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Abstract: Human Activity Recognition (HAR) has been attempted by various sensor modalities like vision sensors, 
ambient sensors, and wearable sensors. These heterogeneous sensors are usually used independently to 
conduct HAR. However, there are few comprehensive studies in the previous literature that investigate the 
HAR capability of various sensors and examine the gap between the existing HAR methods and their potential 
application domains. To fill in such a research gap, this survey unfastens the motivation behind HAR and 
compares the capability of various sensors for HAR by presenting their corresponding datasets and main 
algorithmic status. To do so, we first introduce HAR sensors from three categories: vision, ambient and 
wearable by elaborating their available tools and representative benchmark datasets. Then we analyze the 
HAR capability of various sensors regarding the levels of activities that we defined for indicating the activity 
complexity or resolution. With a comprehensive understanding of the different sensors, we review HAR 
algorithms from perspectives of single modal to multimodal methods. According to the investigated 
algorithms, we direct the future research on multimodal HAR solutions. This survey provides a panorama 
view of HAR sensors, human activity characteristics and HAR algorithms, which will serve as a source of 
references for developing sensor-based HAR systems and applications. 

1 INTRODUCTION 

HAR research has been revitalized in recent years 
with plenty of emerging big data technologies that 
involve various Internet of Thing (IoT) sensors. HAR 
is a broad field of study concerned with identifying 
the specific movement or action of a person based on 
sensor data. HAR could have a plenty of application 
domains like healthcare, assisted living, surveillance 
and computational behavioral science, etc. For 
instance, the concept of cashier-free supermarket has 
been emerged in recent years since the announcement 
of Amazon Go and the release of its patents (Dilip, 
2015; Gianna, 2015). Sensor technologies such as 
Radio Frequency IDentification (RFID), computer 
vision, and sensor fusion have been collectively 
attempted by companies for no-check stores to detect 
activities of customers, but none of those 
technologies has been popularized to mass production 
due to their high implementation cost and intrinsic 
limitations. Another important application domain of 
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HAR is healthcare where Applied Behavioral 
Analysis (ABA) has been empirically verified as 
effective treatment or prevention therapy for Autism 
kids (Chouhan & Sharma, 2017). Besides, it could 
also be applied to early screening of dementia 
symptoms for the elderly to take effective prevention 
therapies (Petersen et al., 2001). 

In these application domains, HAR requires 
varied levels of activity recognition resolutions to 
tackle their specific core problems. If activities in a 
grocery store or at a patient’s home could be detected 
at a high resolution that supports advanced behavior 
understanding, we could believe that it will breed 
realistic benefits to our daily life. However, it remains 
lack of studies examining the characteristics of 
human activity and the required level of HAR for 
landing them to those application domains.  The 
existing research of HAR usually focus on a single 
sensor modality such as inertial sensor (Avci et al., 
2010; Bulling et al., 2014), vision sensor (Presti & La 
Cascia, 2016), or WSN (Alemdar & Ersoy, 2010). 
Although the use of single sensor modality has 
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achieved some progresses on a few public datasets, it 
might impede the potential progress of HAR area 
since the real-world data source of HAR is 
heterogeneously multimodal. To our best knowledge, 
the effective data fusion strategies for multimodal 
HAR solutions have not been thoroughly explored in 
previous literatures. To identify the potential research 
gaps, this survey disentangles HAR from three 
aspects: activities, sensors and algorithms. 

This survey is one of the first attempts to examine 
the complexity levels of human activity and the state-
of-the-art levels of HAR achieved by different 
sensors. Unlike most existing literatures of survey 
that focus on a specific sensor modality, this paper 
provides a systematic review of various IoT sensors 
and their HAR capabilities. Main contributions of this 
survey are threefold. First, it collectively compares 
advantages and disadvantages of different sensors, 
which can serve as a guidance to choose proper sensor 
modalities for developing applicable holistic real-
world applications. Second, it provides a definition of 
activity levels and a categorization scheme of HAR 
that are used to analyze the HAR capability of 
different sensor modalities. Third, it reviews 
multimodal algorithms from both perspectives of 
traditional and Deep Learning (DL) methods, and 
direct the future research of HAR. 

Regarding the structure of this survey, we start 
with introducing different sensors in Section 2. We 
then define the levels of human activity and analyze 
the HAR capability of different sensors by using the 
sample activities of a breakfast preparation activity 
routine in Section 3. In Section 4, we explore the 
future direction of HAR by reviewing data fusion and 
processing methods of both single modal and 
multimodal HARs. In Section 5, we draw a 
conclusion and direct the future work. 

