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Abstract: This paper proposes a method for improving the diversity of the Pareto front in a fast elitist non-dominated 
sorting genetic algorithm (NSGA-II), which is an evolutionary multi-objective optimization algorithm. 
Conventional NSGA-II has excellent convergence to the Pareto front, but it has been reported that for some 
test cases, it does not produce a more diverse solution distribution than the strength Pareto evolutionary 
algorithm 2 (SPEA2). To avoid this problem, we propose a method that stores an archive of dominated 
solutions that may be effective in improving diversity in the conventional search process when used for 
genetic operations.  We experimentally compare this approach with the conventional method on the typical 
multi-objective test problems ZDT1, ZDT2, and ZDT3. By evaluating the performance based on Pareto front 
diagrams and hypervolume values, we show that the proposed method is effective at improving the diversity 
at both ends of Pareto optimal front and the uniformity of the solution distribution. 

1 INTRODUCTION 

Many real-world optimization problems have 
multiple objectives. These objectives often have 
trade-off relationships, and there is no single solution 
that is optimal for all objective functions. It is 
therefore important to have some way of accurately 
locating the curved surface (Pareto optimal front) 
formed by the set of Pareto optimal solutions. 
Evolutionary multi-objective optimization 
algorithms, which are based on evolutionary 
computation, are being researched as a way of 
tackling this problem (Carlos, 2006), due to their 
ability to find a set of solutions that approximate the 
Pareto optimal front by running a single algorithm, 
and due to the breadth of optimal solutions they are 
able to find. In this paper, we focus on a fast elitist 
non-dominated sorting genetic algorithm (NSGA-II) 
(Deb, 2002), which is the most practical of these 
algorithms. The main characteristics of the NSGA-II 
algorithm are its fast non-dominated sort, which 
improves convergence to the Pareto optimal front, 
and the crowding sort for uniform solution 
distribution. 

On the other hand, compared with the strength 
Pareto evolutionary algorithm 2 (SPEA2) (Zitzler, 
2001), which focuses on the dominance of solutions 

and the preservation of non-dominated solutions as in 
NSGA-II, it has been reported that although it 
achieves better convergence on the Pareto front, there 
are test cases where it did not achieve superiority in 
terms of the diversity of the solution distribution. If 
the solution distribution does not have sufficient 
diversity, this could be due to a bias in the decision 
maker’s choice of final solutions. In this paper, we 
address this problem by proposing a method that 
improves the uniformity of the solution distribution 
by using an archive population to preserve some of 
the inferior solutions that are usually culled at the start 
of a new generation but which may be effective at 
improving the diversity of the population, and by 
actively using these inferior solutions in genetic 
operations. 

2 CONVENTIONAL METHODS 

2.1 Overview of NSGA-II 

As shown in Equations (1), a constrained multi-
objective optimization problem involves minimizing 
(or maximizing) k different objective functions f 
based on m different inequality constraints g. 
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ቊ ௜݂൫ݔଵ,ݔଶ, … , ሺ݅		௡൯ݔ ൌ 1,2, … , ݇ሻ								

݃௝൫ݔଵ,ݔଶ, … , ௡൯ݔ ൑ 0 	ሺ݆ ൌ 1,2, … ,݉ሻ
 (1)

 
Since there are trade-off relationships between the 

objectives functions, studies are being made to find 
the Pareto optimal front by means of evolutionary 
computation. A typical evolutionary multi-objective 
optimization algorithm is NSGA-II, which was 
proposed by Deb et al. in 2000 as an improved version 
of the non-dominated sorting genetic algorithm 
(NSGA) (Srinivas, 1994). It searches for solutions by 
using a combination of fast non-dominated sort, 
crowding sort, and crowded tournament selection. 

 

Figure 1: Conceptual illustration of a fast dominated sort. 

