
Extracting Body Text from Academic PDF Documents for Text Mining

Changfeng Yu, Cheng Zhang and Jie Wang
Department of Computer Science, University of Massachusetts, Lowell, MA, U.S.A.

Keywords: Body-text Extraction, HTML Replication of PDF, Line Sweeping, Backward Traversal.

Abstract: Accurate extraction of body text from PDF-formatted academic documents is essential in text-mining appli-
cations for deeper semantic understandings. The objective is to extract complete sentences in the body text
into a txt file with the original sentence flow and paragraph boundaries. Existing tools for extracting text from
PDF documents would often mix body and nonbody texts. We devise and implement a system called PDFBoT
to detect multiple-column layouts using a line-sweeping technique, remove nonbody text using computed text
features and syntactic tagging in backward traversal, and align the remaining text back to sentences and para-
graphs. We show that PDFBoT is highly accurate with average F1 scores of, respectively, 0.99 on extracting
sentences, 0.96 on extracting paragraphs, and 0.98 on removing text on tables, figures, and charts over a corpus
of PDF documents randomly selected from arXiv.org across multiple academic disciplines.

1 INTRODUCTION

It is desirable for text mining applications to extract
complete sentences and correct boundaries of para-
graphs from the body text of a PDF document into
a txt file without hard breaks inside each paragraph.
Layered reading (http://dooyeed.com) and extractive
summarization, for example, are such applications.
Layered reading allows the reader to read the most
important layer of sentences first based on sentence
rankings, then the layer of next important sentences
interleaving with the previous layers of sentences in
the original order of the document, and continue in
this fashion until the entire document is read.

By “body text” (BT in short) it means the main
text of an article, excluding “nonbondy text” (NBT in
short) such as headings, footings, sidings (i.e., text on
side margins), tables, figures, charts, captions, titles,
authors, affiliations, and math expressions in the dis-
play mode, among other things.

Most existing tools for extracting text from PDF
documents, including pdftotext (FooLabs, 2014) and
PDFBox (Apache, 2017), extract a mixture of both
BT and NBT texts. Identifying BT text from such
mixtures of texts is challenging, if not impossible.
Other tools extract texts according to rhetorical cate-
gories such as LA-PDFText (Burns, 2013) and logical
text blocks such as Icecite (Korzen, 2017), which only
provide a suboptimal solution to our applications.

Extracting BT text from PDF documents of ar-

bitary layouts is challenging, due to the utmost flex-
ibility of PDF typesetting. Instead, we focus on BT
extraction from single-column and multiple column
research papers, reports, and case studies. We do so
by working with the location, font size, and font style
of each character, and the locations and sizes of other
objects. While a PDF file provides such information,
we find it easier to work with HTML replications pro-
duced by an exiting tool named pdf2htmlEX (Wang,
2014), with almost the same look and feel of the orig-
inal PDF document, providing necessary formatting
information via HTML tags, classes, and id’s in the
underlying DOM tree.

We devise a system named PDFBoT (PDF to
Body Text) that, using pdf2htmlEX as a black box,
incorporates certain text formatting features produced
by it to identify NBT texts. We use a line-sweeping
method to detect multi-column layouts and the area
for printing the BT text. We also develop multiple
tests to identify NBT text inside the BT-text area and
use a backward traversal method to deploy these tests.
In addition, we use POS (Part-of-Speech) tagging to
help identify NBT text that are harder to distinguish.

The rest of the paper is organized as follows:
Section 2 is related work on text extractions from
PDF. Section 3 describes HTML replications via
pdf2htmlEX and Sections 4 presents the architecture
of PDFBoT and its features Section 5 is evaluation re-
sults with F1 scores and running time, and Section 6
is conclusions and final remarks.
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2 RELATED WORK

Existing tools, such as pdftotext (FooLabs, 2014) and
PDFBox (Apache, 2017) the two most widely-used
tools for extracting text from PDF, and a number of
other tools such as pdftohtml (Kruk, 2013), pdftoxml
(Dejean and Giguet, 2016), pdf2xml (Tiedemann,
2016), ParsCit (Kan, 2016), PDFMiner (Shinyama,
2016), pdfXtk (Hassan, 2013), pdf-extract (Ward,
2015), pdfx (Constantin et al, 2011), PDFExtract
(Berg, 2011), and Grobid (Lopez, 2017), extract text
from PDF extract BT text and NBT text together with-
out a clear distinction. PDFBox can extract text in
two-column layouts; some other tools extract text line
by line across columns.