2 IoT SENSORS FOR HAR 

Regarding IoT sensors used for HAR, some 
researches classify them into two rough categories: 
ambient sensors and wearable sensors (Acampora et 
al., 2013; Chen, Hoey, et al., 2012). Ambient sensors 
refer to sensors connected as a wireless mesh/dense 
network that monitor the whole indoor environment 
as well as human subjects. Wearable sensors are 
attached to clothing and body, or even implanted 
under the human skin. It is also common to classify 
HAR sensors to three categories: vision, ambient and 
wearable (Palumbo et al., 2014). Plenty of vision-
based behavior analysis technologies and 
applications have immerged in recent years, among 

which depth sensors remarkably attracts the interest 
of researchers. Ambient sensors like RFID, pressure 
sensor and inferred have been attempted but not as 
popular as vision sensors. Wearable sensors like 
accelerometer and gyroscope are popularly adopted 
in both industrial and academic solutions. In the 
remaining of this section, we extensively introduce 
representative IoT sensors from three sensor 
categories: vision, ambient and wearable sensors. 

2.1 Vision Sensor 

Vision sensors could be further grouped to two types: 
representations based on local features (Gasparrini et 
al., 2014; Elangovan et al., 2012) and body skeleton 
(Wang, Liu, et al., 2012; Shahroudy, Liu, et al., 
2016). HAR methods based on local features are 
independent to the choice of sensors as they only use 
raw depth data and more robust to occlusion as depth 
sensors are usually installed on ceiling. In (Gasparrini 
et al., 2014), approaches using local features could be 
capable for recognizing simple activities like fall and 
hand gestures. Another approach (Elangovan et al.) 
used local features to recognize three types of 
interactions: human to human, human to object, and 
human to vehicle, which is at a rough level and has 
low generalization ability as the local features are 
fixed. Although local feature-based methods could 
not provide applicable fine-grained HAR solutions, 
the performance of a DL method (Haque et al., 2017) 
proposed to monitor hand hygiene compliance in a 
hospital outperforms human accuracy. 

Comparing with local feature-based approaches, 
with a skeleton retrieval step, skeleton representation 
of human activity data could significantly alleviate 
the complexity of HAR. Vision sensors that allow 2D 
or 3D skeleton retrieval including: 
 Motion Captures (MoCap): MoCaps can 

provide very accurate skeletal data, but 
suffered from high price and low flexibility for 
general usage purpose; 

 Depth cameras: some off-the-shelf commercial 
depth cameras like Microsoft Kinect v1/v2 and 
Intel RealSense can retrieve skeleton data in a 
significantly affordable way with acceptable 
accuracy for HAR; 

 RGB cameras: 2D skeleton data could be 
retrieved from RGB video data (Cao et al., 
2016) and even 3D skeleton data (Moreno-
Noguer, 2017; Pavlakos et al., 2017), which 
requires more computational cost and 
challenging for real-time detection. Detecting 
2D skeleton from RGB image resembles the 
COCO Keypoint Challenge (Lin et al., 2014). 
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With the capability of collecting skeleton data, 
Kinect sensors dominate the area of vision-based 
HAR. According to the list of public benchmark 
datasets in (Han, Reily, Hoff, & Zhang, 2017), there 
were 29 out of 41 datasets being collected by Kinect 
sensors. Mocap ranked the second popular approach 
in (Han et al., 2017). Other depth sensors like Xtion 
Live Pro and Leap Motion have seldom been used for 
data collection (Marin et al., 2014). Representative 
big HAR datasets collected by Kinect sensors are 
listed in Table 1. Currently, NTU RGB+D 120 (Liu, 
Shahroudy, Perez, et al., 2019) has the largest number 
of activities (NA) and subjects (NS) involved, which 
is grouped into three categories: daily actions, 
medicals actions and mutual actions. 

Table 1: Benchmark datasets for vision-based HAR. 

Dataset Sensor NS NA
(Wang et al., 2012) Kinect v1 10 16 
(Wei et al., 2013) Kinect v1 8 8 

(Rahmani et al., 2014) Kinect v1 10 30 
(Shahroudy et al., 2016) Kinect v2 40 60 
(Liu, Hu, et al., 2017) Kinect v2 66 51 

(Liu, Shahroudy, Perez, et 
al., 2019) 

Kinect v2 106 120

2.2 Ambient Sensor 

From the best of our knowledge, there are mainly four 
types of ambient sensors as shown in Figure 1. Wi-Fi 
and RFID tags have been claimed to be used for both 
coarse-grained and fine-grained activity recognition 
in (Wang, Zhang, et al., 2015) and (Patterson et al., 
2005), respectively. While state change sensors are 
usually only capable for coarse-grained activity 
recognition. There are also few attempts using audio 
data for HAR, which is an area separated from speech 
recognition. 

 

Figure 1: An IMU sensor with 6 degrees of freedom. 

