into a database collec-
tion named Filtered. Let us discuss it.

The query contains five instructions, performing
either simple tasks or complex tasks. The underlying

Soft Querying GeoJSON Documents within the J-CO Framework

257

Listing 5: Temporary collection after the GROUP instruction
in Listing 4.
{"type" : "FeatureCollection",

"features" : [
{ "type" : "Feature",

"geometry" : {
"coordinates" :

[9.379659683, 45.26066732],
"type" : "Point"

},
"properties" : {

"Date" : "2020-08-01",
"Station_Id" : 109,
"humidity" : 97,
"pressure" : 750,
"temperature" : 36.7 } },

{ "type" : "Feature",
"geometry" : {

"coordinates" :
[9.267153115, 45.32059361],

"type" : "Point"
},
"properties" : {

"Date" : "2020-08-01",
"Station_Id" : 114,
"humidity" : 99,
"pressure" : 745,
"temperature" : 38.2 } }

]
}

semantics is the following: each instruction starts
from an Execution State si, and produces a new execu-
tion state s(i+1). Each execution state contains several
information, including also the Temporary Collection,
i.e., a collection of JSON documents that constitutes
the input of the instruction. Thus, each instruction
may use this collection and may generate a new tem-
porary collection.
We can now describe the query in Listing 4.

• The GET COLLECTION instruction retrieves the
collection named Meteo Measures from the
database named MyDB. This collection becomes
the starting temporary collection of the process.
Notice that in this case the collection is composed
by just one document.

• The EXPAND instruction selects and transforms
documents in the temporary collection generating
a new temporary collection. In this case, the UN-
PACK clause selects those documents containing
an array structure in a field named features
and then generates new documents, each one re-
lated to each element in the features array.
Each new document has a feature field con-
taining one of the value in the source features
array, while the other fields in the source docu-
ment remain unchanged. The final DROP OTH-

Listing 6: Temporary collection after the EXPAND instruc-
tion in Listing 4.
{ "type" : "FeatureCollection",

"feature" : {
"item" : {

"geometry" : {
"coordinates" :

[9.379659683, 45.26066732],
"type" : "Point"},

"properties" : {
"Date" : "2020-08-01",
"Station_Id" : 109,
"humidity" : 97,
"pressure" : 750,
"temperature" : 36.7 },

"type" : "Feature" },
"position" : 0 } }

{ "type" : "FeatureCollection",
"feature" : {

"item" : {
"geometry" : {

"coordinates" :
[9.267153115, 45.32059361],

"type" : "Point" },
"properties" : {

"Date" : "2020-08-01",
"Station_Id" : 114,
"humidity" : 99,
"pressure" : 745,
"temperature" : 38.2 },

"type" : "Feature" },
"position" : 1 } }

{ "type" : "FeatureCollection",
"feature" : {

"item" : {
"geometry" : {

"coordinates" :
[10.33339294, 46.17572375],

"type" : "Point" },
"properties" : {

"Date" : "2020-08-01",
"Station_Id" : 117,
"humidity" : 81,
"pressure" : 751,
"temperature" : 17.3 },

"type" : "Feature" },
"position" : 2 } }

ERS clause, which in this case is ineffective, dis-
cards all those documents in the temporary collec-
tion that do not match the selecting condition.
Listing 6 reports the temporary collection ob-
tained by expanding the GeoJSON document re-
ported in Listing 1. Notice that each document
contains the feature field, as specified; this
field, in turns, contains the item field, that ac-
tually is the previously nested document, and the

WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies

258

Listing 7: Temporary collection after the FILTER instruc-
tion in Listing 4.
{ "type" : "Feature"

"key" : "K",
"geometry" : {

"coordinates" :
[9.379659683, 45.26066732],

"type" : "Point"
},
"properties" : {

"Date" : "2020-08-01",
"Station_Id" : 109,
"humidity" : 97,
"pressure" : 750,
"temperature" : 36.7

} }

{ "type" : "Feature"
"key" : "K",
"geometry" : {

"coordinates" :
[9.267153115, 45.32059361],

"type" : "Point"
},
"properties" : {

"Date" : "2020-08-01",
"Station_Id" : 114,
"humidity" : 99,
"pressure" : 745,
"temperature" : 38.2

} }

position field, that denotes the position for-
merly occupied by the document in the array.

