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Abstract: Recent advances in machine learning have shown outstanding performances in biological and medical data 
analysis to assist for early detection, diagnosis, and treatment of diseases. Alzheimer's disease (AD) is a 
neurodegenerative disease and the most common cause of dementia in older adults. In this study, multilayer   
perceptron (MLP) neural networks are developed to classify AD, Mild Cognitive Impairment (MCI), and 
Cognitive Normal (CN) subjects based upon the data from standard neuropsychological tests. Three 
neuropsychological tests from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, 
Alzheimer’s Disease Assessment Scale-Cognitive subscale (ADAS-Cog), Mini-Mental State Examination 
(MMSE), and Functional Activities Questionnaire (FAQ), were used to train MLP neural networks. We first 
build three MLP models that can classify AD vs. CN, AD vs. MCI, and MCI vs. CN. We then construct a 3-
way MLP classifier to classify AD vs. MCI vs. CN. Finally, we propose a cascade 3-way classification method 
to further improve the model performance. Using the neuropsychological test data from ADNI database, our 
result shows the pairwise MLP models (i.e., AD vs. CN, AD vs. MCI, and MCI vs. CN) have the accuracy of 
99.760.48, 89.643.94, and 90.812.91, respectively. The multi-class MLP model has an average accuracy 
of 84.283.66, and the proposed cascaded MLP approach further improves the performance of the multi-class 
classification with an average accuracy of 86.263.15.

1 INTRODUCTION 

Alzheimer’s disease (AD) is a neurodegenerative 
disease and the most common cause of dementia in 
older adults. AD pathologies often start 5, 10, or even 
20 years before symptoms appear (Alzheimer’s 
Association, 2020). Symptoms usually start with 
difficulty remembering new information. Since this 
condition is also common with the normal aging 
process, distinguishing between early AD and normal 
aging can be difficult (Holtzman et al., 2011). In 
advanced stages, symptoms include confusion, mood 
and behavior changes, and inability to care for one’s 
self and perform basic life tasks. AD is ultimately 
fatal (Taylor et al., 2017). While significant progress 
has been made, there are yet no proven effective 
treatments for AD. As a result, there is increasing 
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pressure to develop techniques to assist in the 
diagnosis of early AD, as early intervention may be 
most effective in treating or slowing disease progress. 
In addition, early diagnosis may provide useful 
information for the development of more effective 
treatments (Fiandaca et al., 2014).  

Three groups of subjects are included in this 
machine learning classification study: Cognitively 
Normal (CN) older adults, Mild Cognitive 
Impairment (MCI) due to AD, and AD. A CN subject 
has no signs of cognitive impairment other than age-
related normal decline. A subject converts from CN 
to MCI when symptoms become mild yet noticeable 
to the patient or close family members/friends. MCI 
is a transitional stage between CN and AD, and is the 
earliest clinically detectable stage of progression 
towards dementia or AD (Sperling et al., 2011). 
Approximately 15-20% of seniors age 65 or older 
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have MCI (Alzheimer’s Association, 2020). Patients 
diagnosed with MCI are of higher risk for developing 
AD or other types of dementia, and are therefore 
given special attention (Ansart et al., 2020). AD is the 
last stage in this progression.  

In recent years, the world has seen many major 
breakthroughs in the field of healthcare because of the 
rapid proliferation of large biomedical datasets, 
concurrent with advances in machine learning, 
especially in deep learning (Esteva et al., 2017). 
These advances have opened new avenues for the 
development of diagnostic tools to assist early 
detection of AD. Recently, several studies have 
focused on the detection of different cognitive groups 
by utilizing various types of biomedical data 
including brain imaging data (Pellegrini et al., 2018), 
cerebrospinal fluid (CSF) specimens (Jack et al., 
2018; Shaffer et al., 2013), and behavioral data from 
speech (Fraser et al., 2016; Nagumo et al., 2020), 
body movement (Khan & Jacobs, 2020), and 
neuropsychological tests (Grassi et al., 2019; Kang et 
al., 2019; Lee et al., 2019). 