2.2.1 State Change Sensors 

Various types of state change sensors could be used 
for collecting ambient state changes of objects like 
furniture, bathroom sanitary ware, kitchen utensils, 
and electrical appliance. Figure 1(a) gives three 
example of commonly used state sensors namely 

pressure sensor, mercury contact and reed sensor. 
These state sensors are binary and wireless and can 
indicate binary states like switch on or off, and open 
or closed through a Wireless Sensor Network (WSN). 
For data driven HAR model development and 
evaluation purposes, self-reporting and camera 
monitoring are two main methods of data annotation. 
The HAR method proposed in (Van Kasteren, 2011) 
used a wireless sensor network kits called RFM DM 
1810 to connect various state change sensors includes 
reed switch, pressure mat, and mercury contact 
sensor, etc. Except RFM DM 1810, there are other 
open-source hardware platforms, Udoo and 
Raspberry Pi which are popular among researchers 
for their low-cost and highly scalable in terms of both 
the type and number of sensors. It is concluded in 
(Maksimović et al., 2014) that the expensive Udoo 
could achieve the best performance among other IoT 
hardware platforms including Arduino Uno, 
BeagleBone Black, Phidgets and Raspberry Pi. 

2.2.2 RFID 

RFID is a technology for reading information from a 
distance from RFID-tags. RFID technology can be 
subdivided into three categories: passive, semi-
passive, and active. Depending upon the application, 
near-field RFID tags come in many form factors as 
shown in Figure 1(b) (Chawla & Ha, 2007). RFID 
technology is combined with data-mining techniques 
and an inferencing engine to recognize activities 
based on the objects used by people. (Patterson et al., 
2005) introduced a fine-grained HAR approach by 
tagging 60 activity related objects for a morning 
household routine. A user needs to take a RFID glove 
as a reader in their approach. A similar job was 
conducted earlier by (Philipose et al., 2004) for 
inferring activities of elderlies and ADL collection. 
RFID technology needs to attach tags to objects and 
reader devices to users. It is suitable to tag some 
movable objects as Patterson and Ma did. Meanwhile, 
it could also be used together with wearable sensors 
together (Hong et al., 2010; Stikic et al., 2008). The 
data stream of this approach is similar with state 
change sensors. In contrast to state change sensors, it 
is easier to equip small objects, such as a toothbrush 
or a dinner plate, with a sensing node. State sensors 
in WSN can therefore only sense activities at 
relatively limited granularities. 

2.2.3 Wi-Fi 

Since human bodies are good reflectors of wireless 
signals, human activities can be recognized by 
monitoring changes in Wi-Fi signals (Ma et al., 
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2016). Recent Wi-Fi-based HAR uses the Channel 
State Information (CSI) of commercial Wi-Fi systems 
(Guo, 2017). To extract CSI, Intel Wi-Fi Wireless 
Link 5300 is a frequently used Wi-Fi Network 
Interface Card (NIC) which supports IEEE 802.11n 
enabled by modulation methods of OFDM 
(orthogonal frequency division multiplexing) and 
MIMO (multiple input multiple output) (Halperin et 
al., 2011). The movement of the human body parts 
cause variations in the Wi-Fi signal reflections, which 
results in changes in CSIs. By analyzing the data 
streams of CSIs of different activities and comparing 
them against stored models, human behavior can be 
recognized. This is done by extracting features from 
CSI data streams and using machine learning 
techniques to build models and classifiers. One 
challenge of this approach is how to make a system 
robust to environment change. Common device set up 
is illustrated in Figure 2, which studies the impact of 
environment differences in (Guo, 2017). Another 
challenge is multi-user activity recognition, which 
remains an open question and few solutions have 
been attempted (Wang, Liu, et al., 2015). With the 
advantages of low deployment cost, non-intrusive 
sensing nature, wide coverage range (approximate 
70m indoor and 250m outdoor), Wi-Fi based activity 
recognition has become an emerging and promising 
research area with the abilities of traverse through 
wall for HAR and localization of static human 
subjects and metallic objects (Adib & Katabi, 2013; 
Pu et al., 2013; Huang, et al., 2014). 

 

Figure 2: Wi-Fi and PC setups in experimental scenarios. 

2.2.4 Sound 

In parallel to other ambient sensors, sound produced 
by objects, human, or human-object interactions 
convey rich cognitive information about the ongoing 
context, events, and conversations. Stork et al. (Stork 
et al., 2012) attempted to recognize activities from 
audio data by using the Mel Frequency Cepstral 
Coefficient (MFCC) feature to build a Soundbook for 
all activities. Stork created the Freiburg dataset as in 
Table 2. Audio-based HAR is a rarely attempted area 
separated from speech recognition, hence, there are 
very few public datasets available. Another relevant 
dataset is ESC-US Dataset (Piczak, 2015) which has 
some labelled subsets like ESC-10 and ESC-50. 