Using heuristics is a common approach. For ex-
ample, the Java PDF library was used to obtain a
bounding box for each word, compute the distance
between neighboring words, connect them based on a
set of rules to form a larger text block, place them into
rhetorical categories, and connect these categories
following the order of the underlying document (Ra-
makrishnan et al., 2012). However, this method fails
to align broken sentence and determine text on formu-
las, tables, or figures. Using an intermediate HTML
representation generated by pdftohtml (Yildiz et al.,
2005). Text blocks may also be created by grouping
characters based on their relative positions (Shigarov
et al., 2016), while extracting the tables in PDF. These
two methods are focused only on extracting tables.

Other methods include rule-based and machine-
learning models. For example, text may be placed
into predefined logical text blocks based on a set of
rules on the distance, positions, fonts of characters,
words, and text lines (Bast and Korzen, 2017). How-
ever, these rules also connect text on tables or fig-
ures as BT text. A Conditional Random Field (CRF)
model is trained (Luong et al., 2011; Romary and
Lopez, 2015) to extract texts according to a prede-
fined rhetorical category, such as title, abstract, and
other sections in the input document. However, this
model fails to determine paragraph boundaries or
align broken sentences, among other things.

CiteSeerX (Giles, 2006), a search engine, extracts
metadata from indexed articles in scientific docu-
ments for searching purpose, but not focused on the
accuracy of extracting body text. PDFfigures (Clark
and Divvala, 2015) chunks the text table and figure
into blocks, then classifies these blocks into captions,
body text, and part-of-figure text. Recent studies have
shifted attentions to extracting certain types of text,
including titles (Yang et al., 2019) (but not text on ta-
bles or figures), and math expressions in the display
mode and the inline mode (Mali et al., 2020; Pfahler

et al., 2019; Wang et al., 2018; Phong et al., 2020).
In summary, previous methods, while meeting

with certain success, still fall short of the desired ac-
curacy required by text-mining applications relying
on clean extractions of complete sentences and cor-
rect boundaries of paragraphs in BT text.

3 HTML REPLICATION OF PDF

HTML technologies have been used to replicate PDF
layouts to facilitate online publishing. A PDF docu-
ment can be represented as a sequence of pages, with
each page being a DOM tree of objects with sufficient
information for an HTML viewer to display the con-
tent (Wang and Liu, 2013). The text extracted from
PDF by pdf2htmlEX (Wang, 2014) are translated into
HTML text elements that are placed into the same po-
sitions as they are displayed by PDF.

Let F denote a PDF document and f the HTML
file produced by pdf2htmlEX on F . The DOM tree
for f , denoted by Tf , is divided into four levels: doc-
ument, page, text line, and text block (TBK in short).
(1) Document Structure. Tf starts with the following
tag as the root: 〈div id=“page-container”〉, and each
of its children is the root of a subtree for a page, listed
in sequence, with an id indicating its page number
and a class name indicating the width and height of
a page. For example, a child node with 〈div id=“pf7”
class=“pf w0 h0 data-page-no=“7”〉 is the root of the
subtree for Page 7, where w0 and h0 are the width and
height of the page (specifying the printable area) with
the origin at the lower-left corner of the page.
(2) Page Structure. Each page starts with a page node,
followed by object nodes with contents to be printed.
Each object occupies a rectangular area (a bounding
box) specified on a coordinate system of pixels. The
text of the document is divided into TBKs as leaf
nodes. Each TBK is represented by a 〈div〉 tag with
corresponding attributes, and so the text in a TBK are
either all BT text or all NBT text. Each object is iden-
tified by coordinates (x,y) at the lower-left corner of
the bounding box relative to the coordinates of its par-
ent node. In what follows, these coordinates are re-
ferred to as the starting point of the underlying object.
In addition to the starting point, a non-textual object is
specified by a width and a height, and a TBK is speci-
fied with a height without a width, where the width is
implied by the enclosed text, font size and style, and
word spacing. The parent of each object may either be
the origin, a node for a figure or a table, or a node due
to some (probably invisible) formatting code. Thus,
the height of a page’s DOM tree could be greater than
3. Figure 1 is a schematic of page structure.
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Figure 1: Schematic of the page structure. The red square
is a figure with a TBK1 and subscript TBK2 inside the
square, where (x0,y0),(x3,y3),(x4,y4) are absolute coordi-
nates, and (xi,yi) (1 ≤ i ≤ 2) are relative to (x0,y0). Thus,
the corresponding absolute locations, denoted by (x′i,y