Figure 1 shows a conceptual illustration of a fast 
dominated sort. A fast non-dominated sort is an 
operation that classifies all individuals by rank, 
focusing on the dominated/non-dominated 
relationships between individuals. For example, in a 
minimization problem, a solution candidate 
(individual) x is defined as dominating y when the 
following Equation (2) is satisfied: 
 

∀௜ ௜݂ሺݔሻ ൑ ௜݂ሺݕሻ ∧ ∃௜ ௜݂ሺݔሻ ൏ ௜݂ሺݕሻ (2)
 

Using this definition, we can rank each individual 
by ascertaining the dominated/non-dominated 
relationships between each individual. First, we 
determine the individuals that belong to the best Rank 
1 group. For each individual, count the number of 
other individuals that it dominates, and the number of 
other individuals by which it is dominated. If it is not 
dominated by any other individual, then it is deemed 
to be a non-dominated solution and is placed in Rank 
1. The other individuals are dominated solutions. 
Next, the Rank 1 individuals are ignored and the 
dominated/non-dominated definitions are used to 
determine Rank 2 individuals under the same 
conditions as when determining the Rank 1 
individuals. A fast non-dominated sort is achieved by 

repeating this operation until all the individuals have 
been ranked. 

Crowding sort is a method that determines 
superiority/inferiority relationships between entities 
at the same rank based on their crowding distance. An 
individual’s crowding distance is the sum of the 
distances to its two neighbouring individuals on the 
Pareto front in the objective function space. A larger 
crowding distance (i.e., a solution that is less 
crowded) is ranked with higher precedence. In a 
crowded tournament selection, the solution 
candidates are first ranked by a fast non-dominated 
sort, and then the candidates of equal rank are sorted 
by crowding distance. 

Figure 2 shows a conceptual illustration of how 
the population is updated in a crowded tournament 
selection. NSGA-II advances the solution search by 
using an archive population Pt that stores non-
dominated solutions as the parent population, and the 
initial search population Qt for performing the search 
as the child population. First, generate a group Rt = Pt 
∪ Qt that combines the parent population Pt and the 
child population Qt. This group Rt is first subjected to 
a non-dominated sort to rank each solution candidate. 
In the figure, Fn represents a solution candidate group 
of rank n. Next, perform a crowding sort and select 
the top N individuals with the highest number from 
the 2N individuals Rt as Pt+1. The parent individuals 
selected from Pt+1 are then crossed over and 
genetically manipulated by mutation to generate a 
new child population Qt+1. These operations 
constitute one generation step, and these generation 
steps are repeated the specified number of times. 

 

Figure 2: Creating a new population generation by crowded 
tournament selection. 

2.2 Problems with Conventional 
Methods 

Figure 3 shows an example of the state diagram of a 
population Rt that is considered to lead to a decrease 
in the diversity of the solution distribution. The non-
dominant sort used in NSGA-II is an operation that 
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classifies all individuals into several ranks by 
focusing on the dominated/non-dominated 
relationships between individuals. Here, the best 
solution group is defined as Rank 1, followed in turn 
by Rank 2 and Rank 3. For some problems, these 
dominated/non-dominated solution relationships may 
cease to hold as the number of generations increases. 
In such cases, all N individuals selected for the 
archive population Pt+1 would become Rank 1 
solutions, while the other solutions of Rank 2, Rank 
3, etc. obtained in the previous solution search would 
be completely eliminated. In this study, we consider 
that one of the reasons why NSGA-II sometimes has 
inferior solution diversity compared with SPEA2 is 
the lack of solutions of other ranks besides Rank 1 at 
the initial stages of the search. 

 

Figure 3: Example of the state diagram of population Rt 
where all the archive groups are of Rank 1. 

3 PROPOSAL OF GENETIC 
OPERATION USING 
DOMINATED SOLUTIONS 

3.1 Genetic Manipulation using 
Dominated Solutions 

In this paper, we propose a method applied to genetic 
operations that involves preserving some of the 
inferior solutions that are culled in conventional 
search processes but may be capable of leading to 
improved diversity. For example, the solutions at both 
ends of the Rank 2 solution distribution could be 
preserved. By preserving the solutions at both ends of 
the Rank 2 solution distribution in the archive 
population and using them for genetic manipulation, 
it may be possible to improve the diversity of the next 
generation of solutions. Figure 4 shows an example 
of a solution distribution diagram generated by 
performing genetic operations only on Rank 1 
solutions using the two-objective maximization 
problem as an example. On the other hand, Fig. 5 

shows an example of a solution distribution diagram 
generated by performing genetic operations 
according to the proposed method. In the 
conventional genetic operations shown in Fig. 4, the 
individuals represented by green circles are generated 
from Rank 1 parent individuals. Although this 
improves the convergence to the true Pareto front, it 
also reduces the breadth (i.e., diversity) of the 
solution distribution. In the proposed method shown 
in Fig. 5, the genetic operations also include inferior 
solutions at both ends of the Rank 2 solution 
distribution. As indicated by the blue circles in the 
figure, these individuals should help to improve the 
breadth of the solution distribution. 