Representative public datasets for ambient sensor 
based HAR are listed in Table 2. RFID sensors could 
be used for fall action only. State-change sensors 
could be used for some coarse-grained activities, 
while Wi-Fi and audio signals have the ability for 
inferring relatively more fine-grained activities. 

Table 2: Datasets of ambient sensor-based HAR. 

Dataset Sensor NS NA
(Van et al., 2008) State change 1 8 

(Torres et al., 2013; 
Wickramasinghe, Ranasinghe, 

et al., 2017) 

RFID 14 2 

(Wickramasinghe, Torres, et 
al., 2017) 

RFID 13 2 

(Guo et al., 2018) Wi-Fi 10 16 
(Stork et al., 2012) Audio NA 22 

2.3 Wearable Sensor 

Wearable inertial sensors like accelerometer and 
gyroscope have achieved popularity with their 
advantage of long-term monitoring system (Li, Xu, et 
al., 2016; Liu, Yen, et al., 2017). (Mukhopadhyay, 
2015) introduced the sensors for human activity 
monitoring could be body temperature, heart rate, 
accelerometer, and Electrocardiogram (ECG). Except 
inertial sensors, other physiological condition sensors 
are more relates to various diseases directly instead of 
HAR. For example, body temperature and heart rate 
sensors could be used for detecting health problems 
like stroke, heart attack and shock. (Parkka et al., 
2006) concluded that the accelerometer is the most 
effective and accurate sensor for HAR. Besides, 
comparing with accelerometer, the measurement of 
those physiological condition data is not very relevant 
to the task of HAR as proved by (Parkka et al., 2006). 

 

Figure 3: An IMU sensor with 6 degrees of freedom. 

An IMU is a Micro-Electro-Mechanical System 
(MEMS) electronics module and is typically 
comprised of 3 accelerometers, 3 gyroscopes, and 
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optionally 3 magnetometers. An accelerometer 
measures changes in velocity and changes in position. 
A gyroscope measures either changes in orientation 
or changes in angular velocity. Magnetometers is 
useful to determine absolute orientation of the sensor. 
As Figure 3 shows, IMUs with 3 axis accelerometers 
and 3 axis gyroscopes are commonly referred to as 6 
degrees of freedom (DOF) IMU sensors. The 
inclusion of a 3-axis magnetometer is sometimes 
referred to as 9 DOF IMU sensors although 
technically magnetometer should not be referred to as 
inertial sensor. Table 3 provides some wearable 
sensor based HAR datasets that use varied IMU 
sensors from using 3-DOF IMUs to 9-DOF IMUs. All 
of them are for coarse-grained HAR due to the 
intrinsic characteristic of IMUs as it could not provide 
sufficient information like appearance features in the 
vision sensors. 

Table 3: Datasets of wearable sensor-based HAR. 

Dataset Sensor NS NA
(Reiss & Stricker, 2012) 3 3-DOF IMUs 9 18 
(M. Zhang & Sawchuk, 

2012) 
6-DOF IMU 14 12 

(Anguita, Ghio, Oneto, 
Parra, & Reyes-Ortiz, 

2013) 

3-DOF IMU 30 12 

(Baños et al., 2012) 9-DOF IMUs 17 33 

2.4 Multiple Sensors 

Although skeleton-based methods achieved 
outstanding performances in HAR, common data 
modalities like color, depth, face, and sound from 
real-world scenarios have seldom been collectively 
considered in existing HAR methods. (Chahuara et 
al., 2016) attempted to fuse sound data with other 
ambient sensor to recognized human activities in 
smart homes. For some activities like talking, use 
mobile phone, typing and eating, audio data might 
provide some information which is independent with 
other modalities yet informative for activity 
recognition. As far as we know, this data modality 
also has never been attempted together with vision 
sensor. Given the complementary properties of these 
signals, multimodal HAR attracts increasing research 
attention in recent years. Intuitively, multimodal 
HAR on one hand is more complex to process, on the 
other hand it contributes the HAR accuracy as diverse 
sensors can mutually compensate the shortcomings of 
each other. Table 4 shows some representative 
multimodal HAR datasets. According to the datasets 
in Table 4, multimodal methods usually could lead to 
better activity recognition performance. Hence, to 

pursue more accurate and higher resolution HAR, 
multimodal approaches that make use of the 
complementary advantage of multiple data modalities 
is the direction of future HAR. 

Table 4: Datasets of multimodal HAR. 

Dataset Sensor NS NA
(Hodgins & Macey, 

2009) 
Video, audio, Mocap, 

9 IMUs, RFIDs 
18 5 

(Sagha et al., 2011)  IMUs, 72 sensors of 
10 modalities 

12 21 

(Ofli et al., 2013) Mocap, Kinect v1, 
camera, acc, audio 

12 11 

(Chen, Jafari, et al., 
2015)  

Kinect v1, 6-DOF 
IMUs 

8 27 

3 HAR CAPABILITY OF SENSOR 

In this section, we analyze the HAR capability of 
various IoT sensors by proposing a definition scheme 
of activity complexity. 