• The FILTER instruction selects and transforms
the documents in the temporary collection, gen-
erating a new temporary collection. In this case,
since documents describe weather measures, the
CASE WHERE clause selects documents having
the temperature field (by means of the WITH
predicate) whose value is above 30 degrees.
The selected documents are restructured by the
GENERATE action, in order to simplify them.
Specifically, we keep out all fields inside the
.feature.item structure, generating fields at
root level as type, property and geome-
try. Moreover, an extra key field with a con-
stant value is added. The final DROP OTHERS
clause discards documents that are not selected by
the CASE WHERE clause.
Notice that the new temporary collection contains
two documents, as reported in Listing 7.

• The GROUP instruction creates a partition in the
temporary collection and groups the documents in
the partition into a new single document.
In this case, by means of the WITH predicate, all
documents that hold a key field are selected to
be partitioned. By means of the BY clause, doc-

uments in the partition are grouped based on the
value of the key field: since we have only one
constant value, all documents in the partition are
grouped into one single document.
The INTO clause specifies the name of the new
array field that has to contain grouped docu-
ments: in this case, the name is features. The
DROP GROUPING FIELDS option discards the
key field. The GENERATE action maintains un-
changed the features field and adds a new
type field with "FeatureCollection" as
value.
Notice that the new temporary collection contains
one GeoJSON document, as reported in Listing 5.

• Finally, the temporary collection produced by
the GROUP instruction is saved into the MyDB
database with name Filtered.

The dot notation .features to refer to fields
is motivated by the fact that documents can contain
nested documents and fields; the dot notation allows
for referring to nested fields, for example .A.B (the
initial dots means that the A field is in the root level).

6 SOFT QUERYING IN J-CO-QL

We can now present fuzzy J-CO-QL queries (pro-
posed in (Psaila and Marrara, 2019)), which provide
the tools to solve Problem 1.

6.1 Creating Fuzzy Operators

In order to evaluate if a document belongs to a fuzzy
set, it is necessary to define some operators able to
compute the membership degree of a document with
respect to a fuzzy set.

The fuzzy extension of the J-CO-QL language of-
fers a specific construct to create fuzzy operators. We
exploit it (see Listing 8) to define the fuzzy operators
used in the soft query presented in Listing 3.

Let us consider the definition of the
Has Medium Pressure operator. First of all, the
PARAMETERS clause specifies the formal parameters
received by the operator Has Medium Pressure.
Specifically, the Has Medium Pressure operator
receives one single parameter, named pressure,
defined as an integer value. When the operator is
invoked, all parameters are assembled into one JSON
document, having the formal parameters as fields
and the actual parameters as values. In our case, this
JSON document will have only the pressure field.
In order to obtain the membership degree, we have to
evaluate an expression based on this parameter. The

Soft Querying GeoJSON Documents within the J-CO Framework

259

(a) Has Medium Pressure. (b) Has High Humidity. (c) Has Low Temperature.
Figure 1: Membership Functions of Fuzzy Operators in Listing 8.