 

Figure 4: Searching for a solution using only Rank 1 
solutions. 

 

Figure 5: Including Rank 2 solutions for greater solution 
diversity. 

3.2 Replacement with Archived 
Dominated Solutions 

Figure 6 summarizes the method used to replace 
solutions in Pt, when preserving the solutions at both 
ends of the Rank 2 solution distribution in the archive 
population. In the conventional method, the 
population number N is determined as an initial 
parameter, and genetic operations such as crossovers 
and mutations are performed among the archive 
population of N individuals. However, if the proposed 
method is implemented by simply adding inferior 
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solutions to this archive population before performing 
genetic operations, this would result in operations 
being performed on N+2 individuals instead of N 
individuals. The use of a larger number of parent 
individuals are used in the generation of a solution 
would confer advantages in terms of the speed of 
convergence and the diversity of the solution, making 
it difficult to make a fair comparison with the 
conventional method. Therefore, in this study, the top 
two solutions in the Rank 2 solution set preserved in 
the archive population replace the lowest-ranked 
Rank 1 solutions that would originally have been 
selected for the N archive populations. Since the 
solutions belonging to Rank 1 are sorted based on 
their crowding distance, the two solutions with the 
smallest crowding distance (i.e., the most densely 
distributed solutions) in Rank 1 are replaced. This 
replacement maintains a constant number of 
individuals N, and allows genetic operations to be 
performed without changing the conditions that apply 
between individuals of the archive population defined 
by N. 

Here, the two lowest-ranked solutions in Rank 1 
are often clustered around the central part that is 
distant from both ends of the current Pareto front. By 
deleting these solutions and replacing them with the 
solutions at both ends of Rank 2, it is therefore less 
likely that genetic manipulation will be performed in 
places where there is a high density of solution 
candidates, and it will be more likely that solution 
candidates will be generated at both ends of the Pareto 
front in the next generation. In other words, this 
approach is effective at improving the uniformity of 
the solution distribution when the Pareto front of the 
next generation is viewed as a whole. 

 

Figure 6: Replacement of inferior solutions. 

(Sato, 2007) has proposed the method that 
introduces variables for controlling the dominance 
area of the solutions to correct the individuals stored 
in the archive population. Although the same effect as 
the proposal of this method can be expected by setting 
an appropriate parameter value, the appropriate value 

of the control parameter cannot be known until after 
the solution search. Since it constantly changes 
during the search process, there is a problem that it is 
difficult to determine an appropriate control 
parameter value in advance. On the other hand, the 
method proposed here can be realized with a slight 
modification to the original NSGA-II program. 

3.3 Event-driven Replacement of 
Solution Candidates 

The pseudo code of the proposed method is 
summarized in Figure 7. The colored parts 
correspond to the modifications made in the proposed 
method. In this paper, although our aim is to improve 
the diversity and uniformity of the solution 
distribution, it is also important to consider the search 
efficiency and convergence. If the proposed method 
is executed in all evaluation generations, it could lead 
to worse convergence on the Pareto optimal front than 
the conventional method. Therefore, instead of 
applying the proposed method at every generation, 
we use a branching condition to switch to the 
conventional method when all N individuals selected 
for archive population Pt+1 are Rank 1 solutions, i.e., 
when dominated/non-dominated relationships are not 
established in archive population Pt+1. 
 

Algorithm 1. Pseudo code of the proposed method. 

  // t: number of generations 
  // P(t): archive population of size N 
  // Q(t): search population of size N 
  // Fi: solution set of rank i 
1 t = 0;  
2 Generate P(t); // generate initial population 
3 Generate Q(t); // by applying genetic 

operations to P(t); 
4 R(t)  P(t) ∪ Q(t); 
5 Until STOPPING CONDITION do 
6         Apply non-dominated sort to R(t); 
7         Apply crowding sort to R(t); 
8         if | Fi | ≥ N then replacing to archive the 

     edge of dominated solutions; 
9         end 
10      selection;  // archive the top N  

     individuals to P(t) and cull the  
     remaining individuals 

11      Generate Q(t); // by applying genetic  
     operations to P(t); 

12       t   t + 1; 
13 end

Figure 7: The pseudo code of the proposed method. 
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4 EVALUATION 