3.1 Human Activity Characteristics 

From the activity perspective, a clear definition of a 
human activity complexity is crucial for evaluating 
the HAR capabilities of different sensors. Human 
activities vary in terms of many structural 
characteristics like hierarchical structure, activity 
duration, location, and the involved number of people 
or objects. Previous research defined activity 
complexity by considering the time span only (Bruce 
& Chan, 2017), which is not adequate to reflect the 
levels of activity complexity. Low-level activities 
such as tracking and body posture analysis has been 
surveyed by (Aggarwal & Cai, 1999). Considering 
three aspects: object, time, and location, we come up 
with a human activity categorization scheme as 
shown in Figure 4. 

 

Figure 4: Our human activity categorization scheme that 
groups activity levels into a hierarchical structure by 
considering three main activity characteristics include 
human-object interactions, durations, and locations. 
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Figure 5: The HAR capability of different IoT sensor-based methods with corresponding to the hierarchical activity categories 
labeled from 1 to 10. The activity category labels are spread out to the different IoT sensors on the left part of the figure. 

3.2 Sensor Capability 

Based on the reviewed popular datasets from each 
IoT sensor category, the HAR capability of different 
sensors are summarized in Figure 5 with the vision 
sensor capable for all activity categories (from 
categories 1 to 10). The activities highlighted with red 
color and italic font on the right side of Figure 5 are 
taking the activity examples of a breakfast 
preparation routine in the job of (Lukowicz et al., 
2010). Ambient sensors like the RFID technology 
used by (Torres et al., 2013; Wickramasinghe, 
Ranasinghe, et al., 2017; Wickramasinghe, Torres, et 
al., 2017) needs to install RFID tags on the entire floor 
of a user’s living environment to detect if the user is 
near the bed or not. RFID is also affected by noise 
signals if two objects are very closely located. While 
the use of state change sensors also needs to install a 
quite number of sensors to all the related locations 
and objects, but it could only do some coarse-grained 
HAR. Wi-Fi CSI is emerged as a novel approach 
which has the advantage of cross wall sensing ability, 
but it remains lack of theoretical foundation that 
proves the measurement accuracy for developing 
reliable HAR method. 

Comparing with ambient sensors, wearable 
devices could be an appropriate choice for outdoor 
activity recognition. Given that each sensor modality 
has its own limitations, it has been surveyed that 
fusing vision and inertial data improves the accuracy 
of HAR (Chen, Jafari, et al., 2017). However, the 
inertial sensor modality does not provide any context 
information for fine-grained HAR that involves 
human-object interactions. Besides, due to the 
intrinsic battery limitation, it is intrusive for users to 

wear sensor devices do long-term monitoring. One 
recent trend for multimodal HAR is fusing inertial 
sensor with vision sensor as reviewed in Section 2.4. 
However, according to various modality combination 
results of experiments on Berkeley MHAD, the 
improvement of the performance by adding more data 
modalities is very limited (from around 98% to 
100%) (Ofli et al., 2013). Sometimes, adding extra 
modality will even lower the HAR accuracy, which 
renders the extra modality in vain. The increased 
problem complexity and affected usability also make 
multimodal HAR hard to be popularized among end 
users as well as other stakeholders. 

According to the surveyed datasets in Section 2. it 
is noticeable that NTU RGB+D 120 (Jun Liu, 
Shahroudy, Perez, et al., 2019) is by far the largest 
one from perspectives like subjects involved, number 
of activity classes, and number of viewpoints. Many 
succeeding jobs have been emerged based on NTU 
RGB+D 120. Some model activities with a spatial and 
temporal networks by using CNN and LSTM 
algorithms (Liu, Shahroudy, Xu, et al., 2016; Song et 
al., 2017). While some attempt to model the most 
informative joints in the skeleton data using the 
context-aware LSTM algorithm (Liu, Wang, et al., 
2017) or remove the noise of the skeleton data for 
view invariant recognition (Zhang et al., 2017; Liu, 
Liu, et al., 2017). Another potential method is using 
the contextual information to improve the HAR 
accuracy by modeling human-object interaction (Wei 
et al., 2017), which has not been attempted on large 
datasets like NTU RGB-D 120 or PKU-MMD (Liu, 
C., et al., 2017). 