EVALUATE clause specifies this expression. In our
case, the value of the pressure parameter is kept
untouched.
However, not all values of the input parameters
are valid: the PRECONDITION clause specifies
a condition to be verified before performing the
evaluation. If the condition is false, no membership
value is generated and the operator generates an
evaluation error. In our case, an atmospheric pressure
below zero has no physical meaning.
The RANGE clause specifies the range within which
the result of the EVALUATE expression is mapped
to the corresponding membership degree, by means
of the polyline function defined in the subsequent
POLYLINE clause. In this case, we consider a range
between 700 and 1100 millibar.
Finally, the POLYLINE clause defines the polyline
used as membership function. It is defined as a
sequence of pairs (x,y), where x is a coordinate in
the range specified by the RANGE clause, while y is
a value specified in the range [0,1]. The first pair
has the value of the x coordinate that coincides with
the left bound of the range, while the last pair has a
value for the x coordinate that is equal to the right
bound of the range. This way, it is possible to define
the membership function as a polyline, where the y
coordinate denotes the final membership value.
For example, the membership function for the
Has Medium Pressure operator is depicted
in Figure1a: notice the points of the polyline that
correspond to the sequence of pairs. If we suppose
that the actual value of the pressure parameter
is 1003, the corresponding y coordinate is 1 (the
membership degree), i.e., the pressure belongs to
the set of medium pressure; if the value for the
pressure parameter is 1045, the corresponding
membership degree is 0, meaning that the pressure
does not belong at all to the set of medium pressure.
And so on. We assume that in case of values of
the expression specified in the EVALUATE clause
that are lower than the left bound (greater than the
right bound, resp.), the y value of the left bound
(right bound, resp.) is the membership value. For

example, if the pressure parameter is 1140 mb,
the membership value is 0.

Similarly, Listing 8 defines the
Has High Humidity operator, which consid-
ers values over 0% as valid humidity and whose
membership function is in the [0%,100%] range
as depicted in Figure 1b. It also defines the
Has Low Temperature operator, which consid-
ers values over the absolute zero (−273◦) as valid
temperature and whose membership function is in the
[−30◦,50◦] range, as depicted in Figure 1c.

Listing 8: Definition of the Fuzzy Operators.
CREATE FUZZY OPERATOR

Has_Medium_Pressure
PARAMETERS pressure TYPE Integer
PRECONDITION .pressure >=0
EVALUATE .pressure
RANGE (700, 1100)
POLYLINE (700,0), (900,0),

(950,0.3), (980,1),
(1010,1), (1025, 0.9),
(1040,0), (1100,0);

CREATE FUZZY OPERATOR
Has_High_Humidity

PARAMETERS humidity TYPE Integer
PRECONDITION .humidity >=0
EVALUATE .humidity
RANGE (0, 100)
POLYLINE (0,0), (70,0),

(90,1), (100,1);

CREATE FUZZY OPERATOR
Has_Low_Temperature

PARAMETERS temperature TYPE Integer
PRECONDITION .temperature >=-273
EVALUATE .temperature
RANGE (-30, 50)
POLYLINE (-30,1), (0,1),(10,0.2),

(20,0), (50,0);

WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies

260

6.2 Fuzzy Sets in J-CO-QL Queries

The fuzzy extension to J-CO-QL can be actually used
to perform the soft query presented in Listing 3. The
fuzzy J-CO-QL query is reported in Listings 9, 10 and
11. The first thing to do is to introduce how the data
model has been extended, in order to deal with mem-
bership to fuzzy sets.

A JSON document d can belong to one or more
fuzzy sets A1,A2, . . . ,An. For each fuzzy set Ai, d be-
longs to Ai with a membership degree Ai(d) ∈ [0,1].
To represent the multiple membership degrees of d,
a special root-level field named ˜fuzzysets is in-
troduced: it is a nested structure, containing only nu-
merical fields; each field denotes the membership de-
gree of the JSON document to the fuzzy set named as
the field. Notice that the name ˜fuzzysets is fully
compliant with JSON naming rules. Furthermore, no-
tice that it represents the map introduced in Section 4
that associates fuzzy sets to membership degrees.

As an example, consider the two JSON documents
reported in Listing 12. For each document, the mem-
bership to four fuzzy sets has been evaluated: in fact,
notice the presence of the ˜fuzzysets field. The
reader can notice that the names of the fuzzy sets are
the same introduced in the soft query in Listing 3:
hereafter, we will see how to compute them.
However, we want to point out that the documents
do not say how the membership degrees to fuzzy sets
were evaluated, they only say the degree with which
they belong to some fuzzy sets. The advantage of this
solution is that the documents are still standard JSON
documents: they can be stored into database collec-
tions and retrieved from them.