′
i),

are x′i = x0 + xi and y′i = y0 + yi for i = 1,2.

(3) Line Structure. Each horizontal text line is made
up of one or more TBKs, and no horizontal TBK con-
tains text across multiple lines. But TBKs in the NBT
text could span across multiple lines, which are either
vertical or diagonal, specified by webkit-transform ro-
tations, which rotates the text box around the center
of the text box. For example, the background text of
“Unpublished working draft” and “Not for distribu-
tion” on certain documents are two diagonal TBKs
on top of BT text.
(4) Text-block Structure. Each TBK is specified
by exactly eleven classes of features, where each fea-
ture class consists of one or more features, including
starting point (x,y) relative to the starting point of its
parent, height, font size, font style, font color, and
word spacing. Enclosed in TBK are text and addi-
tional spacing between words. A TBK ends either at
the end of a line or at the beginning of a subscript, a
superscript, and a citation.

4 PDFBoT

PDFBoT consists of five major components: Pre-
processing, Multi-Column Detection, Text Features,
Deep Removal, and BT Alignment & POS-based Re-
moval. Figure 2 depicts the architecture and data flow
diagram of PDFBoT.

4.1 Preprocessing

(1) Address Resolution. On each page in the DOM
tree Tf , each object occupies a rectangular area, spec-
ified by the starting point relative to the starting point
of its parent node, and some other formatting features.
The Preprocessing component calculates the absolute

starting point of each object by a breadth-first search
of the DOM tree. The starting points of the objects at
the first level are already absolute. For each object at
the second level or below, let (x,y) be its relative start-
ing point and (x′p,y

′
p) the absolute starting point of its

parent. Then its absolute starting point is determined
by (x′,y′) = (x+ x′p,y+ y′p). In what follows, when
we mention a starting point of a TBK, we will mean
its absolute starting point, unless otherwise stated.

Figure 2: PDFBoT architecture and data flow diagram.

(2) Font-size Statistics. This module computes the
frequency of each font size (over the total number of
characters) by traversing each TBK to obtain its font
size and the number of characters in the text it en-
closes. The font size with the highest frequency, de-
noted by BASE FS, is the font size for BT.
(3) Shallow Removal. This module removes all non-
textual objects (images and lines) and all TBKs with
font size beyond the interval

I f = (BASE FS−∆2,BASE FS+∆2),

where ∆2 is a threshold value (e.g., ∆2 = 3), or with a
rotated display, which can be checked by its webkit-
transform matrix. Headings, sidings, and footings
tend to have smaller font sizes than BASE FS−∆2
(except page numbers) and so they are removed by
this module.
Remark. The abstract may have a slightly smaller font
size than BASE FS (such as 3 pt smaller as in this pa-
per). Setting an appropriate value of ∆2 can resolve
this problem. We may also deal with the abstract
separately, regardless its font size, using the keyword
“Abstract” and the keyword “Introduction” to extract
the abstract.