Given the above comparison, we believe vision 
sensor could achieve the task of nonintrusive fine-
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grained HAR. The most controversial concern of 
privacy could be avoided by using technologies like 
blurring. Off-the-shelf sensors like RealSense and 
Kinect could work even in poor illumination 
condition, which makes them capable for 24-hour 
activity monitoring. However, for vision sensors 
being applied to healthcare, it remains some gaps to 
be conquered as following: 
 As surveyed in Section 2, existing algorithm-

oriented and performance-oriented jobs usually 
verify their models’ accuracy on benchmark 
datasets with the activity duration limited to 
seconds. This means that existing methods has 
not been applied to applications domains. 

 For high resolution HAR, multimodal sensor 
fusion methods need to be developed to 
recognize more fine-grained activities that 
reflect more details of the human behavior. 

 For common application domains like 
healthcare and surveillance, it requires domain 
experts to validate the feasibility and reliability 
of the HAR resolution. 

4 HAR ALGORITHMS 

In the last decade, HAR methods based on single 
sensor modality have experienced great progress 
from version-based HAR (Poppe, 2010) to skeleton-
based methods (Presti & La Cascia, 2016), and from 
ambient sensors (Rashidi & Mihailidis, 2013) to 
wearable sensors (Lara & Labrador, 2013). Since the 
data stream of sensor-based HAR has sequential 
features, traditional algorithms like Dynamic Time 
Warping (DTW) (Gavrila & Davis, 1995), Hidden 
Markov Model (HMM) (Oliver, Horvitz, & Garg, 
2002), and Support Vector Machine (SVM) 
(Lublinerman et al., 2006) have been commonly used 
(Aggarwal & Ryoo, 2011), which is recently 
dominated by DL algorithms (Wang, Chen, et al., 
2017). Algorithms for multimodal HAR share a 
similar trend of using DL models to extract latent 
features. When it comes to multimodal HAR, sensor 
fusion is the key issue that needs to be tackled. 
According to (Elmenreich, 2002), there are three 
main levels of sensor fusion approaches namely: 1) 
data-level fusion, 2) feature-level fusion, and 3) 
decision-level fusion, which is illustrated in Figure 6. 
Multimodal methods have been attempted by both 
traditional methods with a feature extraction step and 
DL methods with end-to-end training manners. In this 
section, we introduce both the traditional and DL 
models form perspectives of single modal and 
multimodal methods. 

 

Figure 6: Common workflow of sensor-based HAR. Three 
sensor fusion methods data-level fusion, feature-level 
fusion, and decision-level fusion are labeled as 1, 2 and 3, 
respectively. 

4.1 Traditional HAR Algorithms 

Since input data types are intrinsically heterogeneous, 
sensor fusion at data-level has seldom been attempted 
by researchers. Sensor fusion conducted at feature-
level calculates popular features from input data and 
further combines them into a fused feature vector for 
inferring activity classes. For example, (Liu, Yang, et 
al., 2010) fused quantized vocabulary of local spatial-
temporal volumes (cuboids and 2-D SIFT) and the 
higher-order statistical models of interest points for 
activity recognition using a hyper-sphere multi-class 
SVM. Decision-level fusion uses multiple classifiers 
for corresponding multiple features and makes the 
classification by considering the complementary 
results among classifiers. For instance, (Tran et al., 
2010) proposed a baseline approach using disparate 
spatial features as an input vector to train multiple 
HMM models within a fusion framework. Similar 
fusion approach also used in skeleton-based method 
by (Xia et al., 2012) that leans an HMM model for 
each activity. 

Traditional machine learning algorithms like 
SVM, kernel machines, discriminant analysis, and 
spectral clustering, concatenate all multiple views 
into a single view to fit their learning settings. 
However, this concatenation is not physically 
meaningful as each view has specific statistical 
properties and usually causes overfitting in case of 
small dataset size. In contrast, multi-view learning as 
another paradigm which uses one function to model a 
particular view and simultaneously optimizes all the 
functions to exploit the redundant views of the same 
input data and improve the learning performance. 
According to the categorization in (Xu et al., 2013), 
multi-view learning is categorized into three main 
types namely co-training, Multiple Kernel Learning 
(MKL), and subspace learning. 

KDIR 2020 - 12th International Conference on Knowledge Discovery and Information Retrieval

288



Co-training was originally proposed for the 
problem of semi-supervised learning, in which there 
is access to labelled as well as unlabelled data. It 
considers a setting in which each example can be 
partitioned into two distinct views and makes three 
main assumptions for its success: sufficiency, 
compatibility, and conditional independence. The 
original co-training job described experiments using 
co-training to classify web pages into "academic 
course home page" or not (Blum & Mitchell, 1998). 
The classifier correctly categorized 95% of 788 web 
pages with only 12 labelled web pages as training 
data. Co-training is famous for its capability for 
automatically learning two independent and 
sufficient representations from data when only small 
amounts of labelled data and large amounts of 
unlabelled data are available. From the best of our 
knowledge, seldom existing HAR tasks using the 
semi-supervised co-training method. MKL has been 
used by (Althloothi et al., 2014) and (Ofli et al., 
2013). MKL method fuses at kernel level to select 
useful features based on weights. (Althloothi et al., 
2014) uses motion features and shape features of 
skeleton and depth image to train multiclass-SVM 
based classifiers for activity recognition. Another 
popular MKL algorithm is Adaptive Boosting 
(AdaBoost) (Lv & Nevatia, 2006), which relies on 
constructing effective geometric features for 
improving the HAR accuracy. 