In Section 5, we presented the FILTER instruc-
tion without fuzzy sets. From now on, we will make
use of the extended version of the FILTER instruc-
tion, that provides specific clauses to deal with fuzzy
sets. Remember that the general goal is to perform
the soft query in Listing 3: starting from the Me-
teo Measures GeoJSON document (reported in
Listing 1), we want to generate a new GeoJSON doc-
ument, containing only those features that have high
humidity and either low temperature or medium pres-
sure or both, sorted in reverse order of relevance.

Let us start with the preamble of the J-CO-QL
query, reported in Listing 9. This part of the query
coincides with the first three instructions in the clas-
sical J-CO-QL query reported in Listing 4: this is not
surprising, because these three instructions retrieve
the collection containing the desired GeoJSON layer
from the database, expand the features into one single
document for each feature and remove nested struc-
tures that are not necessary.

Listing 10 reports the core part of the query. In
this part, it is necessary to actually evaluate fuzzy sets,
both those that express basic linguistic predicates,
such as Medium Pressure, High Humidity
and Low Temperature, and the one (Wanted)
derived by combining the former ones.

The first FILTER instruction evaluates the mem-
bership degree of documents in the temporary collec-
tion (generated by the last instruction in Listing 9) to
the High Humidity fuzzy set.
Specifically, after the WHERE condition, the CHECK
FOR FUZZY SET sub-clause denotes that the mem-
bership degree to this fuzzy set is evaluated.
In particular, the subsequent USING sub-clause re-
ports the fuzzy condition to be used in order to eval-
uate the membership degree. In this case, the fuzzy
condition evaluates the Has High Humidity op-
erator on each single document; the membership de-
gree returned by the fuzzy operator becomes the de-
gree with which each single document belongs to the
High Humidity fuzzy set.
Notice that the GENERATE action is absent: the struc-
ture of documents that are put into the output tempo-
rary collection does not change, apart from the novel
˜fuzzysets field that is automatically added.

The second and the third FILTER instructions
perform the same activity, i.e., they evaluate the
degree of membership to the Medium Pressure
fuzzy set and to the Low Temperature fuzzy
set. After the third FILTER instruction, the
˜fuzzysets field contains three fields, one for each
of the three evaluated fuzzy sets.

The last FILTER instruction in the core part of
the query (Listing 10) evaluates the membership to
the Wanted fuzzy set. The fuzzy condition (USING)
uses the previously computed membership degrees to
fuzzy sets High Humidity, Medium Pressure
and Low Temperature as linguistic predicates, in

Listing 9: Fuzzy J-CO-QL Query (preamble).
GET COLLECTION Meteo_Measures@MyDB;

EXPAND
UNPACK WITH ARRAY .features

ARRAY .features TO feature
DROP OTHERS;

FILTER
CASE WHERE WITH .feature.item

GENERATE
{ .type: .feature.item.type,

.properties:
.feature.item.properties,

.geometry:
.feature.item.geometry }

DROP OTHERS;

Soft Querying GeoJSON Documents within the J-CO Framework

261

Listing 10: Fuzzy J-CO-QL Query (core).
FILTER

CASE WHERE
WITH .properties.humidity
CHECK FOR FUZZY SET High_Humidity
USING Has_High_Humidity(

.properties.humidity)
DROP OTHERS;

FILTER
CASE WHERE

WITH .properties.pressure
CHECK FOR FUZZY SET Medium_Pressure
USING Has_Medium_Pressure(

.properties.pressure)
DROP OTHERS;

FILTER
CASE WHERE

WITH .properties.temperature
CHECK FOR FUZZY SET Low_Temperature
USING Has_Low_Temperature(

.properties.temperature)
DROP OTHERS;