Extracting Body Text from Academic PDF Documents for Text Mining

237



4.2 Multi-column Detection

Most lines on a given column are aligned flush left,
except that the first line in a paragraph may be in-
dented. Start a vertical line sweep on each page from
the left edge to the right-hand edge one pixel at a time.
Let np(i) denote the number of x-coordinates in the
starting points of TBKs that are equal to i on page p,
where i starts from 0 and ends at W one pixel at a
time, and W is the width of the printable area of the
page (typically just the width of the page). Note that a
TBK does not have coordinates at the right-hand side.

A line is aligned flush left to a column if the x-
coordinate of the starting point of the leftmost TBK in
the line is equal to the x-coordinate of the left bound-
ary of the said column. It is reasonable to assume
that (1) the left boundary of a corresponding column
is at the same x-coordinate on all pages and (2) over
one-half of the lines in any column across all pages
are aligned flush left on each page. We also assume
the following: Let j be the left boundary of a col-
umn. If i is not the left boundary of a column, then
∑p np(i) (summing up np(i) over all pages) is sub-
stantially smaller than ∑p np( j).

Proposition 4.1. A document has k columns (k ≥ 1)
iff the function ∑p np(i) has exactly k peaks with about
the same values, and the i-th x-coordinate that regis-
ters a peak is the left boundary of the i-th column.

Remarks. (1) Columns may begin at different x-
coordinates for pages that are even or odd numbered.
Just treat pages of even (and odd) numbered as one
document and then Proposition 4.1 applies to them re-
spectively. (2) A two-column layout may have a one-
column layout inserted, such as a one-column abstract
in a two-column academic paper. This can be detected
by checking the locations of TBKs. If most of them
do not match with the x-coordinate for the second col-
umn, then the underlying portion of the text is a single
column. Single-column text is processed in the same
way as the left-column text. (3) A more sophisticated
method is to use a shorter vertical line segment to
cover a sufficient number of lines for sweeping each
time, and move this line segment as a vertical sliding
window.

4.3 Text Features

(1) Line-spacing Statistics. This module lines up
TBKs according to their starting points to form lines
in sequence. Let (x1,y1) and (x2,y2) be the start-
ing points of two text blocks B1 and B2, respectively.
Then B1 and B2 are on the same line iff |y1−y2| ≤ ∆1
for a small fixed value of ∆1. The purpose of allowing
a small variation is to make typesetting more flexible

to adjust and beautify the overall layout (e.g., ∆1 = 5).
Suppose that they are on the same line, then B1 is at
the left-side of B2 iff x1 < x2. If they are not on the
same line, then B1 is on a line above that of B2 iff
y1−y2 > ∆1. This gives rise to a Page-Line-TBK tree
structure of depth 2, where the Page node has Lines as
children, and each Line node has one or more TBKs
as children.

The module then computes the gap between every
two consecutive lines in each column and obtains the
frequency for each gap. The most common gap is the
line spacing in the body text, denoted by BASE LS.
(2) Char-TBK Density. This module computes, for
each line L, the number of non-whitespace charac-
ters over the number of TBKs contained in L. Denote
by #CharL and #TBKL, respectively, the number of
non-whitespace characters and the number of TBKs
contained in L. Define by DL the following density:
DL = #CharL/#TBKL. Let BASE CBD denote the av-
erage Char-TBK density for the entire document.

4.4 Deep Removal

This module removes NBT text with font sizes within
the range of I f . It is reasonable to assume the fol-
lowing features on a PDF document adhering to con-
ventional formatting styles: (1) Math expressions in
the display mode, text on tables, text of figures, text
on charts, authors, and affiliations are indented by at
least a pixel from the left boundary of the underlying
column. (2) Every sentence ends with a punctuation.
If a sentence ends with a math expression in the dis-
play mode, then the last line of the math expression
must end with a punctuation. (3) The first line of text
followed a standalone title is aligned flush left.
(1) Remove Sidings. The BT area on each page is a
rectangular area within which the BT text are printed.
Depending on how the majority of the BT text are dis-
played, the underlying document is of either single
column or multiple columns. A column for printing
the BT text is referred to as a major column. A col-
umn on a side margin (such as the line numbers on
some documents) is referred to as a minor column,
where TBKs are in red boxes. It is reasonable to
assume that the width of a major column cannot be
smaller than a certain value Γ1 (e.g., Γ1 = 1.5 inch
= 144 pixels). It is reasonable to assume that side
margins are symmetrical. Namely, in the printable
area, the width of the left margin is the same as that
of the right-hand margin. Without loss of generality,
assume that the width of a side margin is less than Γ1.
Most documents have either one major-column or two
major-columns. For a magazine layout, three major-
columns may also be used. For example, the layout
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of this submission is of two columns.