4.1 Experimental Method 

We performed an experimental comparison of the 
proposed algorithm with the conventional NSGA-II 
algorithm using ZDT1, ZDT2, and ZDT3 (Deb, 
2002), which are typical test functions for multi-
objective optimization problems. ZDT1 has a convex 
Pareto optimal front and is suitable for evaluating 
convergence. It is defined by the following equations: 
 

ە
ۖۖ
۔

ۖۖ
ۓ ଵ݂ሺ࢞ሻ ൌ 			ଵݔ 																				

ଶ݂ሺ࢞ሻ ൌ ݃ሺ࢞ሻ・݄ሺ࢞ሻ									

݃ሺ࢞ሻ ൌ 1 ൅ 9・෍
௜ݔ

݊ െ 1

௡

௜ୀଶ

݄ሺ࢞ሻ ൌ 1 െ ඥ ௜݂/݃ሺ࢞ሻ							

 (4)

 
where ݔ௜ ∈ ሾ0,1ሿ, ݅ ൌ 2,… , ݊, ݊ ൌ 30. 

ZDT2 has a concave Pareto-optimal front and is 
suitable for evaluating diversity. It is defined by the 
following equations: 
 

ە
ۖۖ
۔

ۖۖ
ۓ ଵ݂ሺ࢞ሻ ൌ 			ଵݔ 																				

ଶ݂ሺ࢞ሻ ൌ ݃ሺ࢞ሻ・݄ሺ࢞ሻ									

݃ሺ࢞ሻ ൌ 1 ൅ 9・෍
௜ݔ

݊ െ 1

௡

௜ୀଶ

݄ሺ࢞ሻ ൌ 1 െ ሺ ௜݂/݃ሺ࢞ሻሻଶ							

 (5)

 
where ݔ௜ ∈ ሾ0,1ሿ, ݅ ൌ 2,… , ݊, ݊ ൌ 30. 

ZDT3 is a complicated problem characterized by 
a discontinuous Pareto optimal front, and is defined 
by the following equations: 
 

ە
ۖ
ۖ
۔
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 (6)

 
where ݔ௜ ∈ ሾ0,1ሿ, ݅ ൌ 2,… , ݊, ݊ ൌ 30. 

We evaluated the proposed method using these 
three test problems, focusing on the comparison of the 
solution distribution diagram with that of the 
conventional method. In addition, since ZDT1 is 
characterized by a tendency to converge on the Pareto 
optimal front within a small number of generations, 

we focused on the transition of hypervolume (HV) 
values (Beume, 2009) and to check whether or not the 
proposed method adversely affects the convergence. 
On the other hand, ZDT2 is characterized by the ease 
with which it is possible to confirm the breadth of 
solutions as the number of generations increases, so 
we regarded this as a useful way of confirming the 
effects of the proposed method on the breadth of the 
solution distribution. Here, HV is an index 
representing the overall effectiveness of the solution 
distribution, and is defined as the volume (or, in the 
case of two objectives, the surface area) of the 
hyperplane formed by the origin and the finally 
obtained Pareto front. The definition of HV can be 
expressed as shown in Equation (7) In Eq. (4), nPF 
represents the number of solutions in the Pareto set, 
and vi represents the hypercube for each solution i 
from the origin. 

 
ܸܪ ൌ volumeሺ∪௜ୀଵ

௡ುಷ ௜ሻ (7)ݒ	
 

In the experiment, we compared and studied the 
following three items: 
 Uniformity of the solution distribution in Pareto 

front diagrams; 
 The number of non-inferior solutions generated at 

both ends of the Pareto front; 
 The relationship between the number of 

generations and the HV value; 
 
Table 1 shows the GA parameters used in all the 

test questions and the origin point used for the 
calculation of HV values. 

Table 1: GA parameters and origin point. 

Population size 20, 100 
Max. number of generations 1000 

Crossover method 2-point crossover 
Crossover rate 0.9 

Mutation method Polynomial mutation 
Mutation rate 0.033 

Reference point (1.2, 1.5) 

4.2 Experimental Results and 
Discussion 

Figures 8 through 10 compare the Pareto front 
diagrams obtained for a population size of 20 when 
the test problems are applied to the conventional 
method and the proposed method. Similarly, Figs. 11 
through 13 compare the Pareto front diagrams for 
population size of 100. In Figs. 8, 9, 11 and 12, the 
red circles and arrows indicate the numbers of non-
inferior solutions in order to confirm the extent to 
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which the number of solutions generated at the ends 
of the Pareto curve is increased. 