FILTER
CASE WHERE KNOWN FUZZY SETS

High_Humidity,
Low_Temperature,
Medium_Pressure

CHECK FOR FUZZY SET Wanted
USING High_Humidity AND
(Low_Temperature OR Medium_Pressure)
ALPHA-CUT 0.5 ON Wanted

DROP OTHERS;

order to evaluate the degree with which documents
belong to the wished Wanted fuzzy set.
The structure of the instruction is the same, but with
some small differences. First of all, in the WHERE
clause, we use the KNOWN FUZZY SETS predicate,
that is evaluated as true if the membership to all the
listed fuzzy sets has been evaluated in a document.
Second of all, notice that the fuzzy condition in the
USING sub-clause now simply relies on fuzzy sets
that are used as linguistic predicates.
Finally, the ALPHA-CUT clause specifies that only
documents having a membership degree greater than
or equal to 0.5 to the Wanted fuzzy set are kept in
the output temporary collection.

In Listing 12, we report the documents that are
present in the temporary collection at the end of the
core part of the query (Listing 10). The reader can no-
tice that, of the three features formerly present in the
source GeoJSON document (reported in Listing 1),
only two of them have been selected by the ALPHA-
CUT clause. Notice, in each document, the presence
of the special ˜fuzzysets field, with the four fields
corresponding to the four fuzzy sets and the corre-

Listing 11: Fuzzy J-CO-QL Query (tail).
FILTER

CASE WHERE
WITH ."˜fuzzysets".Wanted

GENERATE { .type: .type,
.properties: .properties,
.geometry: geometry, .key: 1,
.properties.rank:

."˜fuzzysets".Wanted }
DROPPING ALL FUZZY SETS

DROP OTHERS;

GROUP
PARTITION WITH .key

BY .key INTO .features
DROP GROUPING FIELDS
ORDER BY .properties.rank DESC
GENERATE

{ .type: "FeatureCollection",
.features: .features }

DROP OTHERS;

SAVE AS Filtered@MyDB;

sponding membership degrees.
Finally, the tail of the query, reported in List-

ing 11, can be executed, to rebuild a GeoJSON docu-
ment containing the wished features.

The first FILTER instruction in Listing 11 pre-
pares documents to be grouped into the output GeoJ-
SON document. In particular, the GENERATE action
inserts a rank field into the properties field of
each document, whose value is the membership de-
gree to the Wanted fuzzy set: this value denotes how
much the document satisfies the linguistic selection
condition. Notice that, apart from the need to refer
to the ˜fuzzysets field as "˜fuzzysets", it is
a standard JSON field and can be referred to accord-
ingly. As in Listing 6, a field named key with a con-
stant value is added, that will play the role of grouping
field in the next GROUP instruction.
The DROPPING ALL FUZZY SETS option asks
for removing the ˜fuzzysets special field from the
output documents.

The GROUP instruction rebuilds a unique GeoJ-
SON document. With respect to the GROUP instruc-
tion in Listing 6, now we have the ORDER BY clause
that sorts documents that have been grouped into the
new features array in descending order (DESC op-
tion) of rank.

Finally, the temporary collection, that contains
only the wished GeoJSON document (reported in
Listing 13), is saved into the database.

The fuzzy J-CO-QL query presented in this sec-
tion, demonstrates that J-CO-QL is effective in per-
forming the soft query reported in Listing 3. How-
ever, although J-CO-QL is effective, it is a rich andcomplex language, that asks for the development of

WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies

262

Listing 12 Document belonging to some fuzzy sets.
{ "geometry" : {

"coordinates" :
[9.379659683, 45.26066732],

"type" : "Point" },
"properties" : {

"Date" : "2020-05-01",
"Station_Id" : 109,
"humidity" : 83,
"pressure" : 1000,
"temperature" : 26 },

"type" : "Feature",
"˜fuzzysets" : {

"High_Humidity" : 0.65,
"Low_Temperature" : 0.0,
"Medium_Pressure" : 1.0,
"Wanted" : 0.65 }