Standard neuropsychological tests are typically 
used in the diagnosis of cognitive impairment in 
individuals with MCI, AD, or other neurological 
conditions (Seo, 2018). These tests are less 
expensive, easy to conduct, and widely available 
compared to medical imaging. The scores from these 
tests can measure normal and abnormal cognitive and 
behavioral functions and provide useful features to 
machine learning methods for the early detection of 
AD (Anastasi & Urbina, 1997). Repeated assessment 
with these tests is frequently used to evaluate changes 
in a treated person’s condition over time (Harvey, 
2012). The existence of multiple cognitive deficits 
indicates that a combination of neuropsychological 
tests from different domains may improve clinical 
diagnosis accuracy (Harvey, 2012; Storey & Kinsella, 
2007; Yeatts et al., 2018).  

In this paper, we present fully connected 
multilayer perceptron (MLP) networks to perform 
binary classification between different cognitive 
groups (i.e., AD vs. CN, AD vs. MCI, and MCI vs. 
CN) using the baseline visit data from three 
neuropsychological tests in the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database 
(http://adni.loni.usc.edu/). A direct MLP based 3-way 
classification (i.e., AD vs. MCI vs. CN) is also 
developed. Additionally, we propose a MLP based 
cascading approach to further improve the multi-class 
classification performance. 

The paper is organized as follows. Section 2 
includes descriptions of data used in this study, data 

pre-processing, experimental design, and proposed 
methods. Section 3 includes results from several 
multilayer perceptron models. Section 4 includes a 
summary of results, discussion, and future research 
directions.  

2 MATERIALS AND METHODS 

2.1 Data 

2.1.1 ADNI Database 

The data used in this study was obtained from the 
ADNI database. ADNI is a longitudinal multicenter 
study designed to develop clinical, imaging, genetic, 
and biochemical biomarkers for the early detection 
and tracking of AD progression. The ADNI project 
draws on a broad range of academic institutions and 
private corporations, with subjects recruited from 
over 50 sites across the U.S. and Canada. The project 
began in 2003 and has been extended to different 
phases. The first phase of ADNI (ADNI-1) was 
completed in 2010 and has been followed by ADNI-
GO, ADNI-2, and ADNI-3. These four protocols 
have recruited over 1900 adults, with ages from 55 to 
90, and consist of elderly CN controls, people with 
MCI, and people with AD. The follow-up duration of 
each group is described in the protocols for ADNI-1, 
ADNI-GO, ADNI-2, and ADNI-3. For detailed 
information, please see (www.adni-info.org). 

2.1.2 Subjects 

In this study, we used the baseline visit data from a 
total of 808 subjects at the initial project period 
(ADNI-1), including 188 AD, 391 MCI, and 229 CN. 
The enrolled subjects were between 55-90 (inclusive) 
years of age, in good general health, having a partner 
who is able to provide an independent assessment of 
the subject’s functioning, having at least 6 grades of 
education or work history, and were fluent in English 
or Spanish. All subjects and their study partners 
completed the informed consent process, and study 
protocols were reviewed and approved by the 
Institutional Review Board at each ADNI data 
collection site (Petersen et al., 2010). Table 1 shows 
the characteristics of the AD, MCI, and CN subjects 
included in this study. The mean test score was 
computed by averaging the scores from all the 
questions in one test.     
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Table 1: Characteristics of subjects at their baseline visit recruited during ADNI-1. 

Characteristic AD (n=188) MCI (n=391) CN (n=229) p-value 

Age, years 74.97.4 74.47.3 75.45.0 0.167 
Education, years 14.73.1 15.63.0 16.12.8 3.9810-5 
Sex, male/female 97/91 255/136 119/110 5.4310-4 
ADAS-Cog score 28.97.6 18.66.3 9.54.2 4.9510-145 
MMSE score 23.42.0 27.01.8 29.10.9 3.0810-164 
FAQ score 13.06.8 3.84.5 0.10.6 4.0710-28 

Values are shown as mean  standard deviation or gender ratios. The p-values for differences between AD, MCI, and CN 
are based on t-test. ADAS-Cog = Alzheimer's Disease Assessment Scale-Cognitive subscale; MMSE = Mini-Mental State 
Examination; FAQ = Functional Activities Questionnaire. 