Subspace learning-based approaches aim to 
obtain a latent subspace shared by multiple views by 
assuming that the input views are generated from this 
subspace. The well know subspace learning-based 
approach is Canonical Correlation Analysis (CCA) 
(Hardoon et al., 2004) and KCCA (Lai & Fyfe, 2000), 
which gives the correlated form of input modalities as 
a robust representation of multimodal data through 
linear projections. The purpose of Correlation-
Independence Analysis (CIA) is to identify the 
strength of respective modalities through teasing out 
their common and independent components and to 
utilize them for improving the classification accuracy 
of human activities. 

4.2 Deep Learning Approaches 

4.2.1 Single Modal Approach 

Recently, the advance of DL makes it possible to 
perform automatic high-level feature extraction thus 
achieves promising performance in many areas. Since 
then, DL based methods have been widely adopted 
for various sensor-based HAR tasks. (Wang et al., 
2017) reviewed DL models for HAR tasks, which 

includes Deep neural network (DNN), Convolutional 
Neural Network (ConvNets, or CNN), Stacked 
autoencoder (SAE) etc. Representative DL models 
are listed in Table 5. (Hammerla et al., 2016) 
investigated the performance of DNN, CNN and 
RNN through 4,000 experiments on some public 
HAR datasets with a conclusion that RNN and LSTM 
are recommended to recognize short activities that 
have natural order while CNN is better at inferring 
long term repetitive activities. The reason is that RNN 
could make use of the time-order relationship 
between sensor readings, and CNN is more capable 
of learning deep features contained in recursive 
patterns. (Zheng et al., 2014) summarized that CNN 
is better for multimodal signals. 

Table 5: Deep Learning models for HAR tasks. 

DL Model Description 
DNN Deep fully connected network, artificial 

neural network with deep layers. 
CNN Convolutional neural network, multiple 

convolution operations for feature 
extraction. 

RNN Recurrent neural network, network with 
time correlations and LSTM. 

DBN/RBM Deep belief network and restricted 
Boltzmann machine. 

SAE Stacked autoencoder, feature learning by 
decoding-encoding autoencoder. 

HCN Hierarchical cooccurrence network. 
GCN Graph Convolutional Network. 

Hybrid Combination of some deep models. 
 

Concerning the popularity and capability of vision 
sensor, we further examine the algorithms of vision-
based approaches. Existing researches of vision-
based HAR methods mainly focus on three directions 
for the improvement of single modality HAR. The 
first direction focuses on data pre-processing and data 
cleaning. For example, (Liu, M., et al., 2017) 
proposed a method that remove the noise data in 
skeleton activity representations by learning a model 
that reconstructs more accurate skeleton data. An 
approach with this motivation has also been proposed 
by (Zhang et al., 2017). 

The second approach improves the HAR 
benchmarks by proposing novel learning or 
representing models. (Liu, Wang, et al., 2017) 
proposed a context aware LSTM model that could 
learn which part of joints contribute the HAR. (Yan 
et al., 2018) introduced a Spatial Temporal-Graph 
Convolutional Network (ST-GCN) that learns both 
the spatial and temporal patterns from skeleton-based 
activity data. Many enhanced versions of GCN 
models has been proposed that improve the ST-GCN 
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by considering other physical prior knowledge. For 
example, (Shi et al., 2018) proposed a non-local GCN 
that leans the graph structure individually for 
different layers and samples and achieved improved 
performance than the manually designed 
convolutional operation of ST-GCN. Another GCN 
method proposed by (Li et al., 2019) tries to model 
discriminative features from actional and structural 
links of the skeleton graph. Except GCN, motivated 
by cooccurrence learning, (Li et al., 2018) proposed 
the hierarchical cooccurrence network (HCN) that 
learns point-level features aggregated to 
cooccurrence features with a hierarchical 
methodology. The co-occurrence features refer to the 
interactions and combinations of some subsets of 
skeleton joints that characterizes an action (Zhu et al., 
2016). Considering both the graph and cooccurrence 
characteristics, (Si et al., 2019) proposed an Attention 
Enhanced Graph Convolutional LSTM Network 
(AGC-LSTM) that achieved high accuracy on the 
NTU-RGB-D dataset. However, the Directed Graph 
Network (DGN) (Shi et al., 2019a) and achieved 
higher accuracy than AGC-LSTM on the NTU-RGB-
D dataset with a small margin. 