}
{ "geometry" : {

"coordinates" :
[9.267153115, 45.32059361],

"type" : "Point" },
"properties" : {

"Date" : "2020-05-01",
"Station_Id" : 114,
"humidity" : 99,
"pressure" : 980,
"temperature" : 24 },

"type" : "Feature",
"˜fuzzysets" : {

"High_Humidity" : 1.0,
"Low_Temperature" : 0.0,
"Medium_Pressure" : 1.0,
"Wanted" : 1.0 }

}

higher-level tools, such as the soft query language
sketched in Section 4. In Section 6.3 we show that
it is possible to devise a query-rewriting technique,
that generates the fuzzy J-CO-QL query reported in
Listings 9, 10 and 11. Consequently, based on this
consciousness, Problem 1 can be refined as follows.

Problem 2. Given a soft query sq on a GeoJSON doc-
ument, rewrite the query into a J-CO-QL query that
generates a new GeoJSON document containing only
the features that satisfy the soft condition, sorted vs
the membership degree in reverse order.

6.3 Rewriting Soft Queries

We can finally provide the final contribution of the
paper, i.e., addressing Problem 2: we present an algo-
rithm for rewriting soft queries into fuzzy J-CO-QL
queries, that proceeds as follows.

1. The concept of temporary collection will be ex-
ploited to save intermediate collections generated
by nested soft queries.

Listing 13: GeoJSON document saved to database.
{ "type" : "FeatureCollection",

"features" : [
{ "type" : "Feature",

"geometry" : {
"coordinates" :

[9.267153115, 45.32059361],
"type" : "Point" },

"properties" : {
"Date" : "2020-05-01",
"Station_Id" : 114,
"humidity" : 99,
"pressure" : 980,
"temperature" : 24,
"rank" : 1.0 } },

{ "type" : "Feature",
"geometry" : {

"coordinates" :
[9.379659683, 45.26066732],

"type" : "Point" },
"properties" : {

"Date" : "2020-05-01",
"Station_Id" : 109,
"humidity" : 83,
"pressure" : 1000,
"temperature" : 26,
"rank" : 0.65 } }

]
}

2. The data model of J-CO-QL naturally deals with
fuzzy sets. So, given a feature f , the map
f .fuzzysets corresponds to the special field
˜fuzzysets.

3. Given a nested soft query sqi in the FROM clause
of another soft query sq(i−1), the translation of sqi
generates the temporary collection that will be the
input to the translation of sq(i−1).

4. The preamble of the J-CO-QL query is the code
that gets the collection from the database and ex-
tracts features from within the GeoJSON docu-
ment; the last part of the J-CO-QL query is the
code that groups features to generate one single
GeoJSON document.
Algorithm 1 reports the pseudo-code of the rewrit-

ing process. Hereafter, we present it.
• The rewriting process is managed by the Rewrite-

SoftQuery function, that receives a query sq as
input parameter; it returns a string with the corre-
sponding J-CO-QL query.

• The RewriteSoftQuery function takes the string
generated by the recursive RewriteSingleQuery
function and appends the tail of the query, gener-
ated by the GenTail function.

• The RewriteSingleQuery function recursively
deals with nesting of soft queries. If the FROM
clause of the current query is a nested query, it

Soft Querying GeoJSON Documents within the J-CO Framework

263

Algorithm 1 : Rewrites Soft Queries on GeoJSON docu-
ments to fuzzy J-CO-QL queries.

1.Function RewriteSingleQuery(sq: SoftQuery)
: String

Begin
T := "";
If sq.FROM Is a Soft Query Then

T := RewriteSingleQuery(sq.FROM);
Else

T := GenPreamble(sq.FROM)
End If
R := T•GenFilter(sq.FROM);
Return R;

End Function

Function RewriteSoftQuery(sq: SoftQuery)
: String

Begin
T := RewriteSingleQuery(sq);
R := T• GenTail(sq);
Return R;

End

recursively recalls itself; otherwise, it is a layer
name and it calls the GenPreamble function.
The GenPreamble function prepares the pream-
ble of the J-CO-QL query, that gets the collec-
tion containing the GeoJSON document from the
database and expands it, to obtain as many JSON
documents describing features as the features that
are grouped within the features array at the
root level of the GeoJSON document.