Tables 2 through 5 summarize the number of 
individuals corresponding to non-inferior solutions 
generated at both ends of the Pareto fronts for ZDT1 
and ZDT2. Since the Pareto front is discontinuous in 
ZDT3, the table is omitted, and we instead consider 
the diversity and uniformity of the overall solution 
distribution. 

In all the experiments, in order to confirm the 
effectiveness of the method aimed at improving the 
diversity and homogeneity of the solution 
distribution, we confirmed that the solution searches 
had adequately converged by comparing the Pareto 
front diagrams of solutions from the 1,000th 
generation with those of the conventional method. 

4.2.1 Comparison of Solution Distributions 
for Population Size 20 

For the case of ZDT1 in Fig. 8, the proposed method 
causes the total number of non-inferior solutions at 
both ends of the Pareto front (where objective 
function 1 lies in the ranges 0–0.2 and 0.8–1.0) to 
increase from 9 to 12 as shown in Table 3. Similarly, 
for the case of ZDT2 in Fig. 9, the proposed method 
increases the number of non-inferior solutions at the 
ends of the Pareto front (0–0.2 and 0.8–1.0) from 6 to 
8, while in other regions it produced solutions that 
were distributed more uniformly along the Pareto 
front than the conventional method. This improved 
diversity is thought to have occurred because the 
ability to generate solutions at both ends of the Pareto 
front was improved by the proposed method whereby 
the solutions at both ends of Rank 2 were used for 
genetic manipulation, resulting in greater diversity. 
Also, by swapping solutions at both ends of Rank 2 
with the solutions in Rank 1 that have the smallest 
crowding distance in the archive population, it 
appears that we were able to generate solutions in the 
range from 0.2–0.8 with a large crowding distance, 
resulting in a solution distribution with greater 
dispersion. 

(a) Conventional method (b) Proposed method

Figure 8: Comparison of solution distribution diagrams for 
ZDT1. 

 

Table 2: Number of non-dominated solutions for ZDT1. 

Value of objective 
function 1 

Conventional 
method 

Proposed 
method 

0–0.2 6 7 
0.8–1.0 3 5 
Total 9 12 

 

  
(a) Conventional method (b) Proposed method 

Figure 9: Comparison of solution distribution diagrams for 
ZDT2. 

Table 3: Number of non-dominated solutions for ZDT2. 

Value of objective 
function 1 

Conventional 
method 

Proposed 
method 

0–0.2 2 3 
0.8–1.0 4 5 
Total 6 8 

 
In the case of ZDT3 shown in Fig. 10, it was not 

possible to clearly confirm the breadth of the solution 
with 20 individuals because the Pareto front was 
discontinuous. On the other hand, looking at each 
group of solution groups, it can be seen that the 
solutions are more uniformly dispersed than in the 
conventional method. In the same way as in the case 
of XDT2, this effect is thought to be caused by 
performing genetic operations with Rank 2 solutions 
that have a large crowding distance instead of Rank 1 
solutions that have a small crowding distance. 
 

 
(a) Conventional method (b) Proposed method 

Figure 10: Comparison of solution distribution diagrams for 
ZDT3. 

On the other hand, the result is just one example 
in which the diversity is obviously improved, and 
there was some variation in accuracy among the 10 
runs. A common trend observed with ZDT1 and 
ZDT2 was that the number of solutions created at 
both ends of the distribution did not necessarily 
increase significantly, but an improvement in the 
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uniformity of the solution distribution was observed 
in many cases. From the above, it was confirmed that 
with a population of 20 individuals, the ability to 
generate solutions at both ends of the distribution was 
improved, leading to an improvement in the overall 
diversity of the solution distribution. This is thought 
to be because the elimination of Rank 1 solutions 
having a small crowding distance instead of Rank 2 
solutions at both ends of the Pareto front reduces the 
generation of solutions in the range between 0.2 and 
0.8, which was densely occupied in the conventional 
method, making it more likely that candidates in the 
next generation are created at the ends of the solution 
distribution. 

