SatelliteNER: An Effective Named Entity Recognition Model for the Satellite Domain

Omid Jafari, Parth Nagarkar, Bhagwan Thatte, Carl Ingram


Named Entity Recognition (NER) is an important task that detects special type of entities in a given text. Existing NER techniques are optimized to find commonly used entities such as person or organization names. They are not specifically designed to find custom entities. In this paper, we present an end-to-end framework, called SatelliteNER, that its objective is to specifically find entities in the Satellite domain. The workflow of our proposed framework can be further generalized to different domains. The design of SatelliteNER includes effective modules for preprocessing, auto-labeling and collection of training data. We present a detailed analysis and show that the performance of SatelliteNER is superior to the state-of-the-art NER techniques for detecting entities in the Satellite domain.


Paper Citation