Proposition 4.2. Let k be the number of columns (as
detected by line sweeping as in Proposition 4.1). Let
wm denote the width of a side margin. Initially, set
wm← xb, the x-coordinate of the left boundary of the
first column. If k > 1, let x′b be the x-coordinate of the
left boundary of the second column. If x′b− xb < Γ1,
then set wm← x′b. The BT area is from wm to W −wm,
where W is the width of the printable area of the page.

Note that if k > 1 and x′b− xb < Γ1, then the first
column is not a major column. Any TBKs with an x-
coordinate of its starting point less than wm is on the
left margin and any TBKs with an x-coordinate of its
starting point greater than W−wm is on the right-hand
margin. For example, this method removes line num-
bers. On a different formatting we have encountered,
such as on the LATEXtemplate for submitting drafts to
a journal by the IOS Press, a line number is a TBK
with a starting x-coordinate in the left margin, where
the text enclosed is a pair of the same number with a
long whitespace inserted in between that crosses over
the entire BT text from left to right. This pair of num-
bers will also be removed because its starting point is
in the left margin.
(2) Remove References. The simplest way to detect
references is to search for a line that consists of only
one word “References” that is either on the first line
of a column or has a larger space than BASE LS. Re-
move everything after (this may remove appendices,
which for our purpose is acceptable). A more sophis-
ticated method is to use the following line-sweeping
method to detect the area of references. by detecting
nested columns within a major column and Proposi-
tion 4.2): Start from one pixel after the left bound-
ary of a major column, sweep the column from left
to right with a vertical line on the entire paper. If a
local peak occurs with the same x-coordinate on con-
secutive lines, each line from the left boundary of the
column to this x-coordinate is either null or a num-
bering TBK. A numbering TBK contains a number
inside. Then any line that has this property is a ref-
erence. To improve detection accuracy, we may also
use a named-entity tagger (Peters et al., 2017) to de-
termine if the text right after a numbering TBK are
tagged as person(s).
(3) Remove Special Lines. Let xc be the x-coordi-
nate of the left boundary of the column that line L
belongs to, and xL be the x-coordinate in the start-
ing point of the leftmost TBK in L. If xL− xc > Γ2
for a fixed value of Γ2 larger than normal indentation
(e.g., Γ2 = 50; normal indentation for a paragraph is
48 pixels or less), then remove L. This module re-
moves most of the math expressions in the display
mode, certain author names and affiliations, as well

as text on figures with the same font size as the BT
text, for in this case the leftmost TBK would have a
large indentation due to the space taken by the y-axis
and a vertical title.

If line L contains a TBK that includes a whites-
pace greater than a certain threshold Γ3 (e.g. Γ3 =
50), specified by a 〈span〉 tag, then remove L. It is
evident that such a TBK is NBT.
(4) Remove Lines by Backward Scans and NBT Tests.
The following tests are used in certain combination to
determine NBT text lines.

(a) Line-spacing Test. An NBT line typically
has larger line spacing (gap) from the immediate line
above and from the immediate line below. A line L
passes the line-spacing test If the gap from L to the
immediate line above (if it exists) and the immediate
line below (if it exists) is either too large or too small;
namely, it is beyond an interval

Ig = (BASE LS−Γ4,BASE LS+Γ4)

for a certain threshold Γ4 (e.g., Γ4 = ∆2 = 3).
(b) Char-TBK Density Test. A line L in math ex-

pression in the display mode typically consists of a
larger number of short TBKs because of the presence
of subscripts and superscripts, where each word or
symbol would be by itself a TBK. Thus, the char-TBK
density DL would be much smaller than BASE CBD,
the average Char-TBK density. L passes this test if
DL < Γ5 · BASE CBD for a threshold value of Γ5
(e.g., Γ5 = 10).