2.1.3 Neuropsychological Data 

The itemized scores of three neuropsychological tests 
were used, which include Alzheimer’s Disease 
Assessment Scale-Cognitive subscale (ADAS-Cog) 
(Rosen et al., 1984), Mini-Mental State Examination 
(MMSE) (Folstein et al., 1975), and Functional 
Activities Questionnaire (FAQ) (Pfeffer et al., 1982). 
Table 2 details the cognitive/daily functions 
associated with individual tests. In total, there are 13, 
30, and 10 questions from ADAS-Cog (note that Q13 
was not used by default), MMSE, and FAQ, 
respectively. The score of each individual question is 
treated as a feature in our machine learning task, 
resulting in a total of 13, 30, and 10 features for the 
ADAS-Cog, MMSE, and FAQ datasets. The three 
neuropsychological tests are widely used to assist 
cognitive impairment in AD. The most prominent 
feature of AD is memory impairment. Therefore, 
ADAS-Cog and MMSE tests were used in this study. 
ADAS-Cog and MMSE also test global cognitive 
function as well as several domains other than 
memory (Casanova et al., 2013). Information on 
function from the FAQ test was also included as 
functional changes begin to appear earlier in the 
dementia process (John et al., 2016). 

Table 2: Neuropsychological tests used in this study. 

Neuropsychological Tests 

ADAS-Cog Registration (3) 
Q1. Word recall Attention and calculation (5) 
Q2. Word recognition Recall (3) 
Q3. Object naming Language (8) 
Q4. Recall test instructions Visual construction (1) 
Q5. Orientation FAQ 
Q6. Commands Q1. Manage finances 
Q7. Clarity of language Q2. Complete forms 
Q8. Comprehension Q3. Shop 
Q9. Word finding Q4. Perform games of skill or hobbies 
Q10. Ideational praxis Q5. Prepare hot beverages 
Q11. Constructional praxis Q6. Prepare a balanced meal 
Q12. Delayed word recall Q7. Follow current events 
Q14. Number cancellation Q8. Attend to TV, books, or magazines 
MMSE  Q9. Remember appointments 
Orientation (10) Q10. Travel out of the neighborhood 

2.2 Experimental Design for 
Classification 

Our multilayer perceptron (MLP) neural networks 
were developed using (1) the original set of features 
from each neuropsychological test (i.e., 13 from 
ADAS-Cog, 30 from MMSE, and 10 from FAQ), and 
(2) the combined-test of 53 features from three 
neuropsychological tests. We first trained three 
binary MLP models to perform binary classification 
between different cognitive groups for both the 
individual tests and the combined-test: (Case 1) AD 
vs. CN, (Case 2) AD vs. MCI, and (Case 3) MCI vs. 
CN. We also trained a MLP network with multi-class 
classification network, i.e., AD vs. MCI vs. CN (case 
4). Furthermore, we proposed a MLP based cascading 
approach to further improve the multi-class 
classification performance (case 5).   

The proposed cascade MLP method is composed 
of 2 steps. In the first step, we classified CN vs. (AD 
+ MCI) with a MLP network. Then we trained 
another MLP network with the predicted AD or MCI 
samples from the first step to classify AD vs. MCI 
(step 2). Note that the true CN samples misclassified 
in step 1 as (AD + MCI) will participate in the second 
step and they will be counted as misclassified CN 
regardless of their predicted results in step 2. On the 
other hand, the true MCI or AD samples misclassified 
as CN will not participate in the training in step 2, but 
will be counted in the final 3×3 confusion matrix 
along with the correctly classified CN samples after 
step 1. 

The implementation was carried out using Python 
and related libraries including Scikit-learn, Pandas, 
Numpy, TensorFlow, and Keras (Chollet, 2015; 
Pedregosa et al., 2011). 

2.3 Data Pre-processing 

The original baseline visit dataset in ADNI-1 consists 
of 200 AD, 400 MCI, and 229 CN. We excluded 12 
subjects from AD and 9 subjects from MCI before our 
data analysis since answers to some questions were 
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not recorded (i.e., missing values in some features). 
Therefore, the dataset (n=808, AD=188, MCI=391, 
CN=229) used in our study does not have any missing 
values. In statistics it is a common practice to drop 
cases with missing values as long as the sample size 
is sufficiently large and the number of dropped cases 
does not exceed 5% of the overall sample. In this 
study, the number of missing value subjects was 
relatively small (12 out of 200 for AD and 9 out of 
400 for MCI). Therefore, we elected to drop without 
replacement the twenty-one samples with missing 
value. Feature normalization was performed by 
standard scaling with a zero mean and standard 
deviation equal to one. 