The third method is data augmentation that leans 
data generation models to produce more training data 
for the purpose of feeding more fuel to deep learning 
models. (Barsoum et al., 2017) developed a sequence-
to-sequence model for probabilistic human motion 
prediction, which predicts multiple plausible future 
human poses from the same input. However, it has not 
yet been evaluated if the generated data could be used 
for improving the generalization power or accuracy 
of HAR tasks. Focusing on the improvement of 
accuracy on benchmark datasets might neglect the 
improvement of HAR itself and its application 
domains that needs higher activity resolution. 
Another neglected issue of existing methods is 
segmentation as deploying HAR methods to domain 
applications needs simultaneously performing both 
tasks of segmentation and classification. 

4.2.2 Multimodal Approach 

From the confusion matrix comparison of (Si et al., 
2019), skeleton modality cannot provide sufficient 
information to discriminate action pairs that include 
human-object interactions like “reading” and 
“writing”, “writing” and “typing on a keyboard”, 
“pointing to something with finger” and “pat on back 
of other person”, which is due to the similar skeleton 
motion patterns shared by those activity pairs. 
Similarly, for activities that include interaction with 
items in the PKU-MMD, skeleton modality might not 

be capable to provide sufficient features from the 
interacted items. Intuitively, these difficult activity 
pairs have higher resolution than the well classified 
ones, which might need more detailed contextual or 
semantic features from other data modalities like 
RGB and depth channels of the datasets like PKU-
MMD and NTU RGB-D. 

The multimodal fusion analysis of (Ordóñez & 
Roggen, 2016) on the Opportunity dataset (Sagha et 
al., 2011) indicates that feeding more data channels to 
its model called DeepConvLSTM would get 
performance improvement. Similarly, experimental 
results of (Jun Liu, Shahroudy, Perez, et al., 2019) on 
NTU RGB+D 120 also indicates that extra data 
modalities contribute the classification accuracy. 
Hence, it is commonly accepted that multimodal 
HAR approaches have the potential to improve the 
activity resolution and recognize difficult activities. 
Existing multimodal HAR methods could be roughly 
categorized to two classes: vision-based multimodal 
(Wei et al., 2017; Shahroudy, Ng, et al., 2017; Wu et 
al., 2016) and vision-wearable based multimodal 
(Sagha et al., 2011; Chen, Jafari, et al., 2015); 
(Ordóñez & Roggen, 2016). The 4DHOI model 
proposed by (Wei et al., 2017) attempts to represent 
both 3D human poses and contextual objects in events 
by using a hierarchical spatial temporal graph. The 
fusion concept of (Wu et al.) has two approaches 
namely late fusion and intermediate fusion. The late 
approach simply combines the emission probabilities 
from two modalities. In the intermediate fusion 
scheme, each modality (skeleton and RGB-D) is first 
pretrained separately, and their high-level 
representation are concatenated to generate a shared 
representation. The HAR tasks in (Wei et al., 2017) 
include segmentation, recognition, and object 
localization, which is not just recognition as what is 
doing by most of the latest skeleton-based solutions 
(Li, Chen, et al., 2019; Si et al., 2019; Shi et al., 
2019a; Liang et al., 2019) and (Shi et al., 2019b). 
With segmentation, the solution might be capable of 
doing HAR in an online mode. Another online 
skeleton-based HAR solution was proposed by (Liu, 
Shahroudy, Wang, et al., 2019). 

5 CONCLUSIONS 

This survey investigated IoT sensors for HAR that 
could be applied to application domains like habit 
perception, intervention performance evaluation, 
disease prediction, and adaptive (automatic) smart 
home. It provides a systematic view of the HAR 
domain by disentangling the IoT sensors utilized and 
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their corresponding status in terms of their datasets 
and algorithms. By reviewing the datasets of each 
sensor modality and proposing a human activity 
categorization scheme that groups human activities 
based on their levels of complexity, we analyzed the 
HAR capability of different IoT sensors and 
concluded that vision sensors are relatively more 
capable for HAR tasks. For HAR algorithms, we 
investigated both traditional algorithms and DL 
models. It is worth to note that the hard cases in the 
NTU-RGB+D dataset could not be well recognized 
by the skeleton modality only. Multimodal method 
has the potential of recognizing more fine-grained 
activities, but existing algorithms remain uncapable 
to tackle multimodal data well. 

For future jobs, as we summarized research gaps 
in Section 3, although increasingly larger datasets 
were collected, higher resolution HAR methods need 
to be developed for landing domain applications like 
healthcare, assistive technologies, and surveillance. 
To do so, multimodal methods being capable of 
higher resolution HAR need to be developed in the 
future. Besides, the involvement of domain experts is 
essential to validate the feasibility and reliability of 
future HAR methods and applications. 
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