(c) Punctuation Test. A line L passes the punctua-
tion test if the rightmost TBK in L does not end with
a punctuation.

(d) Indentation Test. A line L passes the indenta-
tion test if the x-coordinate in the starting point of its
leftmost TBK is greater than that of the left boundary
of the underlying column.

NBT-Tests-based Removal Algorithm. On a given
document, scan text from the line preceding the list of
references and move backward one page at a time to
the first line on the first page. On each page, scan from
the bottom line in the rightmost column and move
up one line at a time. Once it reaches the top line,
scan from the bottom line in the column on the left
and move up one line at a time. When the top line
on the leftmost column is reached, move backward to
the preceding page and repeat. Let P be a Boolean
variable. Initially, set P← 0. Scan text lines in the
aforementioned order of traversal. In general, if a line
is kept, then set P to 0. If a line is removed, then set
P to 1, unless otherwise stated.

In particular, do the following during scanning:
(1) If L passes both of the indentation test and the
char-TBK density test, then remove L and set P← 1.
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(2) If P = 0 and L passes the line-spacing test and the
punctuation test, then remove L and set P← 0. (3)
Otherwise, keep L and set P← 0.

Rule 1 removes page numbers, authors and affilia-
tions, text on tables, text on figures, and text on charts
that pass both of the indentation test and the char-
TBK density test. This rule also removes math ex-
pressions in the display mode. It does not remove the
last line of a paragraph because such a line fails the
indentation test. It does not remove a single-sentence
paragraph as long as it is not too short and does not
contain multiple TBKs, for it would defy the small
char-TBK density test. It does not remove a text line
that contains an inline math expression as long as it is
not the first line in an indented paragraph.

Rule 2 removes standalone one-line and two-line
titles that are not ended with a punctuation in each line
for the following reason: By assumption, the first text
line below a standalone title is aligned flushed left and
so it will not be removed, which means that P= 0 (see
Rule 3). Likewise, this rule also removes captions
without punctuation at the end of each line, if its suc-
cessor line is not removed, which implies that P = 0
(see Item 3 below). This rule does not remove the
last line in a math expression in the display mode for
this line must end with a punctuation by assumption,
which means that P = 1. This ensures that the line
preceding the displayed math expression that doesn’t
end with a punctuation is not removed by this rule.

4.5 BT Alignment & Syntactic Removal

After Deep Removal, PDFBoT aligns BT lines to re-
store sentences and paragraphs without hard breaks.
Recall that lines are formed according to columns.
For each page, BT Alignment starts from the first line
in the leftmost column one line at a time and removes
hard breaks within a paragraph until the last line in the
current column. Then it moves to the next column (if
there is any) and repeat the same procedure until the
last line in the last column. In addition to removing
hard breaks within a paragraph, it also needs to take
special care of hyphens at the end of a line and bound-
aries of paragraphs. Removing hyphens at the end of
lines is the easiest way. While this might break a hy-
phenated word into two words, doing so has a minor
impact on our task while having a much larger benefit
of restoring a word. We may also use a dictionary to
determine if a hyphen at the end of a line belongs to a
hyphenated word and keep it if it does.

If a line L meets one of the following three condi-
tions, then it is the first sentence of a paragraph: (1)
The gap between L and the immediate line above is
greater than BASE LS+Γ4. (2) The x-coordinate of

the leftmost TBK in L is larger than that of the left-
most TBK in the line immediately above. The rest
is text extraction from each TBK in the order of line
locations. Denote by f ′ the txt file from this process.

While Shallow Removal and Deep Removal can
remove most of the NBT-text lines, captions that end
with punctuation could still remain in BT text. To
remove all captions, we use the line-spacing rule to
group lines in a caption in f ′ into a paragraph. In
this paragraph, the first keyword would be one of the
followings: “Table”, “Figure”, “Fig.”, followed by a
string of digits and dot. If the third word in the first
line of such a paragraph is not a verb, then this para-
graph is deemed to be a caption. We use an existing
tool (Toutanova et al., 2003) to obtain part-of-speech
(POS) tags for each such paragraph, and remove it ac-
cordingly. Let BT.txt be the output.