2.4 Data Partitioning 

Cross-validation (CV) with stratified K-Fold was 
used to evaluate the predictive model. Data was 
divided into 5 disjoint subsets with consistent ratios 
between classes in each fold. Eighty percent of the 
data was used in training and 20% of the data was 
used for testing in each fold.  

2.5 Multilayer Perceptron (MLP) 
Neural Network 

Multilayer perceptron (MLP) is a feed-forward 
artificial neural networks that uses back-propagation 
to update weights (Marsland, 2015). The neurons are 
connected to later layers in a way that pushes 
information from the input, through hidden layer(s), 
to the output layer. MLP leverages a layered 
architecture of stacked perceptrons to solve complex, 
often supervised, problems. MLP can approximate 
non-linear functions for both classification and 
regression (Joshi, 2020). 

In this paper, we developed multiple fully 
connected MLP networks to classify different 
cognitive groups (AD, MCI, and CN) using data from 
three neuropsychological tests. Figure 1 shows a 3-
layer MLP network that can be used to classify AD 
and CN subjects. As an example, if the combined-test 
data was used, the resulted MLP model will have 53 
nodes in the input layer, 6 nodes in the hidden layer, 
and 1 node in the output layer. The Rectified Linear 
Unit (ReLU) was selected as the activation function 
for the input and hidden layers (Xu et al., 2015). The 
sigmoid function and the binary cross-entropy loss 
function were used for the binary classifications. The 
softmax function and the multi-class cross-entropy 
were used for the multi-class classification (Sharma, 
2017). The Adaptive Movement Estimation (Adam) 

was used as our optimizer to tune the network during 
the training (Kingma & Ba, 2014). 

The cross-entropy loss function defined in 
equation (1) is used to quantify MLP model errors:  

ℒ ൌ െ ෍ 𝑤௖𝑝ሺ𝑐|𝑥௜ሻ log 𝑞ሺ𝑐|𝑥௜ሻ
௜௖

൅ 

𝜆௞ ෍ ||𝑤௞,௞ିଵ||ଶ

௞

 
(1)

where c, i, k are indices for classes, samples, and 
layers, respectively; wc is the class weight for class c; 
pሺ𝑐|𝑥௜ሻ  is the true probability for sample xi to be 
assigned to class c; q ሺ𝑐|𝑥௜ሻ  is the predicted 
probability for sample xi to be assigned to class c; 
𝜆௞ is the regularization strength for layer k; and wk,k-1 

are the weights between the (k-1)th and the kth layer. 
A larger class weight on class c will penalize more if 
samples in class c are misclassified. We also 
considered the probability threshold as another hyper-
parameter. For example, a sample can be predicted to 
have a probability of 0.45 to be class 1 and 0.55 to be 
class 0, if we set this probability at default 0.5, this 
sample will be classified to class 0. However, one 
could set the probability threshold to 0.4 instead, the 
sample will then be classified to class 1. In our 
training, we also included the class weights and 
probability thresholds as hyper-parameters to avoid 
the imbalance issue between the model sensitivity and 
specificity.  

 

Figure 1: A 3-layer MLP network. Circular nodes represent 
artificial neurons. Arrows represent connection from a 
neuron output to a neuron input. 
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To avoid overfitting, we have employed L2 
regularization in the hidden layers as shown in 
equation (1). The regularization strength for each 
layer λ୩ was also tuned as a hyper-parameter. We also 
applied the EarlyStopping function in Keras by 
observing the loss function on the validation set. If the 
loss function reduction was less than (1 ൈ 10ିସ) for 
5 consecutive epochs, the training will be stopped. 
Learning rate (or shrinkage factor) was adjusted 
based on the reduction rate of loss function to train 
the network more efficiently, and the 
ReduceLROnPlateau function in Keras was used to 
observe the loss function reduction. If the loss 
function reduction was less than (1 ൈ 10ିଷ) for 10 
consecutive epochs, the learning rate would be 
reduced to one tenth of the previous learning rate or 
the minimum learning rate. The initial learning rate 
was set to 0.01 and the minimum value is (5 ൈ 10ିସ). 
The early stopping and the learning rate shrinkage 
helped our training process with a positive impact in 
the classification performance. 