4.2.2 Comparison of Solution Distributions 
for Population Size 100 

Next, Figs. 11 through 13 show the results obtained 
with a population size of 100. These diagrams show 
examples where it was confirmed that the number of 
individuals generated at both ends of the distribution 
was larger than in the conventional method. From 
Tables 4 and 5, it can be seen that the number of 
individuals increased slightly at both ends of the 
solution distribution. On the other hand, when 
observing the 10 experiments one by one, the results 
showed that the diversity of solutions did not 
necessarily improve significantly. This may have 
been caused by the number of individuals. With a 
hundred individuals, the population size may have 
been so large relative to the size of the search space 
that exchanging only two solutions at both ends of 
Rank 2 was unable to significantly affect the ability 
to search for solutions. 
 

 
(a) Conventional method (b) Proposed method 

Figure 11: Comparison of solution distribution diagrams for 
ZDT1. 

Table 4: Number of non-dominated solutions for ZDT1. 

Value of objective 
function 1 

Conventional 
method 

Proposed 
method 

0–0.2 30 32 
0.8–1.0 15 17 
Total 45 49 

 

    
(a) Conventional method (b) Proposed method 

Figure 12: Comparison of solution distribution diagrams for 
ZDT2. 

Table 5: Number of non-dominated solutions for ZDT2. 

Value of objective 
function 1 

Conventional 
method 

Proposed 
method 

0–0.2 11 11 
0.8–1.0 27 29 
Total 38 40 

 

 
(a) Conventional method (b) Proposed method 

Figure 13: Comparison of solution distribution diagrams for 
ZDT3. 

4.2.3 Comparison of Changes in 
Hypervolume 

Since the same tendency arose for all the test 
functions, Fig. 14 shows the relationship between the 
number of generations and the HV value for the case 
of ZDT2, which was suitable for evaluating diversity. 

    
(a) 20 individuals (b) 100 individuals 

Figure 14: The relationship between the number of 
generations and the HV value. 

As a result, with 20 individuals, the proposed 
method produced a slightly higher HV value for 
ZDT2, but with 100 individuals, no significant 
difference was observed. Since the ZDT2 test 
optimization problem is suited to the evaluation of 
diversity, it is thought that the proposed method was 
able to work effectively on this problem because it 
focuses on improving diversity. However, since it 
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depends on randomly generated initial individuals, 
and since the HV values varied widely over 10 
experiments, a more detailed investigation is needed 
in the future. Therefore, although the proposed 
method is not particularly effective at improving the 
HV value, it could be highly effective at improving 
the diversity on the Pareto front and improving the 
uniformity of the non-inferior distribution, depending 
on the characteristics of the problem and the number 
of individuals. 

4.3 Future Works 

As a future work, we evaluated the proposed method 
using the ZDT suite this time, but it is also necessary 
to evaluate using the knapsack problem and TSP that 
challenge the algorithm to find the boundary 
solutions. In addition, since initial value dependence 
was observed in this experiment, significance testing 
such as t-test should be performed. Furthermore, this 
time, the experiment was conducted without changing 
the reference point values of the previous experiment, 
but there is a paper (Li, 2019) that the solution 
accuracy greatly depends on the reference point 
value. Therefore, an evaluation experiment with 
different reference points is also necessary. 

There is a paper (Ohki, 2018) using Pareto partial 
dominance for the problem when NSGA-II does not 
work effectively in the many-objective optimization 
problem. Similar to the proposed method, this is a 
countermeasure when the search using the dominant 
/non-dominated relationship does not work 
effectively. This method is considered to be effective 
when the number of objectives is 4 or more, but when 
applied to a multi-objective problem with 3 or less 
objectives, a single-objective search occurs. On the 
other hand, our proposed method is also an effective 
method for multi-objective optimization problems 
with 3 or less objectives. Both can be applied in 
combination, and further comparative studies 
including the applying method are required in the 
future. 

5 CONCLUSIONS 

In this paper, we proposed a method whereby, in the 
NSGA-II evolutionary multi-objective optimization 
algorithm, some of the inferior solutions outside Rank 
1 that would normally be culled during the search 
process are instead preserved and actively used for 
genetic operations, which may be an effective way of 
actively improving diversity. When preserving these 
inferior solutions, we used them to replace solution 

candidates in Rank 1 that had a small crowding 
distance and were densely located on the Pareto front. 
Using the typical ZDT1, ZDT2 and ZDT3 test 
functions, we experimentally compared this method 
with the original NSGA-II algorithm, but found no 
improvement in the final hypervolume value. 
However, our method was possible to improve the 
diversity of solutions and the uniformity of the non-
inferior solutions at both ends of the Pareto front, 
especially when the population size was small. 
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