Let T1(F) and T2( f ′) denote, respectively, the time
complexities of pdf2htmlEX on PDF file F and POS
tagging on paragraphs starting with “Table”, “Fig-
ure”, or “Fig.” in f ′.

Proposition 4.3. PDFBoT runs in T1(F)+T2( f ′)+
O(np) time on an input PDF document F, where n
is the number of pixels in the printable area of a page
and p is the number of pages contained in f generated
by pdf2htmlEX.

4.6 Display Sentences in Colors

An optional component of PDFBoT, sentences may
be colored in the original layout of the HTML repli-
cate by adding appropriate color tags in f . Let B =
〈Ci〉ni=1 represent the string of character objects of the
BT text, where Ci = (ci,bi, ti) with ci being the ti-th
character in the text contained in the bi-th TBK. Let
S = 〈l j〉mj=1 be the sentence to be highlighted, where
li is the i-th character in S. Use a string-matching al-
gorithm to find ` such that 〈C`, . . . ,C`+|S|−1〉= S. Let
start point =C` and end point =C`+|S|−1.

To color S with a chosen color, change the corre-
sponding elements in f as follows: If start point and
endingpoint are in the same TBK, add all the char-
acters between start point and endingpoint to a new
tag with an appropriate color attribute. Otherwise,
for the start point block, add all the characters after
start point in the block to a new tag with a color at-
tribute; for the endingpoint block, add all the char-
acters before endingpoint in the block to a new tag
with the same color attribute; and wrap all the TBKs
between the start point block and endingpoint block
with a new tag with the same color attribute.
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5 EVALUATION

We evaluate the accuracies of PDFBoT on the fol-
lowing tasks with a given document: (1) Extracting
complete sentences in the BT text. (2) Getting correct
boundaries of paragraphs. (3) Removing text on ta-
bles and figures. To do so, we first need to determine
an evaluation dataset. To the best of our knowledge,
no existing benchmarks are appropriate for evaluating
PDFBoT. Bast and Korzen (Bast and Korzen, 2017)
presented a dataset on PDF articles collected from
arXiv.org, where they worked out a method to gener-
ate texts from the underlying TEXor LATEXfiles as the
ground-truth txt files for evaluating extraction. How-
ever, this dataset does not meet our need for the fol-
lowing reasons: (1) Most of the txt files do not con-
tain Abstracts of the underlying PDF documents, and
Abstracts are an important part of the BT text. (2)
Some txt files contain authors and affiliations, and
some don’t, resulting in an inconsistency for evalu-
ation. (3) The txt files treat the text after a math ex-
pression in the display mode as a new paragraph when
it should not be.

We construct a dataset by selecting independently
at random from arXiv.org 100 two-column PDF arti-
cles in the disciplines of biology, computer science,
finance, physics, and mathematics with the following
statistics on document sizes: (1) the average number
of pages in an article: 8.28; (2) the median number of
pages: 8; (3) the maximum number of pages: 17, and
the minimum number of pages: 4; the standard devi-
ation: 2.94. We manually compare the extracted text
with the text in original academic PDF documents un-
der three categories: sentences, paragraphs, and text
on tables and figures.

Possible outcomes for sentence and paragraph ex-
tractions are (1) correct, (2) erroneous, and (3) miss-
ing, where “correct” means that the sentences (para-
graphs) extracted are BT text as the way they should
be; “erroneous” for sentences means that either the
sentence extracted is BT text but with an error, re-
ferred to as incomplete, or it should not be extracted
at all, referred to as extra, while “erroneous” for para-
graphs means that the paragraph extracted is BT text
but should not be a paragraph; and “missing” means
that a sentence (paragraph) should be extracted but
isn’t. Correct extraction is true positive (tp), erro-
neous extraction is false positive (fp), and extraction
that is missing is false negative (fn).