2.6 Performance Evaluation 

To evaluate the performance of the classifiers, 
sensitivity, specificity, and accuracy were calculated 
for each model. Sensitivity measures the ratio of 
actual positive subjects to the total numbers of 
subjects identified by the test as being positive, i.e., 
true positive rate. Specificity measures the ratio of 
actual negative subjects to the total number of 
subjects testing negative, i.e., true negative rate. 
Accuracy is the ratio of correctly classified subjects 
to the entire set of subjects. In other words, 
sensitivity, specificity, and accuracy are described in 
terms of TP (True Positives), TN (True Negatives), 
FN (False Negatives), and FP (False Positives), and 
defined in equations (2), (3), and (4), respectively. 

Sensitivity ൌ
TP

TP ൅ FN
 (2)

Specificity ൌ
TN

TN ൅ FP
 (3)

Accuracy ൌ
TP ൅ TN

TP ൅ TN ൅ FP ൅ FN
 (4)

To illustrate the diagnostic ability of a classifier, 
we also calculated the Area Under the Curve (AUC) 
from the Receiver Operating Characteristic (ROC) 
curve. The AUC was also used as the target metric 
during hyper-parameter tuning. An algorithm with an 
AUC closer to 1, indicating a near perfect 

performance, is considered as the more reliable 
predictive model. 

3 RESULTS AND DISCUSSION 

Table 3 summarizes the performance of binary and 3-
way classification using each individual 
neuropsychological test (i.e., ADAS-Cog, MMSE, 
and FAQ) as well as a combination of these three tests 
to discriminate different cognitive groups. The 
default class weights was set to 1:1 for binary 
classifier or 1:1:1 for 3-way classifier, and the default 
probability threshold was set to 0.5. As shown in 
Table 3, the model using the combined features from 
three tests outperformed the models using each single 
test. The classification of AD vs. CN subjects had 
very high accuracies (98%~100%) in all models. This 
indicates the proposed MLP method using 
neuropsychological test data is very effective in 
classifying AD and CN. The classification accuracy 
of MCI vs. CN was 77%~82% when using a single 
test, but reached 90% when using the combined tests. 
Classification between AD and MCI was our most 
challenging task. Although the overall accuracy was 
acceptable (80%~84%), the sensitivity was very poor 
(47%~69%) when using a single neuropsychological 
test. However, the sensitivity significantly improved, 
to 81.38%, when using the combined-test.   

In Table 4, we demonstrated that class weights 
and probability thresholds could be used to improve 
the model performance and obtain a more balanced 
sensitivity and specificity ratio. By tuning the class 
weights and probability thresholds in training of MLP 
networks, the sensitivity as well as the accuracy can 
be further improved. For example, the sensitivity of 
AD vs. MCI improved from 46.81% to 79.26% with 
ADAS-Cog test (data not shown) and from 81.38% to 
91.49% with the combined-test. The accuracy of AD 
vs. MCI vs. CN was improved from 82.43% to 
84.28%. While this MLP 3-way classification 
accuracy is notably lower than the binary 
classifications, it outperformed other existing 
methods. For example, its accuracy was 22% higher 
than Lee’s model (Lee et al., 2019).  

Table 5 shows the performance of the MLP model 
with the cascade approach using the combined-test. 
The class weights and probability thresholds were 
tuned to obtain optimal model performance. This new 
model further improved the results compared to the 
direct 3-way classification (Tables 3 and 4) in terms 
of sensitivity, specificity, and accuracy.  

 Standard neuropsychological tests are often 
incorporated into regular physical examinations for 
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seniors, this study demonstrated that early screening 
of AD is possible when using these tests with neural 
networks. The proposed methods are effective to 
classify different cognitive groups, and do not require 
the medical procedures that are presently more 
expensive, invasive, or not offered in many clinical 
settings. These medical procedures include 

neuroimaging, cerebrospinal fluid (CSF), and genetic 
testing. This study also showed that a combination of 
a variety of neuropsychological tests and assessments 
used for AD diagnosis improved the accuracy of 
clinical diagnosis. Lastly, this study points to the 
potential for MLP neural network enabled classifiers 
in discriminating between AD progression classes.