• Finally, the RewriteSingleQuery function ap-
pends the output of the GenFilter function, that
actually generates a J-CO-QL FILTER instruc-
tion that corresponds to the current soft query.
For the sake of space, we do not report the pseudo

code for the GenFilter and the GenTail functions.
However, having in mind Listing 10, the GenFil-
ter function generates the FILTER instruction cor-
responding to each single soft query. Having in mind
Listing 11, the GenTail function generates the whole
tail of the query; specifically, it uses the outer soft
query to generate the first FILTER instruction in List-
ing 11, that generates the rank field by taking the
membership value to the Wanted fuzzy set, as well
as the ORDER BY clause in the GROUP instruction.

The presented algorithm is thus able to rewrite a
high-level and generic soft query on GeoJSON doc-
uments, as formulated in Section 4, into a fuzzy J-
CO-QL query. Thus, we solve Problems 1 and 2, as
well as we have shown that it is possible to effectively
use the J-CO-QL language and, more in general, the
J-CO framework, as the underlying engine to develop

high-level soft query languages on specific classes of
JSON documents, such as GeoJSON documents.

7 CONCLUSIONS

In this paper, we introduced the idea of writing soft
queries, i.e., queries that rely on linguistic predicates,
on a specific class of JSON documents, i.e., GeoJSON
documents. The usefulness of this approach is moti-
vated by the fact that GeoJSON has become a widely
used format for disseminating geographical informa-
tion over the Web, but a standard query language able
to natively query GeoJSON documents is not avail-
able yet.

We explored the adoption of the fuzzy constructs
introduced in the J-CO-QL language, that is part of
the J-CO framework, specifically designed to provide
a powerful tool to manipulate and query collections
of JSON documents in a seamless way with respect
to the specific JSON storage system. The query-
rewriting technique presented in Section 6.3 shows
that it is possible to generate a complex fuzzy J-CO-
QL query from a simple and high-level soft query. We
showed that the high-level soft query language can
be actually translated into a concrete query language
(such as J-CO-QL). The effectiveness of the idea will
be evaluated in future validation campaigns.

As a future work, we plan to further investigate
the definition of high-level and soft query languages
for JSON documents, by considering various JSON
standards. In fact, we think that the development of
effective query languages for JSON data sets is an
important research line; and it is a concrete and use-
ful application of the J-CO framework as underlying
execution engine. Geo-tagging within JSOn (as Geo-
JSON) documents will be consider, to perform uncer-
tain location-based queries (Bordogna et al., 2008).

REFERENCES

Blair, D. C. (1979). Information retrieval, 2nd ed. c.j. van
rijsbergen. london: Butterworths; 1979: 208 pp. price:
$32.50. Journal of the American Society for Informa-
tion Science, 30(6):374–375.

Bordogna, G., Capelli, S., Ciriello, D. E., and Psaila, G.
(2018). A cross-analysis framework for multi-source
volunteered, crowdsourced, and authoritative geo-
graphic information: The case study of volunteered
personal traces analysis against transport network
data. Geo-spatial Information Science, 21(3):257–
271.

WEBIST 2020 - 16th International Conference on Web Information Systems and Technologies

264

Bordogna, G., Capelli, S., and Psaila, G. (2017). A big
geo data query framework to correlate open data with
social network geotagged posts. In The Annual Inter-
national Conference on Geographic Information Sci-
ence, pages 185–203. Springer.

Bordogna, G., Pagani, M., Pasi, G., and Psaila, G. (2008).
Evaluating uncertain location-based spatial queries. In
Proceedings of the 2008 ACM symposium on Applied
computing, pages 1095–1100.