Table 1 is the statistics on extractions of sentences
and paragraphs, where Total means the total number
of true sentences and paragraphs, respectively, in the
original articles.

On removing text on tables, figures, and charts,

Table 1: Statistics on extractions of sentences and para-
graphs, where “Incpl” means incomplete.

Total Correct Erroneous Missing
(tp) (fp) (fn)

Sentences

19,564 19,158 341 (Incpl) 30205 (Extra)
Paragraphs

4,596 4,580 370 19

possible outcomes are (1) removed and (2) remained,
where removed means that the text is correctly re-
moved as it should be and remained means that the
text that should be removed remains. Removed is true
positive and remained is false negative. Since every
text on a table or a figure/chart should be removed,
there is no false positive. There are 9.469 TBKs on
tables, figures, and charts in the corpus with 8,986
TBKs correctly removed and 483 TBKs remained.

Table 2 is the statistics of precision, recall, and
F1 score, which are computed individually and then
rounded to the second decimal place, unless otherwise
stated to avoid writing 1.00 due to rounding.

Table 2: Sentence statistics of precision, recall, and F1
score.

Avg Med Max Min Std
Sentences

Precision 0.97 0.98 1 0.92 0.02
Recall 0.999 1 1 0.95 0.01
F1 score 0.99 0.99 1 0.96 0.01

Paragraphs
Precision 0.93 0.93 1 0.70 0.05
Recall 0.99 1 1 0.81 0.03
F1 score 0.96 0.96 1 0.83 0.03

Text on tables/figures/charts
Precision 0.93 0.93 1 0.70 0.05
Recall 0.99 1 1 0.81 0.03
F1 score 0.96 0.96 1 0.83 0.03

We note that in certain styles, paragraphs are not
indented, but separated by an obvious line of whites-
pace. In this case, a text line that is not a new para-
graph and after a math expression in display mode
could be mistakenly considered as a new paragraph.

Table 3 is the running times incurred, respectively,
by pdf2htmlEX and PDFBoT after pdf2htmlEX gen-
erates a txt file on a 2015 commonplace laptop Mac-
Book Pro with a 2.7 GHz Dual-Core Intel Core i5
CPU and 8 GB RAM, where MAX represents the
maximum running time in seconds processing a docu-
ment in this dataset, MIN the minimum running time,
Avg the average running time, Med the median run-
ning time, and Std the standard deviation.
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Table 3: Running time statistics (in seconds).

Avg Med Max Min Std
pdf2htmlEX 3.00 1.90 13.8 0.80 2.47
PDFBoT 10.3 6.80 106 2.60 12.5

We note that the running time depends on how
complex the content of the underlying document
would be. It would take a substantially longer time
to process if a document contains significantly more
math expressions or tables. A total of six documents
each takes longer than 25 seconds for PDFBoT to run.
Checking these documents, we found that they con-
tain a large number of math expressions, tables, or
supplemental materials after the references. The one
extreme outlier that runs 106 seconds on PDFBoT but
only 9.42 seconds on pdf2htmlEX is a 10-page PDF
document. The reason is likely due to complex fea-
tures used to describe the document by pdf2htmlEX.
While generating the HTML file would not be too
costly, analyzing the CSS3 files to extract features for
this particular document has taken more time, which
needs to be investigated further. Overall, PDFBoT in-
curs 10.3 seconds on average.

6 CONCLUSIONS AND FINAL
REMARKS

PDFBoT uses certain formatting features, text-
block statistics, syntactic features, the line-sweeping
method, and the backward traversal method to achieve
accurate extraction. PDFBoT is available for public
access at http://dooyeed.com:10080/pdfbot.

While the majority of the academic PDF docu-
ments satisfy the assumptions listed in the paper, it
is not always the case and so some of the extraction
mechanisms could fail. To further improve accuracy
of detecting NBT text, particularly on a document that
violates some of the assumptions, we may explore
deeper features in CSS3 files in addition to those we
have used. For example, it would be useful to inves-
tigate how to compute the width of a TBK. Neural-
network classifiers such as CNN models may also be
explored to identify certain types of NBT text residing
in the BT text area.
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