Table 3: The classification performance of binary and 3-way multilayer perceptron (MLP) networks using data from a single 
neuropsychological test and the combined-test. The default class weights (1:1 or 1:1:1) and probability thresholds (0.5) were 
used in each model.   

Dataset Classification Case SEN% SPE% ACC% AUC 

ADAS-Cog 
(13) 

AD vs. CN 93.62 98.69 96.04  1.71 0.994 

AD vs. MCI 46.81 95.43 79.73  2.29 0.874 

MCI vs. CN 82.23 80.35 81.54  5.24 0.905 

AD vs. MCI vs. CN 72.75 80.90 72.75  2.82 0.887 

MMSE 
(30) 

AD vs. CN 95.85 97.82 96.92  1.62 0.998 

AD vs. MCI 69.43 92.19 84.75  3.75 0.914 

MCI vs CN 78.34 75.98 77.48  3.43 0.857 

AD vs. MCI vs. CN 70.21 80.28 70.21  5.89 0.873 

FAQ 
(10) 

AD vs. CN 90.16 99.56 95.26  1.52 0.982 

AD vs. MCI 54.40 92.89 80.24  3.50 0.868 

MCI vs. CN 71.83 92.14 79.29  2.26 0.845 

AD vs. MCI vs. CN 71.32 85.00 71.33  3.74 0.853 

Combined-Test 
(53) 

AD vs. CN 98.04 100.00 99.28  0.59 1.0 

AD vs. MCI 81.38 93.35 89.46  3.93 0.964 

MCI vs. CN 90.79 89.08 90.16  3.55 0.960 

AD vs. MCI vs. CN 82.43 88.62 82.43  3.92 0.946 

Table 4: The classification performance of binary and 3-way multilayer perceptron (MLP) networks using data from the 
combined three neuropsychological tests. The class weights and probability thresholds were tuned during the training to 
obtain a balanced sensitivity and specificity ratio.  

Classification Case Probability Threshold Class Weight SEN% SPE% ACC% AUC 

AD vs. CN 0.5 1:1.5 99.47 100.00 99.76  0.48 1.0 

AD vs. MCI 0.4 1:1.5 91.49 88.75 89.64  3.94 0.965 

MCI vs. CN 0.5 1:1.5 92.07 88.65 90.81  2.91 0.964 

AD vs. MCI vs. CN 0.5 1.5:1.5:1 84.28 90.36 84.28  3.66 0.954 

Table 5: The multilayer perceptron (MLP) cascading classification performance. The classification performance of the tuned 
class weights and probability thresholds are shown. 

Classification steps Probability Threshold Class Weight SEN% SPE% ACC% AUC 

Step1: CN vs. (AD + MCI) 0.5 1:1 93.27 92.14 92.95  2.33 0.973 

Step2: AD vs. MCI using the (AD + MCI) 
from step 1 

0.6 1:1 86.26 91.15 86.26  3.15 0.957 
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4 CONCLUSIONS AND FUTURE 
WORK 

Most previous studies on AD detection using machine 
learning techniques have been focusing on utilizing 
brain imaging data. With the rich availability and low 
cost of standard neuropsychological tests, this paper 
investigated the classification performance for 
detecting different cognitive groups (AD, MCI, and 
CN) using MLP neural networks. Several important 
conclusions can be drawn from this study. First, using 
a single neuropsychological test to classify AD and 
MCI yielded a very poor sensitivity. Second, the 
combination of three neuropsychological test data 
with MLP networks showed good potential for early 
AD detection. The MLP classifiers performed well on 
all three binary cases with the combined-test as well 
as for the 3-way classification. Finally, the proposed 
cascade MLP approach can further improve the 
performance of multi-class classification.  

The proposed method is not only reliable but also 
cost effective, and therefore it can support large-scale 
cognitive screening. Our future work will include 
identifying individuals with MCI who would be more 
likely to develop AD within a defined period of time. 
Additionally, we will investigate other artificial 
neural networks on diagnostics and prediction of AD. 
We also plan to study the combination of brain 
imaging and behavioral data with both machine 
learning and deep learning techniques that may offer 
additional insights into the progression of various 
stages of AD.  
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