Bordogna, G. and Pasi, G. (1995). Linguistic aggregation
operators of selection criteria in fuzzy information re-
trieval. International journal of intelligent systems,
10(2):233–248.

Bordogna, G. and Psaila, G. (2009). Soft aggregation in
flexible databases querying based on the vector p-
norm. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 17(supp01):25–40.

Bosc, P. and Pivert, O. (1995). Sqlf: a relational database
language for fuzzy querying. IEEE transactions on
Fuzzy Systems, 3(1):1–17.

Bosc, P. and Prade, H. (1997). An introduction to the fuzzy
set and possibility theory-based treatment of flexible
queries and uncertain or imprecise databases. In Un-
certainty management in information systems, pages
285–324. Springer.

Buell, D. A. (1985). A problem in information retrieval
with fuzzy sets. Journal of the American Society for
Information Science (pre-1986), 36(6):398.

Butler, H., Daly, M., Doyle, A., Gillies, S., Hagen, S.,
Schaub, T., et al. (2016). The geojson format. Internet
Engineering Task Force (IETF).

Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G.,
and Spoletini, P. (2009). A fuzzy extension of the
xpath query language. Journal of Intelligent Informa-
tion Systems, 33(3):285.

Damiani, E. and Tanca, L. (2000). Blind queries to
xml data. In International Conference on Database
and Expert Systems Applications, pages 345–356.
Springer.

Fuhr, N. (1989). Models for retrieval with probabilistic
indexing. Information Processing & Management,
25(1):55–72.

Galindo, J., Urrutia, A., and Piattini, M. (2006). Fuzzy
databases: Modeling, design, and implementation.
IGI Global.

Herrera, F. and Herrera-Viedma, E. (1997). Aggregation
operators for linguistic weighted information. IEEE
Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, 27(5):646–656.

Kacprzyk, J. and Zadrożny, S. (1995). Fquery for access:
Fuzzy querying for a windows-based dbms. Bosc P.,
Kacprzyk J. (eds), Fuzziness in Database Manage-
ment Systems. Studies in Fuzziness, 5.

Kraft, D. H., Colvin, E., Bordogna, G., and Pasi, G. (2015).
Fuzzy information retrieval systems: A historical per-
spective. In Fifty Years of Fuzzy Logic and its Appli-
cations, pages 267–296. Springer.

Marrara, S. and Pasi, G. (2016). Fuzzy approaches to flexi-
ble querying in xml retrieval. International Journal of
Computational Intelligence Systems, 9(sup1):95–103.

Medina, J. M., Pons, O., and Vila, M. A. (1994). Gefred: A
generalized model of fuzzy relational databases. In-
formation Sciences, 76(1):87 – 109.

Psaila, G. and Fosci, P. (2018). Toward an anayist-oriented
polystore framework for processing json geo-data.
In International Conferences on Applied Computing
2018, Budapest; Hungary, 21-23 October 2018, pages
213–222. IADIS.

Psaila, G. and Marrara, S. (2019). A first step towards
a fuzzy framework for analyzing collections of json
documents. In IADIS AC 2019, pages 19–28.

Ramer, A. (1989). Possibility theory: An approach to com-
puterized processing of uncertainty, by didier dubois
and henri prade, plenum press, new york 1988. xvi+
263 pages. International Journal of General Systems,
15(2):168–170.

Salton, G., Allan, J., Buckley, C., and Singhal, A.
(1994). Automatic analysis, theme generation, and
summarization of machine-readable texts. Science,
264(5164):1421–1426.

Waller, W. and Kraft, D. H. (1979). A mathematical model
of a weighted boolean retrieval system. Information
Processing & Management, 15(5):235–245.

Zadeh, L. A. (1965). Fuzzy sets. Information and control,
8(3):338–353.

Zadeh, L. A. (1975). The concept of a linguistic variable
and its application to approximate reasoning—i. In-
formation sciences, 8(3):199–249.

Soft Querying GeoJSON Documents within the J-CO Framework

265

